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Abstract. We show that a one-one bounded linear operator T from a

separable Banach space E to a Banach space X is a Gδ-embedding if

and only if every T -null tree in SE has a branch which is a boundedly

complete basic sequence. We then consider the notions of regulators and

skipped blocking decompositions of Banach spaces and show, in a fairly

general set up, that the existence of a regulator is equivalent to that of

special skipped blocking decomposition. As applications, the following

results are obtained.

(a) A separable Banach space E has separable dual if and only if every

w∗-null tree in SE∗ has a branch which is a boundedly complete

basic sequence.

(b) A Banach space E with separable dual has the point of continuity

property if and only if every w-null tree in SE has a branch which

is a boundedly complete basic sequence.

We also give examples to show that the tree hypothesis in both the

cases above cannot be in general replaced with the assumption that every

normalized w∗-null (w-null in (b)) sequence has a subsequence which is

a boundedly complete basic sequence.

1. Introduction

In [2] Bourgain and Rosenthal introduced the following notion of Gδ-
embedding. A bounded linear one-to-one operator T : E → Y from a
Banach space E into a Banach space Y is called a Gδ-embedding if the
image T (D) of every norm closed bounded and separable subset D ⊆ E is
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a Gδ-set in Y . The usefulness of the notion of Gδ-embeddings in Banach
space theory was illustrated by many authors, see for examples [2], [4]-[9].

We will use standard Banach space theoretic notation (see [12]). For
example the unit ball and the the unit sphere of a Banach space E will be
denoted by BE and SE respectively.

The following result (which we will use in the paper) was established in
[8] by Ghoussoub and Maurey.

A A bounded linear one-to-one operator T : E → Y from a Banach space E

into a Banach space Y is a Gδ-embedding if and only if for any δ > 0 and
any δ-separated sequence (yn) ⊆ BE, (that is ‖yi− yj‖ ≥ δ, for i 6= j), the
set {Tyn}∞n=1 is not dense in itself.

Let us note that this characterization of Gδ− embeddings, as well as its
definition is of the topological nature. However it is possible to characterize
Gδ−embeddings in geometrical (in the sense of Banach spaces geometry)
terms. For that we need the following definition [4].

Let T : X → Y be linear bounded operator from a Banach space X

into a Banach space Y . Denote by Σ the set of all finite ordered subsets
of the unit sphere SX of the space X. A function εT : Σ → R+ is called a
T -regulator for boundedly complete basic sequence (T -RBCBS for short) if
every sequence (xn) ⊆ SX satisfying ‖Txn+1‖ ≤ εT ({x1, x2, · · · , xn}), is a
BCBS.

The following result which is also one of our main tools in this paper, was
proved in [4].

(B) Let T : X → Y be a linear bounded one-to-one operator from a separable
Banach space X into a Banach space Y . Then T is a Gδ-embedding if and
only if there is T -RBCBS.

Clearly, (B) implies (see [7] and [9]):

(C) If T : X → Y is a Gδ− embedding then any T -null sequence {xn} ⊆
SX , that is a sequence with the property that limn Txn = 0, contains a
subsequence which is a BCBS.

However, this weaker property is not enough to characterize
Gδ−embeddings (see Example 4.3 in Section 3).



ON TREE CHARACTERIZATIONS OF Gδ−EMBEDDINGS AND SOME BANACH SPACES3

We now consider a property which is formally intermediate between the
ones described in B and C. First we recall the definition of a tree in a Banach
space.

Let N<ω denote all non-empty finite ordered subsets of N in its natural
partial order. A tree (xA)A∈N<ω in a Banach space E is a family of elements
in E indexed by N<ω. A sequence {xAn}n≥1 is called a branch of the tree if
|A1| = 1, An is an initial segment of An+1 and An+1 \ An is a singleton for
any n.

A tree (xA)A∈N<ω ⊆ E is called T -null if every node sequence, that is the
sequence (xA∪{n})∞n=1, A ∈ N<ω, is T -null.

Remark 1.1. If (xn) is a sequence in E, then we can define an obvious tree
by letting xA = xmax A. It is easy to see that the set of all branches of (xA)
thus defined, is the set of all subsequences of (xn).

Various properties of trees and their branches in Banach spaces were
studied in recent years (see e.g. [15, 17]).

One of our main results is the following tree characterization of
Gδ−embeddings.

Theorem 1.2. Let E be a separable Banach space and T : E → X a one-
to-one bounded linear operator from E to a Banach space X. Then T is a
Gδ-embedding if and only if every T -null tree in SE has branch which is a
BCBS.

As we mentioned above the “tree-branch” assumption in this theorem
cannot be replaced by the “sequence-subsequence” assumption (see Example
4.3 below).

We next consider a more general set up for regulators. Let (P ) be a
property which a basic sequence in X may possess. We say (P ) is stable
if given a basic sequence {xn} ⊂ SX with (P) and basis constant C, any
sequence {yn} ⊂ X with

∑∞
n=1 ||xn − yn|| < 1

2C , is a basic sequence with
(P). For a subspace Γ ⊂ X∗ we denote BΓ the family of all w−neighborhoods
of the origin in BX generated by finite subsets A ⊂ Γ, i.e. the neighborhoods
of the form

VA(ε) = {x ∈ BX : |f(x)| < ε, f ∈ A}, A ⊂ Γ, ε > 0.
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A map WP : Σ → BΓ from the set of all finite ordered subsets of SX into
BΓ is called a Γ-regulator of (P)-basic sequences if any normalized sequence
{xn} ⊂ X with

xn+1 ∈ WP ({xi}n
i=1), n = 1, 2, ...,

is a (P)-basic sequence. For Γ = X∗ we write w−regulator instead of
X∗−regulator.

Definition 1.3. Let X be a separable Banach space. For a sequence of
subspaces (Xn) of X, with Xi∩Xj = {0}, we denote by X[k, l] the subspace
Xk ⊕ Xk+1 ⊕ · · · ⊕ Xl. A sequence of subspaces (Xn) is called a complete
minimal decomposition (CMD- for short) if the following conditions are sat-
isfied.

