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Abstract. We show that in a Banach space X every closed convex subset is

strongly proximinal if and only if the dual norm is strongly sub differentiable

and for each norm one functional f in the dual space X∗, JX(f) - the set of

norm one elements in X where f attains its norm is compact. As a conse-

quence, it is observed that if the dual norm is strongly sub differentiable then

every closed convex subset of X is strongly proximinal if and only if the metric

projection onto every closed convex subsets of X is upper semi-continuous.

1. Introduction

Let X be a Banach space and C a closed subset of X. The metric projection of
X onto C is the set valued map defined by PC(x) = {y ∈ C : ‖x − y‖ = d(x,C)}
for x ∈ X, where d(x,C) denotes the distance of x from C. If for every x ∈ X,
PC(x) 6= ∅, we say that C is a proximinal subset of X.

For a Banach space X, we denote the closed unit ball and the unit sphere by
BX and SX respectively. If f ∈ SX∗ is a norm attaining functional, we define
JX(f) = {x ∈ SX : f(x) = 1}.

For x ∈ X \ C and given any t > 0, there exists y ∈ C such that ‖x − y‖ <

d(x,C) + t. If we call such a y a nearly best approximation to x in C, a natural
question is whether y is close to an actual best approximation of x in C. Clearly
we are demanding more than proximinality of C in X and in [5] the authors called
such a subset as a strongly proximinal subset.

Definition 1.1. Let C be a closed subset in a Banach space X and x ∈ X. For
t > 0, consider the following set

PC(x, t) = {y ∈ C : ‖x− y‖ < d(x, C) + t}.

A proximinal set C is said to be strongly proximinal at x ∈ X if for given ε > 0
there exists a t > 0 such that

PC(x, t) ⊆ PC(x) + εBX .

If C is strongly proximinal at all points of X we say that C is strongly proximinal.
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Some sufficient (and necessary) conditions for strong proximinality of certain
subspaces of some classical Banach spaces are studied in the literature [2, 3, 6, 4, 5].

In this paper we are motivated by the following question:

Question 1.2. Under what condition (necessary or sufficient)is every closed convex
subset of X strongly proximinal?

A known necessary condition for every closed convex subset of X to be strongly
proximinal is that the norm of X∗ is strongly sub-differentiable (see below for the
definition). This follows from the fact that every closed hyperplane in X is strongly
proximinal if and only if the norm of X∗ is strongly sub-differentiable (this was
noted as a corollary to a main theorem in [5]; however we will present a direct
proof of this fact in Section 2 for completeness).

Our aim is to find an additional condition so that this necessary condition and
the additional one become necessary and sufficient.

Definition 1.3. Let X be a Banach space. The norm ‖ · ‖ is said to be strongly
subdifferentiable (in short SSD) at x ∈ X if the one-sided limit

lim
t→0+

‖x + th‖ − ‖x‖
t

exists uniformly for h ∈ SX . If the norm ‖ · ‖ of X is SSD at all points of SX , we
say that ‖ · ‖ is SSD or the space X is SSD.

Recall that (see [7]) a closed set C ⊆ X is said to be approximatively compact
if every minimizing sequence in C has a convergent subsequence. It is easy to see
that if C is approximatively compact then C is strongly proximinal. Also every
closed convex subset of X is approximatively compact if and only if X is reflexive
and (KK), where (KK) means that the relative weak and norm topologies coincide
on the unit sphere SX of X. This is implicit in [9] (see also [7]).

Therefore a sufficient condition for every closed convex subset of X to be strongly
proximinal is that X is reflexive and (KK). Interestingly, this condition also turns
out to be necessary.

Our main result in this paper is the following:

Theorem 1.4. Let X be a Banach space. Then the following statements are equiv-
alent.

(a) X∗ is SSD and JX(f) is compact for every f ∈ SX∗ .
(b) X is reflexive and (KK).
(c) Every closed convex subset of X is approximatively compact.
(d) Every closed convex subset of X is strongly proximinal.

Compare this with the well known result that every closed convex subset in X

is proximinal if and only if X is reflexive.

We relate our main result with the continuity of metric projection as follows.
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Definition 1.5. Let C ⊆ X and x ∈ X. PC is said to be

(a) upper semi-continuous (in short usc) at x if for every open set U ⊆ X such
that PC(x) ⊆ U , there exists δ > 0 such that PC(z) ⊆ U for every z satisfying
‖z − x‖ < δ

(b) upper Hausdorff semi-continuous (in short uHsc) at x if for every ε > 0 there
exists a δ > 0 such that PC(z) ⊆ PC(x) + εBX for every z satisfying ‖z − x‖ < δ.

