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Abstract. In this paper we initiate a quantitative study of strong proximinal-

ity. We define a quantity ε(x, t) which we call as modulus of strong proximinal-

ity and show that the metric projection onto a strongly proximinal subspace Y

of a Banach space X is continuous at x if and only if ε(x, t) is continuous at x

whenever t > 0. The best possible estimate of ε(x, t) characterizes spaces with

1 1
2

ball property. Estimates of ε(x, t) are obtained for subspaces of uniformly

convex spaces and of strongly proximinal subspaces of finite codimension in

C(K).

1. Introduction

Let X be a Banach space and Y a closed subspace of X. The metric projection of
X onto Y is the set valued map defined by PY (x) = {y ∈ Y : ‖x− y‖ = dist(x, Y )}
for x ∈ X. If for every x ∈ X, PY (x) 6= ∅, we say that Y is a proximinal subspace
of X.

For a Banach space X, we denote the closed unit ball and the unit sphere by BX

and SX respectively. In general the open ball and the closed ball of radius r around
x ∈ X will be denoted by B(x, r) and B[x, r] respectively. We restrict ourselves to
real scalars. All subspaces we consider are assumed to be closed.

For x ∈ X \ Y and given any t > 0, there exists y ∈ Y such that ‖x − y‖ <

dist(x, Y )+t. If we call such a y as a nearly best approximation to x in Y , a natural
question is whether y is close to an actual best approximation of x in Y . Clearly
we are demanding more than proximinality of Y in X and in [5] the authors called
such a subspace as a strongly proximinal subspace.

Definition 1.1. Let Y be a closed subspace in a Banach space X and x ∈ X. For
t > 0, consider the following set

PY (x, t) = {y ∈ Y : ‖x− y‖ < dist(x, Y ) + t}.
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A proximinal subspace Y is said to be strongly proximinal at x ∈ X if for given
ε > 0 there exists a t > 0 such that

PY (x, t) ⊆ PY (x) + εBY .

It is to mention here that Vlasov studied the same notion under the name H-set
[12]. Also [11] considered the notion of local U-proximinal subspaces and in [1] it
was established that the local U-proximinality is same as the strong proximinality.

One of the main motivations to study strongly proximinal subspaces is for many
natural classes of Banach spaces X, if Y is a strongly proximinal subspace of X,
then PY has nice continuity properties. We need the following definitions.

Definition 1.2. (a) PY is called lower Hausdorff semi-continuous (hence-
forth lHsc) at x if given ε > 0, there exists δ > 0 such that for every z

satisfying ‖z − x‖ < δ we have PY (x) ⊆ PY (z) + εBY .
(b) PY is called upper Hausdorff semi-continuous (henceforth uHsc) at x if
given ε > 0, there exists δ > 0 such that for every z satisfying ‖z − x‖ < δ

we have PY (z) ⊆ PY (x) + εBY .
(c) PY is called Hausdorff metric continuous at x if it is continuous as a
single valued map from X to 2Y with respect to the Hausdorff metric dh

defined as follows:

dh(A,B) = max{sup
x∈A

dist(x,B), sup
y∈B

dist(y, A)} A,B ∈ 2Y .

Remark 1.3. (a) It is a simple consequence of the definition that if Y is a
strongly proximinal subspace then PY is uHsc.

(b) If Y is proximinal in X, then PY is Hausdorff metric continuous if and
only if PY is both lHsc and uHsc.

(c) Sometimes in the literature (see [3, 8]) lower Hausdorff semi-continuity
is referred as strongly lower semi-continuity.

Remark 1.4. For a subspace Y ⊆ X, let D(Y ) denote the set {x ∈
SX : dist(x, Y ) = 1}. A simple normalization shows that to check the strong prox-
iminality of Y and the continuity of PY , it is enough to verify them for x ∈ D(Y ).