(i) X = [Xn]∞n=1.

(ii) For each n, Xn ∩ [Xm]m6=n = {0}.
A CMD (Xn) for X is called a skipped blocking decomposition (SBD-for

short) if every skipped blocking of (Xn), that is, for sequences n(k),m(k),
such that n(k) < m(k) + 1 < n(k + 1), X[n(k),m(k)]∞k=1, is a Schauder
decomposition for [X[n(k),m(k)]].

We call a sequence (xk), xk ∈ X[n(k),m(k)], n(k) < m(k) + 1 < n(k +
1), k = 1, 2, · · · a skipped block sequence with respect to (Xn). A SBD (Xn)
is said to be a (P )-SBD if every skipped block sequence is (P )-basic.

If in a SBD (Xk), each Xk is finite dimensional, we call the SBD a skipped
blocking finite dimensional decomposition (SBFDD - for short).

Our next result in Section 2 shows that in a sense the notions of regulator
and SBFDD are equivalent. However in some cases (e.g. when dealing with
trees) it is more convenient to operate with a regulator.

Proposition 1.4. A separable Banach space E admits a w-regulator of (P)-
basic sequences if and only if it has a (P )-SBFDD.

We now talk about the applications of Theorem 1.2 and Proposi-
tion 1.4. There are two classes of Banach spaces which admit compact
Gδ−embeddings.

The first is the class of all separable dual spaces. Recall that a one-to-one
linear bounded operator T : E → X from a Banach space E into a Banach
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space X is called a semi-embedding if T (BE) is closed in X. It is trivial that
any separable dual admits a compact semi-embedding and a semi-embedding
defined on a separable space is a Gδ−embedding. By using Theorem 1.2 we
prove that for a separable Banach space E the dual E∗ is separable if and
only if E∗ has the following property:

(t∗) any w∗-null tree in SE∗ has a branch which is a BCBS.

The second is the class of separable spaces with the (PC) property. Recall
that a Banach space E has the point of continuity property ((PC)-property
for short) if for every weakly closed bounded set A ⊆ E, the identity map
from (A,w) to (A, ‖ · ‖) has a point of continuity. The interrelation of Gδ-
embeddings and the (PC) property is contained in the following result (see
[8]).

(D) A separable Banach space X has the (PC) property if and only if it
admits a compact Gδ-embedding T : X → Y into some Banach space Y.

In fact, Y may be taken to be `2. Clearly, if w − limn xn = 0, xn ∈ X, n =
1, 2, ..., then limn ||Txn|| = 0.

Note that by combining Theorem 1.2 with (D) we can immediately get
that a Banach space E with separable dual has the (PC)-property if and
only if

(t) any w-null tree in SE has a branch which is a BCBS.

We, however, give a characterization of separable Banach spaces with the
(PC)-property without the restriction that the dual is separable. And here
it is convenient to use regulators and Proposition 1.4.

We note also that Proposition 1.4 combined with (B) and (D) provides
an alternative proof of the following result in [1, 8].

(E) A separable Banach space has the (PC) property if and only if it admits
a boundedly complete skipped blocking finite dimensional decomposition.

As mentioned before for any sequence (xn) in E we can define an obvious
tree by letting xA = xmax A. In [14] the following property of separable
infinite-dimensional dual Banach spaces has been established.

(s∗) Any w∗−null normalized sequence of functionals has a boundedly com-
plete basic subsequence (BCBS).
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In [8], it was shown that in a separable Banach space with the (PC)-
property, the following holds.

(s) Any w− null normalized sequence has a BCBS.

Of course both of the above results follow from the tree characterizations
of spaces with separable duals and (PC)-spaces. However, it is natural to
ask if property (s∗) (property (s)) alone characterizes Banach spaces with
separable duals ((PC)-property). In section 3 of this paper we give two
examples to show that the in both the cases (t) and (t∗) cannot be replaced
by (s) and (s∗). In particular we show that that the (non-separable) dual
JT ∗ of the celebrated (separable) James Tree space JT , introduced in [13]
and later studied by Lindenstrauss and Stegal in [16], has property (s∗).
Coming to (s), we prove that the space B∞ constructed in [8], has property
(s). Recall that B∗

∞ is separable and B∞ does not have the (PC)-property.

2. Gδ-embeddings; Regulators and SBFDD

The proof of the following simple lemma is standard and we omit it.

Lemma 2.1. Let X be a Banach space and Γ ⊂ X∗. Suppose X has a Γ-
regulator for (P )-basic sequences. Then every Γ-null tree (xA)A∈[N]<ω in SX

has a branch which is a (P )-basic sequence.

The following is one of our main results.

Theorem 2.2. Let E be a separable Banach space and T : E → X a one-
one bounded linear operator from E to a Banach space X. The following
assertions are equivalent.

(a) T is a Gδ-embedding.
(b) There exists a T -RBCBS.
(c) Every T -null tree in SE has a branch which is a BCBS.

Proof. (a) ⇔ (b) is proved in [4].

(b) ⇒ (c) Let εT be a T -regulator. Let (xA) be a T -null tree in SE . Since
(x1,n) is a T -null sequence, there exists n1 such that ‖Tx1,n1‖ < εT ({x1}).
Consider now the sequence (x1,n1,n)n which is T -null. Hence there exists
n2 such that ‖Tx1,n1,n2‖ < εT ({x1, x1,n1}). Continuing, we get the desired
branch.
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(c) ⇒ (a) Suppose on the contrary, T is not a Gδ-embedding. By [8,
Theorem 1.2], there exists δ > 0 and a δ-separated sequence (yn) ⊆ BE ,
(that is ‖yi − yj‖ ≥ δ, for i 6= j) such that (Tyn) is dense in itself.