It is well known [1] that if C is a subspace of X then PC is usc at x if and only if
PC is uHsc at x and PC(x) is compact. Also it is straight forward to see that if C

is a strongly proximinal subset then PC is uHsc. We will show that if X∗ is SSD

then every closed convex subset of X is strongly proximinal if and only if PC is usc
for every closed convex subset of X. In this case we also get PC is uHsc for every
closed convex subset C of X and PC(x) is compact for every x ∈ X.

2. Main results

We first give a straight forward proof of the fact that the condition that X∗ is
SSD is necessary for every closed convex subset of X to be strongly proximinal.
We will be using [5, Lemma 1.1] which we state as a fact.

Fact 1: Let X be a Banach space and f ∈ SX∗ . The following assertions are
equivalent.

(a) The dual norm on X∗ is SSD at f .
(b) f is norm attaining and for all ε > 0 there exists a δ > 0 such that

f(x) > 1− δ ⇒ d(x, JX(f)) < ε.

Proposition 2.1. Let X be a Banach space and f ∈ SX∗ . Then the following
statements are equivalent.

(a) For every c ∈ R, the hyperplane Hc = {x ∈ X : f(x) = c} is strongly
proximinal.

(b) The norm of X∗ is SSD at f .

Proof. (a) ⇒ (b) : Since the hyperplane H = {x ∈ X : f(x) = 1} is proximinal,
JX(f) 6= ∅. Let (xn) be a sequence in BX such that f(xn) → 1. We will show that
d(xn, JX(f)) → 0. By Fact 1 it follows that the norm of X∗ is SSD at f . Note that
d(0,H) = 1 and PH(0) = JX(f). We put yn = xn

f(xn) . Then yn ∈ H and ‖yn‖ → 1.
Therefore yn ∈ PH(0, δn) for some δn → 0 and since H is strongly proximinal
d(yn, PH(0)) → 0. Since ‖xn − yn‖ → 0, d(xn, PH(0)) = d(xn, JX(f)) → 0.

(b) ⇒ (a) : Since the norm of X∗ is SSD at f , by Fact 1, JX(f) 6= ∅. Therefore
for every c ∈ R, the hyperplane Hc = {x ∈ X : f(x) = c} is proximinal. To show
that Hc is strongly proxminal, let x0 ∈ X\Hc. Without loss of generality we assume
f(x0) > c. For n ≥ 1 let xn ∈ PHc

(x0,
1
n ). We show that d(xn, PHc(x0)) → 0 which

completes the proof. We first note that Hc = {x ∈ X : f(x) = f(x0) − d} where
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d = d(x0,Hc). Let yn = x0−xn

d+2/n . Then yn ∈ BX and f(yn) → 1. Therefore, by
the assumption and Fact 1 there exists a sequence (zn) from JX(f) such that
‖yn − zn‖ → 0. Now the sequence (x0 − dzn) is in PHc

(x0) and ‖xn − x0 + dzn‖ =
‖x0 − yn(d + 2

n )− x0 + dzn‖ → 0. �

From the proof of (b) ⇒ (a) of Proposition 2.1 it is clear that if the norm of X∗

is SSD at all norm attaining functionals of SX∗ then all proximinal hyperplanes
of X are strongly proximinal. However, the condition that the norm of X∗ is
SSD at all norm attaining functionals of SX∗ is not sufficient for every proximinal
convex subset to be strongly proximinal. To show this we construct an example of
a proximinal convex subset of c0 which is not strongly proximinal. Note that the
norm of `1 is SSD at every norm one norm attaining functional on c0.

We need the following result from [8] which will be used in the sequel.

Lemma 2.2. [8, Propostion 5] Let H = {x : f(x) = c} be a closed hyperplane in
X and (xn) be a sequence in X such that xn → x0 weakly for some x0. Suppose
f(xn) > c for all n . Then (co{xn : n ∈ N}) ∩H 6= ∅ if and only if x0 ∈ H, and in
this case (co{xn : n ∈ N}) ∩H = {x0}.

Example 2.3. Consider the sequence (xn) in c0 where xn = (− 1
n , 0, · · · , 1

2 , 0, · · · ),
where 1

2 occurs at the nth place. It is easy to see that xn → 0 weakly. Consider
C = co{xn : n ∈ N}. Then C is weakly compact hence proximinal. We show that
C is not strongly proximinal.

Let x = (1, 0, 0, · · · ) ∈ c0 and f = (−1, 0, 0, · · · ) ∈ `1. Then f(xn) > 0 for all n.
Thus by Lemma 2.2, (co{xn : n ∈ N})∩ker f = {0}. Note that (xn) is a minimizing
sequence for x in C. Also PC(x) = (co{xn : n ∈ N})∩ ker f = {0}. But surely (xn)
does not converge to 0 in norm. Thus PC is not strongly proximinal at x.