In [8] it was shown that if X ⊆ c0 and Y ⊆ X is a strongly proximinal subspace
of finite codimension in X, then PY is Hausdorff metric continuous. More general
results were obtained in [3], where the authors showed that if X is a Banach space
with Property (∗) (see [3] for the definition of Property (∗)) and Y ⊆ X is a
proximinal subspace of finite codimension, then PY is lHsc. By [3], every separable
polyhedral space has a renorming with Property (∗). In particular, if 1 ≤ α < ω1 is
a countable ordinal then the space C(ωα) is an `1-predual and hence isomorphically
polyhedral space. Thus C(ωα) has a renorming with Property (∗) (see [7]).
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In [2], it was shown that if Y is a strongly proximinal subspace of finite codi-
mension in C(K), then PY is continuous in Hausdorff metric.

However, a recent result by Indumathi in [9], shows that if Y is a proximinal
subspace of X of finite codimension such that Y ⊥ is polyhedral, then PY is lHsc.
Hence, by Remark 1.3(a), it follows that for a strongly proximinal subspace Y of
X, if Y ⊥ is polyhedral then PY is continuous. Thus the results mentioned above
now follow as corollaries to the result in [9].

In this paper we initiate a quantitative study of strong proximinality. Taking cue
from [11] and a result from [1] (see below), we define a local modulus of strong prox-
iminality and establish that the continuity of PY on strongly proximinal subspaces
is equivalent to the continuity of this modulus. Further, we estimate the values of
this modulus on certain spaces. Also, we show that the best possible estimate of
modulus of strong proximinality characterizes spaces with 1 1

2 -ball property.

In [11], (local) U-proximinality was defined through a function ε : X \Y ×R+ →
R+. If Y is locally U-proximinal, by [11, Theorem 3.3], a sufficient condition for
continuity of PY is that ε(·, t) is upper semi-continuous on X \ Y for each t > 0.

However, in [1, Proposition 3.1] it was noted that the function ε defined by Lau
coincides with dh(PY (x), PY (x, t)) on D(Y ). As a consequence it follows that Y is
locally U-proximinal if and only if Y is strongly proximinal. Taking cue from this
observation and the above mentioned result of Lau, we define the following quantity
which we call as modulus of strong proximinality.

Definition 1.5. Let Y ⊆ X be a proximinal subspace. The modulus of strong
proximinality ε : X \ Y × R+ → R+ is defined by

ε(x, t) = inf{r > 0 : PY (x, t) ⊆ PY (x) + rBY }.

Intuitively, ε(x, t) measures how close a nearly best approximation of x in Y is
to an actual best approximation of x in Y .

In Section 2 we first show that for each x, ε(x, ·) is continuous at t > 0 and it
is continuous at t = 0 if and only if Y is strongly proximinal. Our main result in
Section 2 is that if Y is a strongly proximinal subspace then PY is continuous at
x if and only if ε(·, t) is continuous at x for each t > 0. This will be done in two
parts: First we show that for any proximinal subspace Y ⊆ X, if PY is uHsc at x

then ε(·, t) is lsc at x and if PY is lHsc at x then ε(·, t) is usc at x. Next we show
that if ε(x, ·) is continuous at 0 and ε(·, t) is usc at x for each t > 0, then PY is
lHsc at x. Since continuity of ε(x, ·) at 0 already implies PY is uHsc, we conclude
our result. Note that in the process we also recover [11, Theorem 3.3] which, in
combination of [1, Proposition 3.1], just gives the sufficient part.
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Section 3 is devoted to study of quantitative estimates of ε(·, ·). In particular
we consider subspaces with 1 1

2 -ball property, subspaces of uniformly convex spaces
with power type modulus of convexity and strongly proximinal subspaces of finite
codimension in C(K).

We show that the best possible estimates for ε is ε(x, t) < t, that is, ε(x, t) is
proportional to t for all x and this happens if and only if Y has 1 1

2 -ball property
in X.