We first construct 2 trees: (zA)A∈N<ω in BE and a T -null tree γ =
(uA)A∈N<ω in SE such that

(i) the image (Tza)a∈β of each branch (za)a∈β , is dense in itself;

(ii) for any branch {uk1,...,ki
}∞i=1 we have

||Tuk1,...,ki
|| < 2−i, i = 1, 2, ...;(1)

(iii) any branch {zk1,...,ki
}∞i=1 is δ-separated sequence in BE ;

(iv) for any branch {zk1,...,ki
}∞i=1 we have

span{y1, zk1,...,ki
}∞i=1 = span{y1, uk1,...,ki

}∞i=1.(2)

Denote by |A| the cardinality of the (finite) set A. We define the elements
zA and uA by the induction on n = |A|. The elements zA will be chosen from
{yi}.

Since (Tyi) is dense in itself, we can find ynk
∈ (yi) such that

0 < ‖Ty1 − Tynk
‖ ≤ δ2−k−1, k = 1, 2, ....

Put

zk = ynk
, uk =

zk − y1

||zk − y1||
, k = 1, 2, ...,

that is, we defined zA and uA for |A| = 1. Next assume that we already
defined zB and uB for |B| ≤ n, and define zA and uA for |A| = n + 1. Write
n+1 = 2l +j, j = 0, ..., 2l−1. Let B be an initial segment of A with |B| = j.

Since {Tyi} is dense in itself, we can find ymk
∈ (yi), ymk

6= zC for every
initial segments C of A and such that

0 < ‖TzB − Tymk
‖ ≤ δ2−k−l−1 k = 1, 2, ....

Now, if t is the last element of A we put

zA = ymt , uA =
zA − zB

||zA − zB||
.

A straightforward verification shows that (i)-(iv) are satisfied.
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By our assumption in (c), γ has a branch β = {uk1,...,kn}∞n=1 which is a
BCBS. Put

xn = uk1,...,kn , vn = zk1,...,kn , n = 1, 2, ..., x0 = y1, Y = [xn]∞n=0.

If x0 ∈ [xn]∞n=1 then {xn}∞n=1 is a boundedly complete basis of Y. If x0 6∈
[xn]∞n=1 then {xn}∞n=0 is a boundedly complete basis of Y. The next part
of the arguments in both cases is the same. So we assume without loss of
generality that {xn}∞n=1 is a (boundedly complete) basis of Y.

Claim: T |Y is a Gδ-embedding of Y into X.

We first show how to finish the proof with the help of the Claim, and then
prove it. By (iii) and (iv) {vn} ⊂ BY is a δ-separated sequence. However
by (i) the image {Tvn} is dense in itself. This is a contradiction to T |Y is a
Gδ-embedding (see [8, Theorem 1.2]). Thus (c) ⇒ (a) is proved.

It remains to prove the claim. Let us introduce a new norm on Y by

‖|y‖| = sup
n
{‖

∑n

1
aixi‖ : y =

∑
aixi}.

Clearly ‖| · ‖| is equivalent to the original norm. Denote by V the unit ball
in the norm ‖| · ‖|. We show that the image TV is closed in X.

Let Tum → v where um ∈ V . Writing um =
∑

am
i xi, without loss of

generality, we assume that limm am
i = ai for each i. It is straightforward to

check that supn ‖
∑n

i aixi‖ ≤ 1. Since (xn) is BCBS,
∑

aixi converges to
some u ∈ V . Given ε we choose n such that

∑∞
n+1 ‖Txi‖ < ε

16 . We then
choose m such that for all i = 1, · · · , n, |am

i − ai| < ε
4n‖T‖ . Thus we have,

‖Tum − Tu‖ ≤ ‖
∑n

1
(am

i − ai)Txi‖+ ‖
∑∞

n+1
(am

i − ai)Txi‖ < ε.

Hence Tum → Tu, u ∈ V, v = Tu. Therefore v ∈ TV . This shows T |Y is
a semi-embedding of Y in X and since Y is separable, T is a Gδ-embedding.
This proves the claim. The proof of the theorem is complete. �

Our next result shows the equivalence of existence of regulators and that
of special skipped blocking decompositions in a fairly general set up.

Proposition 2.3. Let X be a separable Banach space and (P ) some stable
property a basic sequence may possess. The following assertions are equiva-
lent.
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(a) There is a separable subspace Γ ⊂ X∗ such that X has a Γ-
regulator WP for (P )-basic sequences.

(b) X has a w−regulator WP for (P )-basic sequences.
(c) X has a (P ) -SBFDD.

Proof. (a) ⇒ (b) is trivial.

(b) ⇒ (c) For ε > 0 and A = {f1, f2, · · · , fn} a finite subset of SX∗ ,

denote

VA(ε) = {x ∈ BX : |fi(x)| < ε, i = 1, 2, · · · k}.

Fix a sequence {εk}, 0 < εk < 1/6, k = 1, 2, ...,
∏∞

k=1(1 + εk) <

2
1
4 ,

∑∞
k=1 εk < 1/4. Let (xn) ⊆ SX be a dense sequence.

Put X1 = [x1]. We can write X = X1 ⊕ E0 where E0 = D1> for some
finite set D1 ⊆ SX∗ . Let T1 = {z1

1 , z
1
2 , · · · , z1

j1
} be a ε1

2 -net in SX1 . For each
i = 1, · · · j1, find δ1

i > 0 and finite subset A1
i ⊆ SX∗ , such that

WP ({z1
i }) = VA1

i
(δ1

i ), i = 1, ..., j1.

Let F1 ⊆ SX∗ be a finite (1 + ε1)−1-norming set for X1, that is,

‖x‖ ≤ (1 + ε1) sup{f(x) : f ∈ F1}, x ∈ X1.

Now let x2 = u2 + v2 where u2 ∈ X1 and v2 ∈ E0. Pick y∗2 ∈ SX∗ with
y∗2(v2) 6= 0, and put

B1 = (∪iA
1
i )

⋃
D1

⋃
{y∗2}

⋃
F1, E1 = B>

1 .

Let X2 be a finite dimensional subspace of E0 containing v2 such that
E0 = X2 ⊕ E1. Thus X = X1 ⊕X2 ⊕ E1.

