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ALMOST CONSTRAINED SUBSPACES OF BANACH SPACES

PRADIPTA BANDYOPADHYAY AND S. DUTTA

(Communicated by Jonathan M. Borwein)

Abstract. In this paper, we obtain some sufficient conditions for an almost
constrained subspace to be constrained (in fact, by a unique norm 1 projec-
tion), which improves significantly upon all existing conditions of similar type
with significantly simpler proofs.

1. Introduction

Let X be a real Banach space. We will denote by BX [x, r] the closed ball of
radius r > 0 around x ∈ X . We will identify any element x ∈ X with its canonical
image in X∗∗. Unless otherwise specified, all subspaces we consider are norm closed.
Our notations are otherwise standard. Any unexplained terminology can be found
in either [4] or [9].

Recall that a subspace Y of X is called 1-complemented or constrained if there
is a norm 1 projection on X with range Y .

Definition 1.1 ([7]). A Banach space X is said to have the finite-infinite intersec-
tion property (IPf,∞) if every family of closed balls in X with empty intersection
contains a finite subfamily with empty intersection.

It is well known that dual spaces and their constrained subspaces have IPf,∞.
By w*-compactness of the dual ball and the Principle of Local Reflexivity, it can
be shown (see e.g., [7]) that X has the IPf,∞ if and only if any family of closed
balls centred at points of X that intersects in X∗∗ also intersects in X . With this
in mind, we define

Definition 1.2 ([1]). A subspace Y of X is said to be an almost constrained (AC)
subspace of X if any family of closed balls centred at points of Y that intersects in
X also intersects in Y .

Thus, X has the IPf,∞ if and only if X is an AC-subspace of X∗∗. Clearly,
any constrained subspace is an AC-subspace. In the case of IPf,∞, whether the
converse is also true remains an open question (see [12, Remark 2, page 60], also
[6, X(10)]). However, we will give an example to show that an AC-subspace need
not, in general, be constrained.
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In addition, we apply some tools and techniques developed in [1] to obtain suffi-
cient conditions for an AC-subspace to be constrained, much in the spirit of [6, 7].
Our condition is in terms of functionals with “locally unique” Hahn-Banach (i.e.,
norm-preserving) extensions, which improves significantly upon all existing condi-
tions of similar type, as noted in [3, 8], and has significantly simpler proof. As in
[6, 7], these conditions actually imply the existence of a unique norm 1 projection.

Definition 1.3. Let Y be subspace of X .
(a) For y∗ ∈ Y ∗, HB(y∗) = {x∗ ∈ X∗ : x∗|Y = y∗ and ‖x∗‖ = ‖y∗‖}.
(b) Y is a U -subspace of X if for any y∗ ∈ Y ∗, HB(y∗) is a singleton. X is said

to be Hahn-Banach smooth if X is a U -subspace of X∗∗.
(c) The duality mapping D for X is the set-valued map from S(X) to S(X∗)

defined by

D(x) = {x∗ ∈ S(X∗) : x∗(x) = 1}, x ∈ S(X).

(d) x ∈ S(X) is a smooth point of B(X) if D(x) is a singleton.
(e) Y is a weakly U -subspace of X if for every y∗ ∈ D(S(Y )), HB(y∗) is a

singleton.
X is weakly Hahn-Banach smooth if X is a weakly U -subspace of X∗∗.

If Y is a U -subspace, or even a weakly U -subspace of X , then it satisfies our
sufficient condition. It is shown in [8, Theorem 2] that an AC-subspace Y is con-
strained in X if every point of S(Y ) is a smooth point of B(X). We show that this
happens if and only if every subspace Z of Y is a weakly U -subspace of X . Thus,
our condition is weaker.

It follows from our result that X is smooth if and only if every subspace of X
is a weakly U -subspace. This parallels the classical result of Taylor-Foguel [15, 5]
that X∗ is strictly convex if and only if every subspace of X is a U -subspace.

2. Some characterizations and a counterexample

We will use the following notation:

Notation. Let Y be a subspace of X . For all x ∈ X ,

P(x) =
⋂
y∈Y

BY [y, ‖x− y‖].