Definition 1.6. Y ⊆ X is said to have the 1 1
2 -ball property in X if x ∈ X, y ∈ Y ,

B[x, r]∩ Y 6= ∅ and ‖x− y‖ < r + s, then the intersection Y ∩B[x, r]∩B[y, s] 6= ∅.

From our result it follows, in particular, that if Y has 1 1
2 -ball property in X then

PY is 2-Lipschitz continuous which was observed in [10, Section 2.6].

For examples of subspaces with 1 1
2 -ball property see [13] and [10, Section 2.6].

For uniformly convex spaces with modulus of convexity δ(t) having power type p,
we show that there exists a function g such that ε(x, t) ≤ g(x, d)t

1
p , d = dist(x, Y ),

where g is Lipschitz in first variable and locally Lipschitz in the second variable.
Since the local component depends only on dist(x, Y ), in particular, on D(Y ), PY

is Lip 1
p

function.

We next consider strongly proximinal subspaces of finite codimension in C(K).
Here also we show that for f ∈ C(K) \ Y , there exists a constant C and t0, both
depending on f such that ε(f, t) < Ct for all t < t0. However, we do not know if
in this case PY is locally Lipschitz.

For a closed subspace X ⊆ c0 and proximinal subspaces of finite codimension in
X, the same technique as in the case of C(K) applies.

2. Continuity properties of ε(·, ·)

We start with the following lemma.

Lemma 2.1. Let Y ⊆ X be a proximinal subspaces. Then for each fixed x ∈ X \Y ,
ε(x, ·) is a continuous and increasing function of t whenever t > 0. Moreover if
dist(x, Y ) = d and t > s, then ε(x, t)− ε(x, s) ≤ (t− s) 2d+t

t .

Proof. That ε(x, ·) is an increasing function of t follows from definition. Let s > 0
and t = s + η, η > 0. For any ε1 > ε(x, s), PY (x, s) ⊆ PY (x) + ε1BY . We will
show PY (x, t) ⊆ PY (x, s) + (t− s) 2d+t

t BY and hence PY (x, t) ⊆ PY (x) + (ε1 + (t−
s) 2d+t

t )BY . It follows that ε(x, t) ≤ ε(x, s) + (t− s) 2d+t
t .

Let y ∈ PY (x, t). Since t = s + η, ‖x− y‖ ≤ d + s + η. Choose y0 ∈ PY (x) and
consider ȳ = (1−λ)y+λy0, where λ = η

s+η . Then ‖x−ȳ‖ < (1−λ)(d+s+η)+λd =
d + s + η − λs− λη = d + s. Hence ȳ ∈ PY (x, s).
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Also, ‖y − ȳ‖ = λ‖y − y0‖ = η
s+η (‖y − x‖ + ‖x − y0‖) < η

s+η (d + s + η + d) =
η 2d+s+η

s+η . �

The following lemma is an easy consequence of the definition of strongly prox-
iminal subspaces.

Lemma 2.2. A subspace Y in a Banach space X is strongly proximinal if and only
if for each x ∈ X \ Y , ε(x, t) → 0 as t → 0.

The next two propositions determine the continuity of ε(·, t) from the continuity
of PY .

Proposition 2.3. Suppose Y is a proximinal subspace of X and PY is lHsc at
x ∈ X \ Y . Then for every t > 0, ε(·, t) is usc at x.

Proof. Let t > 0 be fixed and xn → x. We need to show that lim sup ε(xn, t) ≤
ε(x, t). Let dn = dist(xn, Y ).

Let α > ε(x, t). Choose r > 0 such that α > α − r > ε(x, t). Hence PY (x, t) ⊆
PY (x) + (α − r)BY . For any β, with t > β > 0 and n large enough we have
PY (xn, t−β) ⊆ PY (x, t) ⊆ PY (x)+(α− r)BY . Using the fact that PY is lHsc at x,
we have, for large n, PY (x) ⊆ PY (xn)+ r

2BY . Hence we have α− r
2 ≥ ε(xn, t−β) ≥

ε(xn, t) − β 2dn+t
t - where the last inequality follows from Lemma 2.1. Note that

dn → d and taking lim sup as n → ∞ we have α − r
2 > lim sup ε(xn, t) − β 2d+t

t .
But β is arbitrary and hence the result follows. �

Proposition 2.4. Suppose Y is a proximinal subspace of X and PY is uHsc at
x ∈ X \ Y . Then for every t > 0, ε(·, t) is lsc at x.