Put η2 = 1
2 min{ε2, δ

1
i : i = 1, · · · j1} and let T2 = {z2

1 , z
2
2 , · · · , z2

j2
} be a

η2-net in SX1⊕X2 .

Next for each k, 1 ≤ k ≤ j2, and for each pair (i, k), 1 ≤ i ≤ j1, 1 ≤
k ≤ j2, find

δ2
k > 0, δ2

ik > 0,

and finite subsets

A2
k ⊂ SX∗ , A2

ik ⊂ SX∗ ,
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such that

WP ({z2
k}) = VA2

k
(δ2

k), WP ({z1
i , z2

k}) = VA2
ik

(δ2
ik).

Let F2 ⊆ SX∗ be a finite (1 + ε2)−1-norming set for X1 ⊕X2.

Write x3 = u3 + v3 where u3 ∈ X1 ⊕ X2 and v3 ∈ E1. If v3 6= 0 pick
y∗3(v3) 6= 0. If v3 = 0 just put y∗3 = 0.

Put

B2 = B1

⋃
(∪iA

2
i )

⋃
(∪ikA

2
ik)

⋃
{y∗3}

⋃
F2, E2 = B>

2 .

Let X3 be a finite dimensional subspace of E1 containing v3 such that
E1 = X3 ⊕ E2. Thus X = X1 ⊕X2 ⊕X3 ⊕ E2.

Proceeding inductively, we construct:

(1) a sequence of finite-dimensional subspaces Xk ⊂ X and decreasing se-
quence of finite-codimensional subspaces Ek ⊂ X, k = 1, 2, ..., such that

(i) xn ∈ X1⊕· · ·⊕Xn, En−1 = Xn+1⊕En, X = X1⊕· · ·⊕Xn⊕En−1, n =
1, 2, ...,

and

(2) an increasing sequence Bk ⊂ SX∗ , k = 1, 2, ..., of finite sets, and a
sequence Tn = {zn

i }
jn

i=1 ⊂ SX1⊕...⊕Xn , n = 1, 2, ..., such that

(ii) Ek = B>
k , k = 1, 2, ....

(iii) there is a subset Fn ⊂ Bn which (1 + εn)−1 norms X1 ⊕ · · · ⊕Xn, n =
1, 2, ....

(iv) for each k ≤ n and each collection (i1, ..., ik), 1 ≤ i1 ≤ j1, ..., 1 ≤ ik ≤ jk,

there exist δn
i1,···ik > 0 and finite sets An

i1,···ik ⊆ Bn such that

VAn
i1,···ik

(δn
i1,···ik) = WP ({z1

i1 , · · · z
k
ik
})

(v) Tn is a ηn-net in SX1⊕···⊕Xn for ηn = 1
2 min{εn, δn−1

i1,···ik , 1 ≤ i1 ≤
j1, ..., 1 ≤ ik ≤ jk, k ≤ n− 1}.

From (i) it follows that Xn ∩ [Xm]m6=n = {0}, and X = [Xn]∞n=1. Thus
(Xn) is a CMD. Next we need to verify the SBD-condition of Definition 1.3.
For simplicity we consider the case: n(k) = m(k) = 2k, k = 1, 2, .... The
verification for the general case is similar. So let yk ∈ SX2k

. We need to
check that (yk) is a (P )-basic sequence. By (v), there exists z2k

ik
∈ T2k such

that ‖yk − z2k
ik
‖ ≤ η2k, k = 1, 2, .... In particular,
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∞∑
k=1

‖yk − z2k
ik
‖ < 1/4.(3)

Since by (i), X2k ⊆ E2k−2 and by (ii), E2k−2 = B>
2k−2, it follows that

f(yk) = 0 for each f ∈ B2k−2. Hence

|f(z2k
ik

)| ≤ η2k−2, f ∈ B2k−2, k = 1, 2, ....

In particular

|f(z2k
ik

)| ≤ ε2k−2, f ∈ F2k−2, k = 1, 2, ....(4)

|f(z2k
ik

)| < δ2k−2
i1 ... i2k−2

, f ∈ A2k−2
i1 ... i2k−2

, k = 1, 2, ....(5)

We claim that {z2k
ik
} is a basic sequence with basis constant < 2. Fix

a finite set of numbers {ai}n+1
k=1 and denote Sn =

∑n
k=1 akz

2k
ik

and Sn+1 =∑n+1
k=1 akz

2k
ik

. By using (iii) find f ∈ Fn with ||Sn|| ≤ (1 + εn)|f(Sn)|. Next
we write

||Sn|| ≤ (1 + εn)|f(Sn+1)− f(an+1z
2n+2
in+1

)| ≤ (1 + εn)(||Sn+1||+ εn|an+1|) ≤

(1 + εn)(||Sn+1||+ εn(||Sn+1||+ ||Sn||)).

Therefore

||Sn|| ≤
(1 + εn)2

1− εn(1 + εn)
||Sn+1|| ≤ (1 + εn)4||Sn+1||,

where we used that εn ∈ (0, 1/6). Hence {z2k
ik
} is a basic sequence with basis

constant C ≤
∏∞

n=1(1 + εn)4 ≤ 2.

Next from (iv) and (5) it follows that {z2k
ik
} has property (P). Finally

from (3) we conclude that {yk} is a (P)-basic sequence.

(c) ⇒ (a) Let (Xk)k≥1 be a (P )-SBFDD for X. A standard argument
shows that there is a constant C ≥ 1 such that every skipped block sequence
of (Xk)k≥1 is a (P )-basic sequence with basis constant at most C. Fix
εk > 0,

∑
εk < 1

2C .

We define a regulator WP ({xi}k
i=1) for (P)-basic sequences inductively.

Start with k = 1. Fix x ∈ SX . Put p0 = −1 and find p1 and y ∈ S[Xi]
p1
p0+2
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such that x = y + z where ‖z‖ < ε
2 . We take Y1 = [Xi]i≥p1+2. Then Y1 is

a finite codimensional subspace of X. Let A1 ⊆ SY ⊥1
be a finite ε1

42 -net in
SY ⊥1

. We define

WP ({x1}) = VA1(
ε1

4
).