Clearly, P(y) = {y} for all y ∈ Y . Also, Y is an AC-subspace of X if and only if
P(x) 6= ∅ for all x ∈ X .

We recall a definition from [1].

Definition 2.1. Let Y be a subspace of X . We define

O(Y,X) = {x ∈ X : ‖x− y‖ ≥ ‖y‖ for all y ∈ Y }.
O(X,X∗∗) is denoted by O(X).

The following proposition characterizes AC-subspaces.

Proposition 2.2. For a subspace Y of X, the following are equivalent:
(a) Y is an AC-subspace of X.
(b) For all x ∈ X, there exists y ∈ Y and z ∈ O(Y,X) such that x = y + z.
(c) For every subspace Z of X such that Y ⊆ Z and dim(Z/Y ) = 1, Y is

constrained in Z.
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Proof. (a) ⇒ (b). Let x0 ∈ X . By (a), there exists y0 ∈ P(x0). This implies
‖y0 − y‖ ≤ ‖x0 − y‖ for all y ∈ Y . Or, putting u = y0 − y, ‖u‖ ≤ ‖x0 − y0 + u‖ for
all u ∈ Y . That is, z0 = x0 − y0 ∈ O(Y,X) and x0 = y0 + z0.

(b)⇒ (c). Let Z be as in (c). Then one can write Z = span[Y ∪ {x0}] for some
x0 ∈ X . By (b), there exists y0 ∈ Y and z0 ∈ O(Y,X) such that x0 = y0 + z0. It
follows that Z = Y ⊕ Rz0. But then, by definition of O(Y,X), αz0 + y 7→ y is a
norm 1 projection from Z onto Y .

(c) ⇒ (a). By (c), for every x ∈ X , there is a norm 1 projection Px from
Zx = span[Y ∪ {x}] onto Y . Clearly, Px(x) ∈ P(x). �

Recall that a hyperplane H in X is a subspace such that H = ker(x∗) for some
x∗ ∈ S(X∗). Since dim(X/H) = 1, we get

Corollary 2.3. Suppose H is a hyperplane in X. Then H is an AC-subspace if
and only if H is constrained in X.

Corollary 2.4. A subspace Y is an AC-subspace of X if and only if there is a (not
necessarily linear) map P from X onto Y satisfying the following properties:

(a) P 2 = P ;
(b) P (λx) = λP (x) for all x ∈ X, λ ∈ R;
(c) P (x+ y) = P (x) + y for all x ∈ X, y ∈ Y ;
(d) ‖P (x)‖ ≤ ‖x‖ for all x ∈ X.

Proof. If P is as above, then clearly for any x ∈ X , P (x) ∈ P(x). Thus, Y is an
AC-subspace of X .

Conversely, let Y be an AC-subspace of X . For z ∈ O(Y,X), let Yz = Y ⊕ Rz
and Pz be a norm 1 projection from Yz onto Y . Observe that for z1, z2 ∈ O(Y,X),
either Yz1 ∩ Yz2 = Y or Yz1 = Yz2 . By Proposition 2.2(b),

⋃
z∈O(Y,X) Yz = X .

Define P : X → Y by P (x) = Pz(x), if x ∈ Yz. Then P is well-defined and satisfies
all the listed properties. �
Remark 2.5. Proposition 2.2(a) ⇔ (c) for the case of IPf,∞ was noted in [12,
Theorem 5.9]. Corollary 2.3 was also noted in [1]. Corollary 2.4 for the case of
IPf,∞ was noted in [8, Theorem 2]. In all these cases, our proof is simpler.

Let us note that in Proposition 2.2(b), the representation x = y + z with y ∈ Y
and z ∈ O(Y,X) need not be unique.

Example 2.6. We now give an example to show that an AC-subspace need not,
in general, be constrained. We need the following result (we thank Professor
T.S.S.R.K. Rao of ISI, Bangalore, for drawing our attention to this result).