Proof. Let t > 0 be fixed and xn → x. We need to show that lim inf ε(xn, t) ≥
ε(x, t).

Let α < ε(x, t). Choose r > 0 such that α < α + r < ε(x, t). If along some
subsequence, ε(xn, t) ≤ α then PY (xn, t) ⊆ PY (xn) + (α + r

4 )BY . Since PY is uHsc
at x, for large n, PY (xn) ⊆ PY (x) + r

4 and hence PY (xn, t) ⊆ PY (x) + (α + r
2 )BY .

Now for any β satisfying t > β > 0 and large n, PY (x, t− β) ⊆ PY (xn, t). Thus we
have α + r

2 ≥ ε(x, t − β) > ε(x, t) − β 2d+t
t . Since the choice of β is arbitrary, this

contradicts the choice of α. �

Combining Proposition 2.3 and Proposition 2.4 we have the following result.

Theorem 2.5. Let Y be a proximinal subspace of X. If PY is continuous at x then
for every t > 0, ε(·, t) is continuous at x.

We now state our main result of this section.
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Theorem 2.6. Let Y be a strongly proximinal subspace of X. Then PY is contin-
uous at x if and only if for every t > 0, ε(·, t) is continuous at x.

Proof. Only if part follows from Theorem 2.5. To show the if part, let Y be strongly
proximinal and ε > 0. By continuity of ε(x, ·) at 0, there exists t0 > 0 such
that ε(x, t0) < ε

4 . Now let xn → x. Since ε(·, t0) is continuous at x, we have
lim ε(xn, t0) = ε(x, t0) and hence for n large ε(xn, t0) ≤ ε(x, t0) + ε

4 .

Also for n large,

PY (xn) ⊆ PY (x, t0) ⊆ PY (x) + (ε(x, t0) +
ε

4
)BY

and

PY (x) ⊆ PY (xn, t0) ⊆ PY (xn) + ε(xn, t0)(1 +
1
n

)BY .

Thus, dh(PY (x), PY (xn)) ≤ max{ε(x, t0) + ε
4 , ε(xn, t0)(1 + 1

n )} ≤ (ε(x, t0) +
ε
4 )(1 + 1

n ) ≤ ε.

This shows that PY is continuous at x. �

Remark 2.7. Note that for the if part, we only need to use that for every t > 0,
ε(·, t) is usc at x. A similar result was obtained in [11, Theorem 3.3].

3. Estimates for ε(x, t)

We first take up the subspaces with 1 1
2 -ball property. We need the following

known result [6].

Theorem 3.1. Let Y be a proximinal subspace of X. Then the following statements
are equivalent.

(a) Y has the 1 1
2 - ball property.

(b) For each x ∈ X and y ∈ Y we have ‖x−y‖ = dist(x, Y )+dist(y, PY (x)).
(c) For each x ∈ X we have ‖x‖ = dist(x, Y ) + dist(0, PY (x)).

In the following theorem we characterize subspaces with 1 1
2 -ball property in

terms of the modulus of strong proximinality.

Theorem 3.2. Let Y ⊆ X be a proximinal subspace. Then Y has 1 1
2 -ball property

in X if and only if for all x ∈ X \ Y , ε(x, t) < t.

Proof. Suppose Y has the 1 1
2 - ball property. Let d = dist(x, Y ) and y ∈ PY (x, t).

Then, by Theorem 3.1, d+dist(y, PY (x)) = ‖x−y‖ < d+t. Therefore d(y, PY (x)) <

t and hence ε(x, t) < t.

