ON TREE CHARACTERIZATIONS OF Gs;—EMBEDDINGS
AND SOME BANACH SPACES

S. DUTTA AND V. P. FONF

ABSTRACT. We show that a one-one bounded linear operator T from a
separable Banach space E to a Banach space X is a Gs-embedding if
and only if every T-null tree in Sg has a branch which is a boundedly
complete basic sequence. We then consider the notions of regulators and
skipped blocking decompositions of Banach spaces and show, in a fairly
general set up, that the existence of a regulator is equivalent to that of
special skipped blocking decomposition. As applications, the following
results are obtained.

(a) A separable Banach space E has separable dual if and only if every
w*-null tree in Sg+ has a branch which is a boundedly complete
basic sequence.

(b) A Banach space E with separable dual has the point of continuity
property if and only if every w-null tree in Sg has a branch which
is a boundedly complete basic sequence.

We also give examples to show that the tree hypothesis in both the
cases above cannot be in general replaced with the assumption that every
normalized w*-null (w-null in (b)) sequence has a subsequence which is

a boundedly complete basic sequence.

1. INTRODUCTION

In [2] Bourgain and Rosenthal introduced the following notion of Gs-
embedding. A bounded linear one-to-one operator T' : E — Y from a
Banach space F into a Banach space Y is called a Gg-embedding if the
image T'(D) of every norm closed bounded and separable subset D C F is
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a Gg-set in Y. The usefulness of the notion of Gs-embeddings in Banach

space theory was illustrated by many authors, see for examples [2], [4]-[9].

We will use standard Banach space theoretic notation (see [12]). For
example the unit ball and the the unit sphere of a Banach space E will be

denoted by Br and Sg respectively.

The following result (which we will use in the paper) was established in
[8] by Ghoussoub and Maurey.

A A bounded linear one-to-one operator T : E —'Y from a Banach space E
into a Banach space Y is a Gg-embedding if and only if for any 6 > 0 and
any o-separated sequence (yn) C Bg, (that is ||y; —y;l| >0, for i+ j), the
set {Tyn}o2 is not dense in itself.

Let us note that this characterization of G5— embeddings, as well as its
definition is of the topological nature. However it is possible to characterize
Gs—embeddings in geometrical (in the sense of Banach spaces geometry)

terms. For that we need the following definition [4].

Let T : X — Y be linear bounded operator from a Banach space X
into a Banach space Y. Denote by X the set of all finite ordered subsets
of the unit sphere Sx of the space X. A function e : ¥ — R™T is called a
T-regulator for boundedly complete basic sequence (T-RBCBS for short) if
every sequence (zp) C Sy satisfying ||[Tzp41]] < er({z1,22, - ,2n}), is a
BCBS.

The following result which is also one of our main tools in this paper, was
proved in [4].

(B) LetT : X — Y be a linear bounded one-to-one operator from a separable
Banach space X into a Banach space Y. Then T is a Gs-embedding if and
only if there is T-RBCBS.

Clearly, (B) implies (see [7] and [9]):
(C) If T : X - Y is a Gs— embedding then any T-null sequence {xy} C
Sx, that is a sequence with the property that lim, Tz, = 0, contains a

subsequence which is a BCBS.

However, this weaker property is not enough to characterize

Gs—embeddings (see Example 4.3 in Section 3).
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We now consider a property which is formally intermediate between the
ones described in B and C. First we recall the definition of a tree in a Banach

space.

Let N<“ denote all non-empty finite ordered subsets of N in its natural
partial order. A tree (z4)4en<e in a Banach space F is a family of elements
in E indexed by N<“. A sequence {x 4, }n>1 is called a branch of the tree if
|A1] =1, A, is an initial segment of A,,11 and A, 11 \ A, is a singleton for
any mn.

A tree (z4) aen<w C FE is called T-null if every node sequence, that is the
sequence (T gun})ney, A € NS, is T-null.

Remark 1.1. If (z,) is a sequence in F, then we can define an obvious tree
by letting x4 = Tmax . It is easy to see that the set of all branches of (x4)

thus defined, is the set of all subsequences of (x,).

Various properties of trees and their branches in Banach spaces were

studied in recent years (see e.g. [15, 17]).

One of our main results is the following tree characterization of

Gs—embeddings.

Theorem 1.2. Let E be a separable Banach space and T : E — X a one-
to-one bounded linear operator from E to a Banach space X. Then T is a

Gs-embedding if and only if every T-null tree in Sg has branch which is a
BCBS.

As we mentioned above the “tree-branch” assumption in this theorem
cannot be replaced by the “sequence-subsequence” assumption (see Example
4.3 below).