Theorem 2.7 ([11]). There exist Banach spaces Z ⊇ X with dim(Z/X) = 2
satisfying

(i) There is no projection with norm 1 from Z onto X.
(ii) For every ε > 0, there is a projection with norm ≤ 1 + ε from Z onto X.
(iii) For every Y with Z ⊇ Y ⊇ X and dim(Y/X) = 1, there is a projection

with norm 1 from Y onto X.

By Proposition 2.2, (iii) implies that X is an AC-subspace of Z, while by (i),
there is no norm 1 projection from Z onto X .

Definition 2.8. (a) [10] A Banach space X such that X∗ is isometrically isomor-
phic to L1(µ) for some positive measure µ is called an L1-predual.

(b) A Banach space is a P1-space if it is constrained in every superspace.
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Remark 2.9. (a) From the results of [10, Chapter 3], it follows that X is a real
L1-predual with IPf,∞ if and only if X is a real P1-space. In particular, X is
constrained in X∗∗.

(b) It can be shown that the space X in Example 2.6 is not constrained in X∗∗.
Therefore, it could have been a possible counterexample to the IPf,∞ question
as well. But, from the construction in [11], it is clear that the space X is a real
L1-predual, but not a real P1-space. Thus it lacks the IPf,∞.

3. Some sufficient conditions

We now obtain sufficient conditions for an AC-subspace to be constrained. Some
preliminaries first. As in [1], we introduce the following notation.

Definition 3.1. Let Y be a subspace of X . For x ∈ X and y∗ ∈ Y ∗, put

U(x, y∗) = inf{y∗(y) + ‖x− y‖ : y ∈ Y },
L(x, y∗) = sup{y∗(y)− ‖x− y‖ : y ∈ Y }.

For x∗ ∈ X∗, we will write U(x, x∗) for U(x, x∗|Y ). Let C(x) = {x∗ ∈ B(X∗) :
U(x, x∗) = L(x, x∗)}, for x ∈ X , and C =

⋂
x∈X C(x).

The following result is immediate from the proof of the Hahn-Banach Theorem
(see, e.g., [14, Section 48]).

Lemma 3.2. Let Y be a subspace of X, x0 /∈ Y and y∗ ∈ S(Y ∗). Then L(x0, y
∗) ≤

U(x0, y
∗) and α lies between these two numbers if and only if there exists x∗ ∈

HB(y∗) with x∗(x0) = α.

Remark 3.3. It is clear that for any x∗ ∈ B(X∗) and x ∈ X , L(x, x∗) ≤ x∗(x) ≤
U(x, x∗) and for any y∗ ∈ S(Y ∗), HB(y∗) is singleton if and only if for all x ∈ X ,
L(x, y∗) = U(x, y∗).

The next three results are from [1]. We include the proofs for the sake of com-
pleteness.

Lemma 3.4. Let Y be a subspace of X. For x1, x2 ∈ X, the following are equiva-
lent:

(a) x2 ∈
⋂

y∈Y
BX [y, ‖x1 − y‖].

(b) For all x∗ ∈ B(X∗), U(x2, x
∗) ≤ U(x1, x

∗).

Proof. Clearly, x2 ∈
⋂
y∈Y BX [y, ‖x1 − y‖] if and only if ‖x2 − y‖ ≤ ‖x1 − y‖, for

all y ∈ Y .
(a) ⇒ (b). If for all y ∈ Y , ‖x2 − y‖ ≤ ‖x1 − y‖, then for all x∗ ∈ B(X∗),

x∗(y) + ‖x2 − y‖ ≤ x∗(y) + ‖x1 − y‖. Therefore, U(x2, x
∗) ≤ U(x1, x

∗).
(b) ⇒ (a). Suppose ‖x2 − y0‖ > ‖x1 − y0‖ for some y0 ∈ Y . Then there

exists ε > 0 such that ‖x2 − y0‖ − ε ≥ ‖x1 − y0‖. Choose x∗ ∈ B(X∗) such that
‖x1−y0‖ ≤ ‖x2−y0‖−ε < x∗(x2−y0)−ε/2. Thus U(x1, x