Conversely, suppose ε(x, t) < t for any t > 0. If 0 < β = ‖x‖ − d, then for any
ε > 0, we have ‖x‖ = ‖x−0‖ < d+β+ε. By the assumption there exists zε ∈ PY (x)
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such that ‖zε‖ < β + ε. This implies that

‖x‖ = d + β > d + ‖zε‖ − ε ≥ d + d(0, PY (x))− ε.

Since ε is arbitrary, this implies that ‖x‖ = d + d(0, PY (x)). By Theorem 3.1, X
has the 1 1

2 - ball property. �

Corollary 3.3. Suppose Y ⊆ X and Y has 1 1
2 -ball property in X. Then PY is

2-Lipschitz continuous.

Proof. Let x, z ∈ X \ Y and ‖x − z‖ < t for some t. If y ∈ PY (z) then ‖x − y‖ ≤
‖x− z‖+ ‖z − y‖ < t + dist(z, Y ) ≤ t + dist(x, Y ) + t. Hence y ∈ PY (x, 2t) and by
Theorem 3.2, PY (z) ⊆ PY (x) + 2tBY . Similarly, PY (x) ⊆ PY (z) + 2tBY . Hence
dh(PY (x), PY (z)) ≤ 2t. �

Remark 3.4. In [1, Corollary 3.6] it was shown that if Y ⊆ X has 1 1
2 -ball property

in X then C(K, Y ) is strongly proximinal in C(K, X) and the metric projection is
2-Lipschitz continuous.

We now give estimate for ε(x, t) for uniformly convex spaces.

Proposition 3.5. Let X be a uniformly convex space with modulus of uniform
convexity satisfying δX(t) ≥ Ctp, 2 ≤ p < ∞. Then for any subspace Y ⊆ X, there
exits a function g : R+×R+ → R+ such that for x ∈ X \Y and t sufficiently small,
we have ε(x, t) ≤ g(x, d)t

1
p . The function g depends on Y only through the distance

of x from Y . In particular, there exists a constant K depending only on X such
that for any subspace Y ⊆ X, and x ∈ D(Y ) one has ε(x, t) ≤ Kt

1
p for sufficiently

small t.

Proof. Let x ∈ X and Y ⊆ X a subspace. Let dist(x, Y ) = d and y0 ∈ PY (x).
There exists a unique f ∈ SX∗ , f |Y = 0 such that f(x + y0) = f(x) = d. Let
y ∈ PY (x, t). Then

‖x + y0

d
+

x + y

‖x + y‖
‖ ≥ f(

x + y0

d
+

x + y

‖x + y‖
) = 1 +

d

‖x + y‖
> 2− t

d
,

for sufficiently small t.

Hence, 1− 1
2‖

x+y0
d + x+y

‖x+y‖‖ < t
2d . By definition of δX , it follows ‖x+y0

d − x+y
‖x+y‖‖ <

δ−1
X (t/2d). That is,

x + y

‖x + y‖
∈ x + y0

d
+ δ−1

X (t/2d)BX ,

hence,

y ∈ ‖x + y‖
d

y0 +
x(‖x + y‖ − d)

d
+ ‖x + y‖δ−1

X (t/2d)BX .

Since ‖x + y‖ < d + t and ‖y0‖ ≤ ‖x‖+ d, we have

‖y − y0‖ ≤ t +
2t

d
‖x‖+ (d + t)δ−1

X (t/2d).



8 DUTTA AND SHUNMUGARAJ

Therefore, ε(x, t) ≤ (1 + 2
d‖x‖)t + (d + t)δ−1

X (t/2d).

Now if δX is of power type p ∈ [2,∞) then for K ′ = 1
C(2d)1/p , we have δ−1

X ( t
2d ) ≤

K ′t
1
p . Since for t < 1 one has t < t

1
p we conclude ε(x, t) ≤ g(x, d)t

1
p where

g(x, t) = 1 + 2
d‖x‖ + K ′(d + 1). On D(Y ), g is constant and hence there exists a

constant K such that ε(x, t) ≤ Kt
1
p . �

Remark 3.6. (a) The function g defined in the proof of the previous the-
orem is Lipschitz in x (in fact depends only through ‖x‖) and locally Lip-
schitz in d.