This defines W on each one point subset of SX .

Suppose WP has been defined for all k-point subsets of SX , k ≥ 1 and
{x1, x2, · · · , xk+1} ⊆ SX such that

WP ({x1, x2, · · · , xk}) = VAk
(
εk

4k
),

where Ak is a finite εk

4k+1 -net in SY ⊥k
, Yk = [Xi]i≥pk+2.

If xk+1 6∈ WP ({x1, x2, · · · , xk}) we define WP ({x1, x2, · · · , xk+1}) =
WP ({x1, x2, · · · , xk}).

If xk+1 ∈ WP ({x1, x2, · · · , xk}) then for all f ∈ Ak, |f(xk+1)| < εk

4k .
Since Ak is a εk

4k+1 -net in SY ⊥k
, we can write xk+1 = s + t where s ∈ SYk

and ‖t‖ < εk

4k . Next we choose pk+1 > pk + 2 and yk+1 ∈ S
[Xk]

pk+1
pk+2

such

that s = yk+1 + z where ‖z‖ < εk

4k . Note that ‖xk+1 − yk+1‖ < εk

2k . Put
Yk+1 = [Xk]k≥pk+1+2. Yk+1 is a finite codimensional subspace of X. Let
Ak+1 ⊆ SY ⊥k+1

be a finite εk+1

4k+2 -net in SY ⊥k+1
. We define

WP ({x1, x2, · · · , xk+1}) = VAk+1
(
εk+1

4k+1
).

Put Γ = cl span ∪k Ak and we check that WP is a regulator for (P )-basic
sequences. To this end, let (xk) ⊆ SX satisfies xk+1 ∈ WP ({x1, x2, · · · , xk}).
For each k, there exists yk ∈ S[Xj ]

pk
pk−1+2

such that ‖xk − yk‖ < εk

2k . Hence∑
‖xk − yk‖ <

∑ εk

2k < 1
2C . By the construction (yk) is a skipped block

sequence of (Xk)k≥1, and hence (yk) is a (P )-basic sequence of basis constant
at most C. By the stability of (P ) it follows that (xk) is (P )-basic sequence
as well. This completes the proof. �

3. Applications.

The first application of Theorem 2.2 is a characterization of separable
dual spaces among duals of separable spaces. We start with a proposition
which is essentially proved in [4].
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Proposition 3.1. Let a Banach space E admit a compact semi-embedding
T : E → X which is a Gδ− embedding. Then E is isometric to a separable
dual space.

Proof. Let K = T (BE). Then K is a compact symmetric convex set. Let
Y = A0(K) be the space of all affine continuous functions on K vanishing at
the origin with sup-norm. A standard argument shows that E is isometric
to Y ∗. The rest of the proof runs along the lines of the proof of Theorem 3,
(2)⇒ (3), in [4]. The proof is complete.

Theorem 3.2. Let E be a separable Banach space. The following assertions
are equivalent.

(a) E∗ is separable.
(b) There exists a w∗-RBCBS for E∗.
(c) E∗ has property (t∗).

Proof. (a) ⇔ (b) is proved in [4, Theorem 3]. (b) ⇒ (c) follows from
Lemma 2.1.

(c) ⇒ (a) Let A : `2 → E be a compact operator with dense range.
Denote T = A∗ : E∗ → `2. It is clear that T is a compact semi-embedding
and every normalized T -null tree is w∗-null. Therefore from Theorem 2.2,
(c) ⇒ (a), it follows that T is a Gδ-embedding of E∗ into `2 (recall that
the notion of Gδ-embedding is separably defined). Apply Proposition 3.1 to
complete the proof. �

We now consider (PC)-spaces. The following theorem provides a charac-
terization of separable Banach spaces with the (PC) property in terms of
the trees in the unit sphere. This also provides an alternative proof of the
result (E) from the introduction.

Theorem 3.3. Let E be a separable Banach space. The following assertions
are equivalent.

(a) E has the (PC)-property.
(b) There exists a separable subspace Γ ⊆ E∗ such that E has a WΓ-
RBCBS.

(c) E has a BCSBFDD (Xk)k≥1.
(d) There exists a separable subspace Γ ⊆ E∗ such that every Γ-null
tree in SE has a branch which is BCBS.
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Proof. (a) ⇔ (b) is formulated in the short note [5] without proof. We give
a proof here for the sake of completeness.

(a) ⇒ (b) Since E has the (PC)-property it follows [8] that there is a
compact Gδ-embedding T : E → l2. We take Γ = T ∗l2. Then Γ is separable.
By [4] (see Theorem 2.2, (a) ⇔ (b)), there exists a T -RBCBS εT on E.

We define a WΓ-RBCBS as follows. Let x ∈ SE . Since T ∗BX∗ is compact
there is a finite εT ({x})

2 -net {f1
i }

n1
i=1 in T ∗BX∗ . Define

WΓ({x}) = {y ∈ BE : |f1
i (y)| < εT ({x})

2
, i = 1, · · ·n1}.

It is easily seen that for any y ∈ WΓ({x}), we have ‖Ty‖ < εT ({x}).
Now let x1, x2 ∈ SE . By the compactness of T ∗BX∗ there is a εT ({x1,x2})

2 -
net {f2

i }
n2
i=1 in T ∗BX∗ . Define

WΓ({x1, x2}) = {y ∈ BE : |f2
i (y)| < εT ({x1, x2})

2
, i = 1, · · ·n2}.

The same argument as above shows that if y ∈ WΓ({x1, x2}), then ‖Ty‖ <

εT ({x1, x2}).
Continuing, we get the desired regulator WΓ.

(b) ⇒ (a) Let Γ ⊂ E∗ be a separable subspace and WΓ be a RBCBS. It is
easily seen that Γ is total. Let K ⊂ Γ be a norm-compact convex symmetric
subset such that cl spanK = Γ. Without loss of generality we can assume
that for {xi}n

1 ⊆ SE , there exists ε = ε({xi}n
i ) such that

WΓ({xi}n
i=1) = {x ∈ BE : |fj(x)| < ε, fj ∈ K, j = 1, ...,m}, {xi}n

i=1 ⊂ SE .