We now introduce the following property for a Banach space X.

Definition 2.4. We say that a Banach space X has the property Strong HR (in
short SHR) if for any f ∈ SX∗ such that JX(f) 6= ∅, any sequence (yn) in X such
that f(yn) ≥ 1 and d(yn, JX(f)) → 0 we have

d(yn, (co{yn : n ∈ N}) ∩ SX) → 0.

The property (SHR) is a stronger version of the property (HR) defined in [8]
as follows: X has the property HR if for any f ∈ SX∗ such that JX(f) 6= ∅, any
sequence (yn) in X such that f(yn) = 1 and d(yn, JX(f)) → 0 we have d(yn, (co{yn :
n ∈ N}) ∩ SX) → 0.

We first show that in a reflexive space the property (SHR) is equivalent to that
JX(f) is compact for every f ∈ SX∗ .

Proposition 2.5. Let X be such that JX(f) is compact for every f ∈ SX∗ . Then
X has the property (SHR). Conversely, if X is reflexive, then (SHR) implies that
JX(f) is compact for every f ∈ SX∗ .
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Proof. Let f ∈ SX∗ be such that JX(f) 6= ∅ and JX(f) be compact. Let (yn) be
such that f(yn) ≥ 1, d(yn, JX(f)) → 0 and d(ynk

, (co{yn : n ∈ N}) ∩ SX) ≥ ε for
some subsequence (ynk

) and for some ε > 0. Then by the compactness of JX(f)
there is a subsequence of (ynk

) which converges to some x ∈ JX(f). Note that
x ∈ (co{yn : n ∈ N}) ∩ SX and this contradicts the assumption.

Now let X be reflexive. Then for every f ∈ SX∗ , JX(f) is nonempty and
weakly compact. Suppose X has the property (SHR). Let (xn) be a sequence in
JX(f). Define yn = (1 + 3

n )xn for every n. Then f(yn) > 1 for every n and
d(yn, JX(f)) → 0. Since JX(f) is weakly compact, we may choose a subsequence
(ynk

) of (yn) such that ynk
→ y0 weakly for some y0 ∈ JX(f). By Lemma 2.2,

(co{ynk
: k ∈ N}) ∩H = {y0}

where H = {x ∈ X : f(x) = 1}. Since y0 ∈ SX and

(co{ynk
: k ∈ N}) ∩ SX ⊆ (co{ynk

: k ∈ N}) ∩H,

we have co{ynk
: k ∈ N}) ∩ SX = {y0}. By the property (SHR) we get that

d(ynk
, (co{ynk

: k ∈ N}) ∩ SX) → 0. That is ynk
→ y0 ∈ JX(f). This implies that

xnk
→ y0 and the proof is complete. �

Before we prove our main result, we give an example to show that the property
(SHR) is strictly stronger than the property (HR) considered in [8]

Example 2.6. In `2 consider the following set

B′ = {x = (x(1), x(2), ...) ∈ l2 : ‖x‖2 ≤ 1, |x(1)| ≤ 1
2
}.

Let ‖| · ‖| be the Minkowski’s functional of B′. Then ‖| · ‖| is an equivalent norm
on `2 and let X = (`2, ‖| · ‖|). It is shown by Osman [8] that the space X has the
property (HR). We will show that the space does not have the property (SHR).

Consider f ∈ X∗ defined by f((x(1), x(2), ...)) = 2x(1). It is clear that f ∈ SX∗ .
Let H = {x = (x(1), x(2), ...) ∈ X : f(x) = 1} = {x ∈ X : x(1) = 1

2}. Then the
closed hyperplane H supports the unit ball B′ and JX(f) = H ∩B′ is not compact.
Hence by Proposition 2.5, the space cannot have the property (SHR).

Proof of Theorem 1.4:

(a) ⇒ (b): If the norm of X∗ is SSD at some f ∈ SX∗ then f is norm attaining
on SX [5, Lemma 1.1]. Hence if X∗ is SSD then X is reflexive.

To show (KK), let (xn) be a sequence in SX such that xn → x weakly for some
x ∈ SX . Suppose f(x) = 1 for some f ∈ SX∗ . Then f(xn) → 1. Thus by [5,
Lemma 1.1], d(xn, JX(f)) → 0. By the compactness of JX(f), there exists a norm
convergent subsequence (xnk

). Since xn → x weakly, xnk
→ x in norm. Starting

with any subsequence of (xn) we can produce, by the above argument, a further
subsequence which is norm convergent to x. Hence (xn) converges to x in norm.