(b) Same calculation as in the case of Corollary 3.3 now shows that if Y ⊆ X

where X is a uniformly convex space with modulus of convexity of power
type p, then PY is a locally Lip 1

p
function. In particular if x, z ∈ D(Y ), ‖x−

z‖ < 1 one has ‖PY (x)− PY (z)‖ ≤ (6 + 3
C )‖x− z‖

1
p .

We now proceed to estimate ε(x, t) for finite codimensional strongly proximinal
subspaces of C(K).

It was noted in [2, Corollary 2.3] that a subspace Y of finite codimension in
C(K) is strongly proximinal if and only if Y ⊥ is contained in the set of so called
‘quasi-polyhedral’ (see [2] for definition) points of C(K)∗. Such points of C(K)∗ are
completely described in [2, Theorem 2.1] as the finitely supported measures on K.
Also, it is known that (see [5]) if Y ⊥ is contained in the ‘quasi-polyhedral’ points
of X∗, then Y ⊥ and hence X/Y , are both finite dimensional polyhedral spaces.

Let E be an n-dimensional polyhedral space. If f ∈ SE∗ , we define JE(f) =
{e ∈ SE : f(e) = 1}. For Φ ∈ SE , consider the following sets:

AΦ = {f ∈ BE∗ : f(Φ) = 1}

CΦ = {f ∈ extBE∗ : f(Φ) = 1}.

Then CΦ is a finite set and ∩f∈AΦJE(f) = ∩f∈CΦJE(f). Let
{f1, f2, · · · , fk}, 1 ≤ k ≤ n be a maximal linearly independent subset of CΦ.
Then the set ∩k

i=1JE(fi) is a minimal face of BE containing Φ. It is easy to deduce
that if Φ is an extreme point of BE , then k = n and {f1, f2, · · · , fn} forms a basis
of E∗.

We recall the following proposition from [5].

Proposition 3.7. [5, Proposition 2.4] Let E be an n-dimensional normed linear
space and Φ ∈ SE \ ext(BE). Let F be the minimal face of SE to which Φ belongs.
If F = ∩k

i=1JE(fi), k < n for some linearly independent set {f1, f2, · · · , fk} in
SE∗ , then the set {f1, f2, · · · , fk} can be extended to a basis {f1, f2, · · · , fn} of E∗,
‖fi‖ = 1, i = 1, · · · , n such that
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inf{fi(Θ) : fj(Θ) = fj(Φ) for 1 ≤ j ≤ i− 1} < fi(Φ) <

sup{fi(Θ) : fj(Θ) = fj(Φ) for 1 ≤ j ≤ i− 1} for i = k + 1, · · · , n.

We will also use the following two simple lemmas. The proofs are routine and
hence we omit them.

Lemma 3.8. Let E be an n dimensional normed linear space and {e∗1, e∗2, · · · , e∗n} ⊆
SE∗ be a basis for E∗. If e ∈ SE satisfies e∗i (e) = 1, i = 1, · · · , n, then e is an
extreme point of BE.

Lemma 3.9. Let µ ∈ C(K)∗ be such that µ =
∑m

i=1 αiδki
where ki ∈ K and∑m

i=1 |αi| = 1.

(a) Let f ∈ SC(K). Then µ(f) = 1 if and only if f(ki) = sgnαi, i =
1, · · · ,m.

(b) Let α = min {|αi| : i = 1, · · · ,m} and 0 < t < 1. If f ∈ BC(K) is such
that µ(f) > 1− αt then |f(ki)− sgnαi| < t, i = 1, · · · ,m.

We now have all the preparation to prove the following result.