Next define a new norm on the space E as follows

|||x||| = max{|g(x)| : g ∈ K}.

Let X be the completion of the space E with norm |||.|||, and T : E → X be
a natural (one-to-one) embedding. Clearly, T ∗(BX∗) = K. Now we define a
map εT ({xi}n

i=1) = ε, where ε has come from (6). It is not difficult to see
that εT is a T -RBCBS. By [4] (see Theorem 2.2, (b) ⇔ (a)) we conclude
that T is a Gδ-embedding. Therefore E admits a compact Gδ-embedding.
By [8] E has the (PC)-property.

The equivalence of (b) and (c) follows from Proposition 2.3.

(b) ⇒ (d) follows from Lemma 2.1.
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(d) ⇒ (a) We start as in the beginning of the proof of (b) ⇒ (a), and
construct the space X and the compact one-to-one operator T : E → X

such that cl spanT ∗(X∗) = Γ, (the condition (d) guarantees the totality of
Γ). Form (d) it follows that any T -null tree has a branch which is BCBS.
By Theorem 2.2, (c) ⇒ (a), we get that T is a Gδ-embedding. By the
result from [8] mentioned in the introduction we conclude that E has the
(PC)-property. �

Let (Xk)k≥1 be a CMD for a Banach space X. (Xk)k≥1 is said to be
shrinking if for every f ∈ X∗, limn ‖f |[Xk]k≥n

0‖ = 0. By [19, Theorem
4.1], X has a shrinking SBFDD if and only if X∗ is separable. Also, it
was shown in [19] that a SBFDD, which is skipped-shrinking, meaning that
every skipped block sequence generates a shrinking basic sequence, is in fact,
a shrinking SBFDD.

Corollary 3.4. Let E∗ be separable. The following assertions are equiva-
lent.

(a) E has the (PC)-property.
(b) E has a w-RBCBS.
(c) E has a w-regulator for shrinking boundedly complete basic se-
quences.

(d) E has a shrinking BCSBFDD (Xk)k≥1.
(e) E has property (t).

Proof. Taking Γ = X∗, in Theorem 3.3, (a) ⇒ (b) follows.

(b) ⇒ (c) Let W be a w-RBCBS. We define a regulator W1 for boundedly
complete shrinking basic sequences.

Let (fn) be a dense sequence in SE∗ . Take εn ↓ 0. Define W1 : Σ → B
as W1({x1, x2, · · ·xn}) = W ({x1, x2, · · ·xn}) ∩ Vf1,f2,··· ,fn(εn). If (xn) ⊆ SE

satisfies xn+1 ∈ W1({{x1, x2, · · ·xn}) then xn+1 ∈ W ({x1, x2, · · ·xn}) and
hence it is BCBS. Also xn+1 ∈ Vf1,f2,··· ,fn(εn). By the density of (fn) it
follows that for every f ∈ E∗, ‖f‖[xk]k≥n+1

→ 0. Thus (xn) is shrinking.

(c) ⇒ (d) By Proposition 2.3 it follows that E has a skipped shrinking
BCSBFDD (Xk)k≥1, that is, every skipped block sequence of (Xk)k≥1 gen-
erates a shrinking and BCBS. It was noted in [19] that an SBFDD, which
is skipped-shrinking, is in fact, a shrinking SBFDD.
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(d) ⇒ (e) follows from Lemma 2.1 and (e) ⇒ (a) follows from Theo-
rem 3.3. �

Remark 3.5. By [3, 19] the Banach spaces with the (PC)-property and
separable dual form the class of Banach spaces such that the unit ball is
Polish in the weak topology. Thus Corollary 3.4 gives a tree characterization
of this class of Banach spaces among the spaces with separable dual.

4. Property (s) and (s∗)

In this section we prove that the properties (t) and (t∗) are indeed stronger
than properties (s) and (s∗) and the tree hypothesis in Theorem 2.2, The-
orem 3.2, and Corollary 3.4 cannot be in general weakened to the sequence
hypothesis.

We start with general result which we then apply to the space JT.

Theorem 4.1. Let X be a separable Banach space satisfying the following
conditions.

(a) X has the (PC)-property.
(b) X∗ is separable.
(c) X∗∗/X is reflexive.

Then X∗∗ has property (s∗).

The proof of the following lemma follows from a standard argument.

Lemma 4.2. Let L be a Banach space and E ⊆ L such that E = [Xk]k≥1

where (Xk) is a CMD of E with dim Xk < ∞, k ≥ 1 and let q be the quotient
map from L to L/E. Let Y be a finite dimensional subspace of L. For each
n, let Zn ⊆ E be the finite dimensional subspace defined by Zn = [Xk]nk=1.
Then given any 0 < ε < 1, there exists an integer s such that for any y ∈ Y ,
one can find m ∈ Zs satisfying

‖y + m‖ ≤ (1 + ε)‖qy‖+ ε‖y‖.

Proof of Theorem 4.1: Let (yn) ⊆ SX∗∗ be w∗-null. We need to find
a subsequence of (yn) which is BCBS.

Denote by q the quotient map from X∗∗ to X∗∗/X. We will choose the
required subsequence of (yn) in the following two steps.
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Step 1: We choose a subsequence (yki
) of (yn) to satisfy the following

property.

(∗) Let γi > 0, γi ↓ be such that
∑

γi converges. Let (ai) be a bounded se-
quence of reals. Suppose for ε > 0 and C > 0 we have zp =

∑np

i=np−1+1 aiyki

satisfies, for all p, C > ‖zp‖ > ε and ‖qz‖ ≤ γp2−p. Then there exists d ≥ 1
such that {zp}∞p=d is a BCBS.

Since X has the (PC)-property it follows by Theorem 3.3, that there exists
a boundedly complete SBFDD (Xi) for X. Let us denote Nk = [Xi]i6=k

⊥.
Then each Nk is a finite dimensional subspace of X∗ and so is Fn = [Nk]nk=1.
Note that F>

n = [Xi]∞i=n+1. We take Zn = [Xk]nk=1.