∗) ≤ x∗(y0)+‖x1−y0‖ <
x∗(x2)− ε/2 < U(x2, x

∗). �

Proposition 3.5. Let Y be a subspace of X, x∗ ∈ B(X∗) and x0 ∈ X \ Y . The
following are equivalent:

(a) x∗ ∈ C(x0).
(b) ‖x∗|Y ‖ = 1 and every x∗1 ∈ HB(x∗|Y ) takes the same value at x0.
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(c) ‖x∗|Y ‖ = 1 and if {x∗α} ⊆ S(X∗) is a net such that x∗α|Y → x∗|Y in the
w*-topology of Y ∗, then limα x

∗
α(x0) = x∗(x0).

(d) ‖x∗|Y ‖ = 1 and if {x∗n} ⊆ S(X∗) is a sequence such that x∗n|Y → x∗|Y in
the w*-topology of Y ∗, then limx∗n(x0) = x∗(x0).

Proof. (a) ⇔ (b). Let ‖x∗|Y ‖ = α. Then α ≤ ‖x∗‖ ≤ 1 and it suffices to show
that α = 1. Let x∗1 ∈ HB(x∗|Y ). Then ‖x∗1‖ = α and therefore, for any y ∈ Y ,
|x∗1(x0 − y)| ≤ α‖x0 − y‖ ≤ ‖x0 − y‖. It follows that

L(x0, x
∗) ≤ sup{x∗(y)− α‖x0 − y‖ : y ∈ Y } ≤ x∗1(x0)
≤ inf{x∗(y) + α‖x0 − y‖ : y ∈ Y } ≤ U(x0, x

∗).

Since x∗ ∈ C(x0), equality holds everywhere.
Now if α < 1, let 0 < δ < d(x0, Y ) and let 0 < ε < (1− α)δ. Then for all y ∈ Y ,

(1− α)‖x0 − y‖ > ε. Therefore, for all y ∈ Y ,

y∗(y)− ‖x0 − y‖+ ε < y∗(y)− α‖x0 − y‖.
Thus, the first inequality must be strict. Contradiction!

The result now follows from Lemma 3.2.
(b) ⇒ (c). Let {x∗α} ⊆ S(X∗) be a net such that limα x

∗
α(y) = x∗(y) for all

y ∈ Y . It follows that any w*-cluster point of {x∗α} is in HB(x∗|Y ). By (b),
therefore, lim x∗α(x0) = x∗(x0).

(c)⇒ (d) is clear.
(d) ⇒ (b). If x∗1 ∈ HB(x∗|Y ) with x∗(x0) 6= x∗1(x0), then the constant sequence

x∗n = x∗1 clearly satisfies limn x
∗
n(y) = x∗(y) for all y ∈ Y , but {x∗n(x0)} cannot

converge to x∗(x0). �
Proposition 3.6. Let Y be a subspace of X. For x∗ ∈ B(X∗), the following are
equivalent:

(a) x∗ ∈ C.
(b) ‖x∗|Y ‖ = 1 and HB(x∗|Y ) = {x∗}.
(c) ‖x∗|Y ‖ = 1 and if {x∗α} ⊆ S(X∗) is a net such that x∗α|Y → x∗|Y in the

w*-topology of Y ∗, then x∗α → x∗ in the w*-topology of X∗.
(d) ‖x∗|Y ‖ = 1 and if {x∗n} ⊆ S(X∗) is such that x∗n|Y → x∗|Y in the w*-

topology of Y ∗, then x∗n → x∗ in the w*-topology of X∗.

Here is our first sufficient condition for an AC-subspace to be constrained.

Proposition 3.7. For a subspace Y of X, the following are equivalent:
(a) Y is an AC-subspace of X and O(Y,X) is a closed subspace of X.
(c) Y is an AC-subspace of X and O(Y,X) is a linear subspace of X.
(c) Y is constrained in X and for all x ∈ X, P(x) is a singleton.

Moreover, in this case, Y is constrained by a unique norm 1 projection.