Theorem 3.10. Let Y ⊆ C(K) be a strongly proximinal subspace of finite codi-
mension. Then given f ∈ C(K) \ Y , there exist a constant C > 0 and t0 (both
depending on f) such that for t < t0 we have ε(f, t) < Ct.

Proof. Let codim Y = n, f ∈ C(K) \ Y and dist(f, Y ) = d. Let f0 = f/d. We
consider the following two cases:

CASE 1: f0|Y ⊥ is an extreme point of BY ⊥∗ .

By the remark before Proposition 3.7, there exist µ1, µ2, · · · , µn ∈ SY ⊥ , a basis
for Y ⊥ such that µi(f0) = 1, i = 1, · · · , n. Since Y is strongly proximinal in
C(K), µi’s are all finitely supported. We take ∪n

j=1supp(µj) = {k1, k2, · · · , kl} and
α = min{|µj(ki)| : ki ∈ suppµj , j = 1, · · · , n}

We choose θi, i = 1, · · · , l, a neighborhood of ki such that θi ∩ θj = ∅, i 6= j.

Note that, by Lemma 3.9, if ki ∈ suppµj then f0(ki) = sgnµj(ki).

We choose t < d. If g ∈ PY (f, t) then ‖f−g‖ < d+t. We put h = f−g
‖f−g‖ . For each

i, µi(h) = d
‖f−g‖ > 1− t/d. Hence by Lemma 3.9 we have |h(ki)− sgnµj(ki)| < t

dα

whenever ki ∈ suppµj .

We define further neighborhoods Bi of ki as follows.

If h(ki) > 0 take Bi = θi ∩ {s ∈ K : h(s) > 1− t
dα}.

If h(ki) < 0 take Bi = θi ∩ {s ∈ K : h(s) < −1 + t
dα}.

Define a continuous functions z′ ∈ BC(K) such that
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z′(k) =

{
f0(k) if k ∈ {k1, k2, · · · , kl}
h(k) if k ∈ K \ ∪n

i=1Bi

Then take,

z′′ = z′ ∧ (h +
t

dα
)

and

z = z′′ ∨ (h− t

dα
).

It is straightforward to check that ‖z‖ = 1, z(ki) = f0(ki) and ‖z − h‖ < t
dα .

Note that µj(z) = 1, j = 1, · · · , n.

Let us now put g1 = f − dz. Then g1 ∈ PY (f). Also ‖g− g1‖ = ‖f −‖f − g‖h−
f + dz‖ < d‖z − h‖+ |‖f − g‖ − d| < t

α + t = (1 + 1
α )t.

CASE 2: f0|Y ⊥ is not an extreme point of BY ⊥∗ .

By Proposition 3.7 there exists k < n and µ1, µ2, · · · , µk ∈ SY ⊥ such that
µi(f0) = 1 and the set {µ1, µ2, · · · , µk} can be extended to a basis {µ1, µ2, · · · , µn}
of Y ⊥ such that ‖µi‖ = 1, i = 1, · · · , n and

inf
z∈Ci−1

µi(z) < µi(f0) < sup
z∈Ci−1

µi(z)

for i = k + 1, · · · , n where Ci−1 = {z ∈ SC(K) : µj(z) = µj(f0) for 1 ≤ j ≤ i− 1}.
For k + 1 ≤ i ≤ n we set

βi = min{ sup
z∈Ci−1

µi(z)− µi(f0), µi(f0)− inf
z∈Ci−1

µi(z)}.

and choose β > 0 such that 2β < min{βi : i = k + 1, · · · , n}.

Since the supports of µ1 · · · , µk are all finite, as in CASE 1, let µi =
∑mi

j=1 αi
jδki

j

and α = min{|µj(ki)| : ki ∈ suppµj , j = 1, · · · , k}. Choose t0 < αd
1+α

βn−k

3n .

Let t < t0 and g ∈ PY (f, t).

STEP 1: Let Y1 = ∩k
i=1 ker µi. We will find g1 ∈ PY1(f) such that ‖g − g1‖ <

(1 + 1
α )t.