By repeated use of Lemma 4.2 we find a subsequence (ykn) and two strictly
increasing sequences (sn), (tn) of natural numbers satisfying the following
conditions.

‖ykn |Ftn+1‖ < 2−nγn.(6)

If y ∈ Yp = [yk1 , · · · , ykp ] there exists m ∈ Zsp such that(7)

‖y + m‖ < (1 + γp)‖qy‖+ γp‖y‖.

For each m ∈ Zsp there exists m̄ ∈ [Xj ]
tp
tp−1+2 such that(8)

‖m + m̄‖ < (1 + γp)dist(m, [Xj ]∞tp−1+2) + γp‖m‖.

Since zp ∈ Ynp , by Equation 7 there exists mp ∈ Zsnp
such that ‖zp +

mp‖ ≤ (1 + γnp)‖qzp‖ + γnp‖zp‖. Since ‖qzp‖ ≤ γp2−p, we can find p large
enough such that

‖zp + mp‖ < γp.(9)

By Equation 6, for each r, ‖yknp−1+r |Ftnp−1+1
‖ < 2−(np−1+r)γnp−1+1.

Hence ‖zp|Ftnp−1+1
‖ ≤

∑np

i=np−1+1 |ai|‖yki
|Ftnp−1+1‖. Since (ai) is bounded,

choosing p large enough, we can have ‖zp|Ftnp−1+1
‖ ≤ γp. By Equation 9, it

follows that ‖mp|Ftnp−1+1
‖ ≤ 2γp. This implies dist(mp, [Xj ]∞i=tnp−1+2) <

2γp. We now choose, by Equation 8, m̄p ∈ [Xj ]
tnp

i=tnp−1+2 such that
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‖mp + m̄p‖ < (1 + γnp)dist(mp, [Xj ]∞tnp−1+2
) + γnp‖mp‖ < 2(1 + γnp)γp +

γnp(C + γp) < (C + 5)γp.

Clearly, (m̄p) is a skipped block sequence of (Xj) and thus a BCBS.
Since

∑
γp converges, there exists t such that (mp)p≥t is a BCBS. But

‖zp + mp‖ ≤ γp and hence there exists d such that (zp)p≥d is a BCBS.

Step 2: Let (ykn) be the subsequence obtained from Step 1. To simplify
notation, we denote this subsequence by (yk). Let us observe that (∗) holds
for any subsequence of (yk) (by putting some ai = 0, if necessary).

Recall that (yk) is a normalized w∗-null sequence in X∗∗. By a well known
result we can choose a subsequence, call it (yk) again, such that (yk) is basic,
with basic constant C1.

The following two cases can occur.

Case 1: Suppose for some subsequence (ykm), ‖qykm‖ → 0. Since X is
a separable Banach space with the (PC)-property, it follows from [8] (see
Theorem 3.3) that (ykm) has subsequence which is a BCBS.

Case 2: infk ‖qyk‖ ≥ α. Without loss of generality and passing to a
subsequence if necessary, we assume that there exists h ∈ X⊥, ‖h‖ = 1
and some α > 0 such that |h(yk) − α| < 2−k. Since X∗∗/X is reflexive,
it follows that for some subsequence, which we denote by (yk) again, there
exists z ∈ X∗∗ qyk

w→ qz.

Suppose (ak) is such that supn ‖
∑n

1 akyk‖ ≤ M for some M . Then
supn |h(

∑n
1 akyk)| ≤ M and since |h(yk)−α| ≤ 2−k, we get supn |

∑n
1 ak| <

∞. Hence there exists (nk) such that
∑nk

1 ak converges, to say, a.

We consider the following two cases.

Case (a): ‖qyk − qz‖ → 0.

In this case, it is straightforward to observe that
∑nk

1 akqyk → qu for
some u ∈ X∗∗.

Case (b): ‖qyk − qz‖ > ε for some ε > 0. Since X∗∗/X is reflexive, we
assume without loss of generality that (q(yk − z)) is a BCBS.

Writing
∑nk

k=1 akqyk =
∑nk

k=1 akq(yk − z) + (
∑nk

k=1 ak)qz and using the
bounded completeness of (q(yk − z)), it follows

∑nk
k=1 akqyk converges.

Thus in both the cases, we obtain, for some suitable subsequence
of (yk), there exists (nk) such that

∑nk
k=1 akqyk converges whenever

supn ‖
∑n

1 akyk‖ ≤ ∞. We claim (yk) is a BCBS.
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To show this, observe that, since (yk) is basic, it is enough to show that
there exists (nk) such that

∑nk
i=1 aiyi converges whenever supn ‖

∑n
1 aiyi‖ ≤

M for some M . Thus assume on the contrary, that
∑nk

i=1 aiyi does not
converge for any sequence (nk). Note that by the consideration above,
there exists (nk) such that

∑nk
i=1 aiq(yi) converges. Let γp > 0 be such

that
∑

γp < ∞. Then there exists ε > 0 and a subsequence (nkp) such
that ‖

∑nkp+1

nkp+1 aiyi‖ ≥ ε but ‖q(
∑nkp+1

nkp+1 aiyi)‖ ≤ γp2−p. Observe that

‖
∑nkp+1

nkp+1 aiyi‖ ≤ 2M . Since (yk) is a basic sequence with basis constant
C1, it follows that |ai| < 4MC1 and hence is bounded.

Taking zp =
∑nkp+1

nkp+1 aiyi and C = 2M , it follows from (∗) that there
exists d such that (z)p≥d is a BCBS. However supn ‖

∑n
p=d zp‖ ≤ 2M . Thus∑

p≥d zp converges. This contradicts ‖zp‖ ≥ ε.

The proof is complete.