Proof. (a)⇒ (b) is trivial.
(b) ⇒ (c). Since Y is an AC-subspace of X , by Proposition 2.2, any x ∈ X

can be written as x = y + z, where y ∈ Y and z ∈ O(Y,X). Since both Y and
O(Y,X) are linear subspaces and Y ∩O(Y,X) = {0}, this representation is unique
and x 7→ y is a well-defined linear map. Since z ∈ O(Y,X), this map is of norm 1.
Hence Y is constrained in X . Moreover, since y ∈ P(x), P(x) is single-valued.

(c) ⇒ (a). Let Y be constrained in X by a norm 1 projection P and for all
x ∈ X , let P(x) be a singleton. Clearly, Y is an AC-subspace of X and for all
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x ∈ X , P(x) = {P (x)}. It is easy to see that ker(P ) ⊆ O(Y,X) and since for all
x ∈ X , P(x) = {P (x)}, ker(P ) ⊇ O(Y,X). Thus, O(Y,X) = ker(P ) is a closed
subspace of X . �
Remark 3.8. (a) Even in the case of IPf,∞, this observation is new. References [6]
and [7] discuss more complicated situations when O(X), being a linear subspace of
X∗∗, automatically implies that it is a w*-closed subspace of X∗∗.

(b) We do not know if (c) can be replaced by “Y is constrained by a unique
norm 1 projection”.

(c) It follows from the proof that⋃
{ker(P ) : P is a norm 1 projection onto Y } ⊆ O(Y,X).

Are these two sets equal?

The following result significantly improves [3, Lemma 2], which was also the key
tool in [8].

Lemma 3.9. Let Y be a subspace of X. Let x1, x2 ∈ X be such that x1 ∈⋂
y∈Y

BX [y, ‖x2 − y‖]. Then for any x∗ ∈ C(x2), x∗(x1 − x2) = 0.

Proof. Let x1, x2 ∈ X be such that x1 ∈
⋂

y∈Y
BX [y, ‖x2 − y‖]. Then, by

Lemma 3.4, for all x∗ ∈ B(X∗),

L(x2, x
∗) ≤ L(x1, x

∗) ≤ U(x1, x
∗) ≤ U(x2, x

∗).

Thus for x∗ ∈ C(x2), equality holds. By Lemma 3.2, the result follows. �
Here is our main theorem.

Theorem 3.10. Let Y be a subspace of X. Suppose

for every x1, x2 ∈ X, C(x1) ∩ C(x2) separates points of Y.(1)

If Y is an AC-subspace of X, then Y is constrained in X. Moreover, the projection
is unique and O(Y,X) is a closed subspace of X.

Proof. Since Y is an AC-subspace of X , P(x) 6= ∅ for all x ∈ X . By Lemma 3.9,
for all x ∈ X ,

x∗(x− y) = 0 for any x∗ ∈ C(x), y ∈ P(x).(2)

Now if y1, y2 ∈ P(x), then for any x∗ ∈ C(x), x∗(x − y1) = x∗(x − y2) = 0.
Therefore, x∗(y1 − y2) = 0. By (1), y1 = y2. That is, P(x) is single-valued. Let
P(x) = {P (x)}. Then, P satisfies all the properties listed in Corollary 2.4. So, it
only remains to show that P is additive.

Let x1, x2 ∈ X . If x∗ ∈ C(x1)∩C(x2), then by Proposition 3.5, x∗ ∈ C(x1 +x2)
and by (2), x∗(x1 − P (x1)) = x∗(x2 − P (x2)) = x∗((x1 + x2) − P (x1 + x2)) = 0.
Therefore, x∗(P (x1+x2)−P (x1)−P (x2)) = 0. By (1), P (x1+x2) = P (x1)+P (x2).

The rest of the result follows from Proposition 3.7. �
By Theorem 3.10, the condition “C separates points of Y ” is sufficient for an

AC-subspace to be constrained by a unique norm 1 projection. This condition is
clearly satisfied if Y is a U -subspace, or even a weakly U subspace of X .