(b) ⇒ (c): This is essentially proved in [9]. See also [7].
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(c) ⇒ (d) is easy.

(d) ⇒ (a): Since every closed convex subset of X is strongly proximinal, by
Proposition 2.1, X∗ is SSD. We will show that X has the property (SHR). This,
with Proposition 2.5, will show that JX(f) is compact for every f ∈ SX∗ .

Let (yn) be any sequence in X such that f(yn) ≥ 1 for all n and d(yn, JX(f)) → 0
for some f ∈ SX∗ . Take C = co{yn : n ∈ N}. Since ‖yn‖ → 1, d(0, C) = 1
and yn ∈ PC(0, δn) for some δn → 0. By the strong proximinality of C, we have
d(yn, PC(0)) → 0. Since

PC(0) = (co{yn : n ∈ N}) ∩ SX ,

we have d(yn, co{yn : n ∈ N} ∩ SX) → 0. �

Remark 2.7. In Question 1.2 we demand that every closed convex set is strongly
proximinal in X. This automatically forces the space X to be reflexive. However, in
a non-reflexive set up one may ask when every proximinal convex subset is strongly
proximinal. From Proposition 2.1, we observe that the condition that the norm of
X∗ is SSD at all norm attaining functionals of SX∗ is necessary for every proximinal
convex subset to be strongly proximinal. In the following proposition we show that
the conditions that the norm of X∗ is SSD at all norm attaining functionals of SX∗

and X has the property (SHR) are sufficient for this.

Proposition 2.8. Let X be a Banach space such that the norm of X∗ is SSD at
every norm attaining functional of SX∗ and X has the property (SHR). Then every
proximinal convex subset in X is strongly proximinal.

Proof. Suppose C is a proximinal convex subset such that d(0, C) = 1 and yn ∈
PC(0, 1

n ) for every n. Let H = {x ∈ X : f(x) = 1}, f ∈ SX∗ . Then H separates C

and BX . Choose y′n ∈ [0, yn] ∩H. Then

1 = d(0,H) ≤ ‖y′n‖ ≤ 1 +
1
n
→ 1.

This implies that ‖y′n‖ → 1. Since f is norm attaining on SX , the norm of X∗ is SSD
at f . By Proposition 2.1, H is strongly proximinal and therefore d(y′n, PH(0)) → 0.
Note that ‖yn − y′n‖ → 0 and PH(0) = JX(f). Therefore d(yn, JX(f)) → 0. Since
f(yn) ≥ 1, by the property of (SHR), d(yn, (co{yn : n ∈ N}) ∩ SX) → 0. This
implies that d(yn, PC(0)) → 0 because (co{yn : n ∈ N})∩SX ⊆ PC(0). This proves
that C is strongly proximinal. �

Remark 2.9. Note that in case X = c0, the dual norm is SSD at all norm attaining
functionals of SX∗ . Proposition 2.8 and Example 2.3 together show that c0 does not
have the property (SHR). It is also evident that for every norm attaining f ∈ S`1 ,
Jc0(f) is never compact. We do not know an example of a non-reflexive Banach
space X satisfying the condition of Proposition 2.8 but JX(f) is not compact for a
norm attaining functional f ∈ SX∗ .
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We now relate our main result to continuity property of the metric projection.

It is easy to see that if C is a strongly proximinal subset then PC is uHsc. In the
next result we see that if every closed convex subset of X is strongly proximinal
then the metric projection becomes usc for every closed convex subset of X.

It is well known [1] that if C is a subspace of X then PC is usc at x if and only
if PC is uHsc at x and PC(x) is compact. The following result characterizes the
upper semi continuity of PC(·) for every closed convex subset C of X.

Proposition 2.10. Let X be a Banach space such that X∗ is SSD. Then the
following statements are equivalent.

(a) For every f ∈ SX∗ , JX(f) is compact.
(b) Every closed convex subset of X is strongly proximinal.
(c) For every closed convex subset C of X, the metric projection PC(·) is
uHsc and PC(x) is compact for every x ∈ X.

(d) For every closed convex subset C of X, the metric projection PC(·) is
usc .

Proof. (a) ⇒ (b): This follows from Theorem 1.4.

(b) ⇒ (c): By Theorem 1.4, every closed convex subset of X is approximatively
compact. The compactness of PC(x) follows from the approximative compactness
of C.

(c) ⇒ (d): This is known [1].

(d) ⇒ (a): For given f ∈ SX∗ consider the hyperspace G = {x ∈ X : f(x) = 0}.
Since G is a subspace, by (d) and a result of [1], PG(x) is compact for every x ∈ X.
This implies that JX(f) is compact because PG(x) = {x− f(x)z : z ∈ JX(f)}. �
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