Example 4.3. Consider the James tree space JT . It is a separable dual
space with non-separable dual JT ∗. Denoting the pre-dual of JT by B

it is known that B has the (PC)-property (see [1]and [3]), and JT ∗/B is
isomorphic to `2(Γ) for some uncountable set Γ (see [16]). It follows from
Theorem 4.1 that JT ∗ has property (s∗). Therefore the space JT ∗ shows
that the property (s∗) is not enough for a dual space to be separable. Next let
A : l2 → JT be a one-to-one linear compact operator with dense range. Put
T1 = A∗ : JT ∗ → l2. Since JT ∗ is not separable it follows from Proposition
3.1 that T1 is not a Gδ−embedding. Since the notion of Gδ−embedding is
separably defined, it follows that there is a separable subspace E ⊂ JT ∗

such that the restriction T = T1|E is not a Gδ−embedding. However, by
using the (s∗) property of JT ∗ it is easy to see that any sequence {xn} ⊂ SE

with limn Txn = 0 contains a subsequence which is BCBS. This shows that
the tree hypothesis in Theorem 2.2 cannot be weakened to the sequence
hypothesis.

Example 4.4. An example of a separable Banach space E with separable
dual such that E fails the (PC)-property but has property (s) is the space
B∞ constructed in [8]. It is known that JT∞ = B∗

∞ is separable and B∞

fails the (PC)-property (see [10, 11]). In the following proposition we prove
B∞ has property (s).

Proposition 4.5. B∞ has property (s).
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Proof. We will use the following properties of the space B∞ (see [8, 9] for
details).

There exists a sequence of Banach spaces (Xk), each isometric to `2 such
that

(i) (Xk) is a (complemented) Schauder decomposition of B∞.
(ii) (Xk) is a BCSBD of B∞.

Let Pn : X →
∑n

k=1⊕Xk denote the projection on the first n components
of

∑
k=1⊕Xk. Since (Xk) is a Schauder decomposition, we have supn ‖Pn‖ <

c for some c > 0.

Let (xi) ⊆ SB∞ be a w-null sequence. For each n, we have (Pnxi)i≥1 is
weakly null. We consider the following two cases.

Case 1: For infinitely many n, limi ‖Pnxi‖ = 0. Choose n1 and i1 such
that ‖Pn1xi1‖ < c−14−2. We can write xi1 = s1 + t1 where s1 ∈ [Xk]n1

k=1

and t1 ∈ [Xk]∞k=n1+1, ‖s1‖ = ‖xi1 − t1‖ < c−14−2. There exists m1 and
y1 ∈ [Xk]m1

k=n1+1 such that ‖t1−y1‖ < c−14−1. Note that ‖xi1−y1‖ < c−14−1.

Choose n2 > m1 + 1 and i2 such that ‖Pn2xi2‖ < c−14−3. We can write
xi2 = s2 + t2 where s2 ∈ [Xk]n2

k=1 and t2 ∈ [Xk]∞k=n2+1, ‖s2‖ = ‖xi2 − t2‖ <

c−14−3. There exists m2 and y2 ∈ [Xk]m2
k=n2+1 such that ‖t2− y2‖ < c−14−2.

Thus ‖xi2 − y2‖ < c−14−2.

Continuing, we obtain, a subsequence (xik) of (xi) and yk ∈
[Xk]

mk
k=nk+1, nk + 1 ≤ mk < nk+1 such that

∑∞
k ‖xik − yk‖ < 1

2c . (yk)
is a skipped block sequence of (Xk), and hence it is a BCBS. By stability
(xik) is a BCBS.

Case 2: There exists m such that for all n ≥ m, lim infi ‖Pnxi‖ > δ for
some δ. Without loss of generality, we assume for all n, limi ‖Pnxi‖ > δ.

Since the range of each Pn is `2, by a standard diagonal argument we can
find a subsequence of (xi), which we denote by (xi) again, such that for each
n, Pnxi

‖Pnxi‖ is c1 equivalent to the unit vector basis of `2.

We claim (xi) is BCBS. If not, there exists (ai) such that
supm ‖

∑m
i=1 aixi‖ < ∞ but

∑
aixi does not converge. Note that for each

n, supm ‖
∑m

i=1 aiPnxi‖ < ∞ and hence
∑

aiPnxi converges. Thus
∑

i |ai|2

converges.
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Since
∑

aixi does not converge, there exist an increasing sequence (np)
and ε > 0 such that

‖
np∑

np−1+1

aixi‖ > ε

but

(
np∑

np−1+1

|ai|2)
1
2 ≤ K4−p

where k = 1
cc1

.

Let zp−1 =
∑np

np−1+1 aixi.

We have

‖P1z1‖ = ‖
n2∑

n1+1

aiP1xi‖

≤ ‖
n2∑

n1+1

ai
P1xi

‖P1xi‖
‖P1xi‖‖

≤ cc1(
n2∑

n1+1

|ai|2)
1
2 ≤ 4−1.

Thus there exists u1, v1 such that z1 = u1 + v1 where u1 ∈ X1 and
v1 ∈ [Xk]k≥2 with ‖u1‖ ≤ 4−1.

We can find l1 and y1 such that y1 ∈ [Xk]l1k=2 and ‖v1 − y1‖ ≤ 4−1. Note
that ‖z1 − y1‖ < 2−1.

Consider Pl1+2. Similar to above we have,

‖Pl1+2z2‖ ≤ cc1(
n3∑

n2+1

|ai|2)
1
2 ≤ 4−2.

We find u2, v2, y2 and a number l2 such that z2 = u2 + v2, u2 ∈
[Xk]l1+2

k=1 , ‖u2‖ ≤ 4−2 and y2 ∈ [Xk]l2k=l1+3. We again have ‖z2 − y2‖ < 2−2.

Continuing, we obtain a sequence of increasing integers lp and vectors
yp ∈ [Xk]

lp
lp−1+3 such that ‖zp − yp‖ < 2−p. But (yp) is a skipped block

sequence of (Xk) and hence by (ii), is a BCBS. Thus there exists a d ≥ 1
such that (zp)p≥d is a BCBS as well. Since for any k, supk ‖

∑d+k
p=d zp‖ < ∞

it follows that
∑

p=d zp converges. This contradicts that ‖zp‖ > ε and the
proof is complete. �
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