It is shown in [8, Theorem 2] that an AC-subspace Y is constrained in X by a
unique norm 1 projection if every point of S(Y ) is a smooth point of B(X). By the
following result, our condition is much weaker.
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Proposition 3.11. Every point of S(Y ) is a smooth point of B(X) if and only if
every subspace Z of Y is a weakly U -subspace of X. In particular, X is smooth if
and only if every subspace of X is a weakly U -subspace of X.

Proof. Suppose every point of S(Y ) is a smooth point of B(X). Let Z be any
subspace of Y . Suppose z∗ ∈ S(Z∗) attains its norm at z0 ∈ S(Z). By assumption,
z0 is a smooth point of B(X). Now, z∗ ∈ DZ(z0) and HB(z∗) ∈ DX(z0). Since
DX(z0) is a singleton, so is HB(z∗). Thus, Z is a weakly U -subspace of X .

Conversely, suppose there exists y0 ∈ S(Y ) such that DX(y0) is not a singleton.
Suppose {x∗1, x∗2} ⊆ DX(y0) and x∗1 6= x∗2. Let Z = {x ∈ Y : x∗1(x) = x∗2(x)}. Then
y0 ∈ S(Z) and therefore, ‖x∗1|Z‖ = ‖x∗2|Z‖ = 1. Thus, z∗ = x∗1|Z ∈ S(Z∗) attains
its norm at y0 ∈ S(Z), but {x∗1, x∗2} ⊆ HB(z∗). �

Example 3.12. As noted in [6], the space X = L∞ gives an example of a dual
space such that there are infinitely many norm 1 projections from X∗∗ onto X .
This produces an example of a space with IPf,∞ that is constrained in X∗∗, but
O(X) is not a closed subspace of X∗∗. This also shows that our sufficient condition,
although weaker than the known ones, is still not necessary for an AC-subspace to
be constrained.

We conclude the paper with some necessary and/or sufficient conditions for
O(Y,X) to be a closed subspace of X . First we need a characterization of O(Y,X).
This is a slight improvement over that in [1].

Definition 3.13. We say A ⊆ B(X∗) is a norming set for X if ‖x‖ = sup{x∗(x) :
x∗ ∈ A} for all x ∈ X .

A subspace F of X∗ is called a norming subspace if B(F ) is a norming set for X .

Lemma 3.14. Let Y be a subspace of X. For x ∈ X, the following are equivalent:

(a) x ∈ O(Y,X).
(b) ker(x)|Y ⊆ Y ∗ is a norming subspace for Y .
(c) 0 ∈

⋂
y∈Y

BY [y, ‖x− y‖].
(d) For every x∗ ∈ B(X∗), L(x, x∗) ≤ 0 ≤ U(x, x∗).
(e) For every y∗ ∈ B(Y ∗), L(x, y∗) ≤ 0 ≤ U(x, y∗).

Further, for a w*-closed subspace F ⊆ X∗, F |Y is a norming subspace for Y if and
only if F⊥ ⊆ O(Y,X), where F⊥ = {x ∈ X : f(x) = 0 for all f ∈ F}.

Proof. Let F ⊆ X∗ be a w*-closed subspace such that F⊥ ⊆ O(Y,X). Then
F = (X/F⊥)∗ and therefore, it suffices to show that ‖y‖ = ‖y + F⊥‖ = d(y, F⊥).

Clearly, ‖y‖ ≥ d(y, F⊥). Also, since F⊥ ⊆ O(Y,X), for any y ∈ Y and z ∈ F⊥,
‖y + z‖ ≥ ‖y‖. Thus, d(y, F⊥) ≥ ‖y‖.

Specializing to F = ker(x), we get (a)⇒ (b).
(b) ⇒ (a). Since ker(x)|Y norms Y , ‖y‖ = ‖y|ker(x)‖ = d(y,Rx) for all y ∈ Y .

Hence ‖x− y‖ ≥ infλ∈R ‖y − λx‖ = ‖y‖ for all y ∈ Y . Thus, x ∈ O(Y,X).
Now suppose F ⊆ X∗ is a w*-closed subspace such that F |Y is a norming

subspace for Y . If x ∈ F⊥, then F ⊆ ker(x) and therefore, x ∈ O(Y,X). That is,
F⊥ ⊆ O(Y,X).