We first note that dist(f, Y1) = d and hence g ∈ PY1(f, t). Since µi(f0) = 1, i =
1, · · · , k, by Lemma 3.8, f0|Y ⊥1 is an extreme point of BY ⊥1

∗ . Since t < t0, as in
CASE 1, there exists g1 ∈ PY1(f) such that ‖g − g1‖ < (1 + 1

α )t.

STEP 2: Let Y2 = ∩k+1
i=1 ker µi. Having obtained g1, we define h1 = f−g1

d . We will
find g2 ∈ PY2(f) such that ‖g − g2‖ < (1 + 1

α ) 3t
β .

We note that ‖h1‖ = 1 and µi(h1) = µi(f0) = 1 for i = 1, · · · , k. Therefore
h1 ∈ Ck. Since t

d < β we have

|µk+1(h1 − f0)| = |µk+1(g1/d)| = 1
d
|µk+1(g1 − g)| < (1 +

1
α

)
t

d
< β <

βk+1

2
.
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If µk+1(f0) ≥ µk+1(h1) we choose w ∈ Ck such that µk+1(w) > µk+1(f0) ≥
µk+1(h1) and |µk+1(h1 − w)| > β. If µk+1(f0) ≤ µk+1(h1) we choose w ∈ Ck

such that µk+1(w) < µk+1(f0) ≤ µk+1(h1) and |µk+1(h1 − w)| > β. In any case,
we can find a λ ∈ (0, 1) and h2 = λh1 + (1 − λ)w such that µk+1(h2) = µk+1(f0).
This shows that µi(h2) = µi(f0) for i = 1, · · · , k + 1 and hence h2 ∈ Ck+1.

Define g2 = f − dh2. Since dist(f, Y2) = d, g2 ∈ PY2(f). Note that

‖g − g2‖ ≤ ‖g − g1‖+ ‖g1 − g2‖ ≤ (1 +
1
α

)t + d‖h1 − h2‖.

Let us now calculate ‖h1 − h2‖. Since

(1 +
1
α

)
t

d
> |µk+1(h1 − f0)| = |µk+1(h1 − h2)| = (1− λ)|µk+1(h1 − w)|

we have 1− λ < (1 + 1
α ) t

d|µk+1(h1−w)| < (1 + 1
α ) t

dβ . Hence

‖h1 − h2‖ = (1− λ)‖h1 − w‖ < 2(1− λ) < (1 +
1
α

)
2t

dβ
.

Therefore ‖g − g2‖ < (1 + 1
α )(t + 2t

β ) < (1 + 1
α ) 3t

β . This proves STEP 2.

Note that h2 = f−g2
d . By proceeding inductively as in step 2 we get h0 =

hn−k+1 ∈ Cn. If g0 = f − h0 then g0 ∈ PY (f) and ‖g − g0‖ < Ct for some suitable
constant C. �

Note that in Theorem 3.10, though we get ε(f, t) < Ct, the choice of C depends
on f . An affirmative answer to the following question will be more satisfactory.

Question 3.11. Let Y be a strongly proximinal subspace of finite codimension in
C(K) and f ∈ C(K) \ Y . Is PY locally Lipschitz at f?

Remark 3.12. (a) From the proof of Case 1 in Theorem 3.10 it follows that
for a strongly proximinal hyperplane Y in C(K), the metric projection is
locally Lipschitz on D(Y ).

(b) If X ⊆ c0 and Y ⊆ X is a proximinal subspace of finite codimension in
X, then from [8] it follows that Y ⊥ is contained in the ’quasi-polyhedral’
points of X∗ and hence Y is strongly proximinal. Such points in X∗ in turn
extend to ’quasi-polyhedral’ points of `1. But ’quasi-polyhedral’ points of
`1 are precisely the elements in `1 which are finitely supported (see [2, 8]).
Thus as in the case of C(K) above, same estimate for ε(·, ·) will hold for Y .
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