(a) ⇔ (c) and (d) ⇒ (e) are immediate from definition, while (c) ⇒ (d) follows
from Lemma 3.4.
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(e) ⇒ (a). For every y∗ ∈ B(Y ∗), 0 ≤ U(x, y∗) implies for all y∗ ∈ B(Y ∗) and
y ∈ Y ,

0 ≤ y∗(y) + ‖x− y‖ =⇒ y∗(−y) ≤ ‖x− y‖.
Since this is true for all y∗ ∈ B(Y ∗), ‖y‖ ≤ ‖x − y‖ for all y ∈ Y . That is,
x ∈ O(Y,X). �

Let N = {F : F is a w*-closed subspace of X∗ and F |Y is a norming subspace
for Y } and N =

⋂
N . Similar to [6], we observe

Proposition 3.15. Let Y be a subspace of X. O(Y,X) is a closed subspace of X
if and only if N |Y is a norming subspace for Y . In particular, this happens if C|Y
is a norming set for Y .

Proof. By Lemma 3.14, F ∈ N if and only if F⊥ ⊆ O(Y,X). Thus if N |Y norms Y ,
then N ∈ N and hence, N⊥ ⊆ O(Y,X). On the other hand, if x ∈ O(Y,X), then
ker(x) ∈ N , and hence, N ⊆ ker(x). That is, x ∈ N⊥. Therefore, O(Y,X) = N⊥,
and O(Y,X) is a closed subspace of X .

Conversely, if O(Y,X) is a closed subspace of X and M = O(Y,X)⊥, then M⊥ =
O(Y,X) and therefore, M ∈ N . Moreover, for every F ∈ N , F⊥ ⊆ O(Y,X) = M⊥,
and hence, M ⊆ F . This shows N = M and N ∈ N .

Now, if C|Y is a norming set for Y , then as above, C⊥ ⊆ O(Y,X).
Conversely let x ∈ O(Y,X). Let x∗ ∈ C. By Lemmas 3.2 and 3.14, there exists

z∗ ∈ HB(x∗|Y ) such that z∗(x) = 0. Since x∗ ∈ C, HB(x∗|Y ) = {x∗}, and we have
x∗(x) = 0. Thus, C⊥ = O(Y,X). �

Definition 3.16. (a) [16] Let Y be a subspace of X . Let

A(Y ) = {x∗ ∈ B(X∗) : x∗|Y is an extreme point of B(Y ∗)}.
Y is a weakly separating subspace of X if Y separates points of A(Y ).

(b) [9] A subspace Y ⊆ X is said to be an M -ideal if there exists a subspace
N ⊆ X∗ such that X∗ = Y ⊥ ⊕1 N .

Proposition 3.17. In each of the following cases, O(Y,X) is a closed subspace of
X, a fortiori, if Y is an AC-subspace, then Y is constrained by a unique norm 1
projection.

(a) Y is a weakly separating subspace of X.
(b) Y is an M -ideal in X.
(c) Y is a subspace of X = C(K) containing the constants and separating

points of K.

Proof. (a) A careful examination of the proof of [16, Lemma 1] actually shows that
A(Y ) ⊆ C. It is easy to see that A(Y ) is a norming set for Y . The result follows
from Proposition 3.15.

(b) [9, Theorem I.1.12] observes that an M -ideal is a U -subspace.
(c) As observed in [16], such a Y is weakly separating. �

Remark 3.18. (a) In [16], it is shown that for a weakly separating subspace in
C(K), if there is a norm 1 projection, it must be unique. Clearly, our conclusion is
stronger.

(b) In [13], it is shown that an M -ideal with the IPf,∞ is an M -summand. An
argument similar to [2, Proposition 2.8] shows that an M -ideal Y in X with the
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IPf,∞ is an AC-subspace of X . Thus, Proposition 3.17(b) improves the result in
[13].
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