We next consider a more general set up for regulators. Let (P) be a
property which a basic sequence in X may possess. We say (P) is stable
if given a basic sequence {z,} C Sx with (P) and basis constant C, any
sequence {y,} C X with Y07 ||z, — yn|| < 55, is a basic sequence with
(P). For a subspace I' € X* we denote Br the family of all w—neighborhoods
of the origin in Bx generated by finite subsets A C I, i.e. the neighborhoods

of the form

Vale)={x € Bx : |f(x)|<e, feA}, ACT, €>0.
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A map Wp : ¥ — Br from the set of all finite ordered subsets of Sx into
Br is called a I'-regulator of (P)-basic sequences if any normalized sequence
{zn} C X with

Tnt1 € Wp({xz‘}?zl), n=12,..,

is a (P)-basic sequence. For I' = X* we write w—regulator instead of

X*—regulator.

Definition 1.3. Let X be a separable Banach space. For a sequence of
subspaces (X,,) of X, with X;NX; = {0}, we denote by X[k, [] the subspace
X ® Xiyr1 @ -+ ® X;. A sequence of subspaces (X,,) is called a complete
minimal decomposition (CMD- for short) if the following conditions are sat-
isfied.

() X = [Xn]5Zs-
(ii) For each n, X, N [Xplmezn = {0}.

A CMD (X,,) for X is called a skipped blocking decomposition (SBD-for
short) if every skipped blocking of (X)), that is, for sequences n(k), m(k),
such that n(k) < m(k) +1 < n(k + 1), X[n(k),m(k)]32,, is a Schauder
decomposition for [X[n(k), m(k)]].

We call a sequence (xy), zr € X[n(k),m(k)], n(k) < m(k)+1 < n(k +
1), k=1,2,--- a skipped block sequence with respect to (X,). A SBD (X,,)
is said to be a (P)-SBD if every skipped block sequence is (P)-basic.

If in a SBD (X}), each X} is finite dimensional, we call the SBD a skipped
blocking finite dimensional decomposition (SBFDD - for short).

Our next result in Section 2 shows that in a sense the notions of regulator
and SBFDD are equivalent. However in some cases (e.g. when dealing with

trees) it is more convenient to operate with a regulator.

Proposition 1.4. A separable Banach space E admits a w-regulator of (P)-
basic sequences if and only if it has a (P)-SBFDD.

We now talk about the applications of Theorem 1.2 and Proposi-
tion 1.4. There are two classes of Banach spaces which admit compact
G s—embeddings.

The first is the class of all separable dual spaces. Recall that a one-to-one

linear bounded operator T : E — X from a Banach space E into a Banach
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space X is called a semi-embedding if T'(Bg) is closed in X. It is trivial that
any separable dual admits a compact semi-embedding and a semi-embedding
defined on a separable space is a Gs—embedding. By using Theorem 1.2 we
prove that for a separable Banach space E the dual E* is separable if and

only if £* has the following property:
(t*) any w*-null tree in Sp~ has a branch which is a BCBS.

The second is the class of separable spaces with the (PC) property. Recall
that a Banach space E has the point of continuity property ((PC)-property
for short) if for every weakly closed bounded set A C E, the identity map
from (A,w) to (A,] - ||) has a point of continuity. The interrelation of Gs-
embeddings and the (PC) property is contained in the following result (see
[8])-

(D) A separable Banach space X has the (PC) property if and only if it
admits a compact Gg-embedding T : X — Y into some Banach space Y.

In fact, Y may be taken to be ¢5. Clearly, if w — lim, z, =0, , € X, n =
1,2,..., then lim, ||Tz,|| = 0.

Note that by combining Theorem 1.2 with (D) we can immediately get
that a Banach space F with separable dual has the (PC)-property if and
only if
(t) any w-null tree in Sg has a branch which is a BCBS.

We, however, give a characterization of separable Banach spaces with the
(PC)-property without the restriction that the dual is separable. And here
it is convenient to use regulators and Proposition 1.4.

We note also that Proposition 1.4 combined with (B) and (D) provides

an alternative proof of the following result in [1, 8].

(E) A separable Banach space has the (PC) property if and only if it admits

a boundedly complete skipped blocking finite dimensional decomposition.

As mentioned before for any sequence () in F we can define an obvious
tree by letting x4 = Zmaxa. In [14] the following property of separable

infinite-dimensional dual Banach spaces has been established.

(s*) Any w*—null normalized sequence of functionals has a boundedly com-
plete basic subsequence (BCBS).
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In [8], it was shown that in a separable Banach space with the (PC)-
property, the following holds.

(s) Any w— null normalized sequence has a BCBS.

Of course both of the above results follow from the tree characterizations
of spaces with separable duals and (PC)-spaces. However, it is natural to
ask if property (s*) (property (s)) alone characterizes Banach spaces with
separable duals ((PC)-property). In section 3 of this paper we give two
examples to show that the in both the cases (¢) and (¢*) cannot be replaced
by (s) and (s*). In particular we show that that the (non-separable) dual
JT™* of the celebrated (separable) James Tree space JT', introduced in [13]
and later studied by Lindenstrauss and Stegal in [16], has property (s*).
Coming to (s), we prove that the space By, constructed in [8], has property

(s). Recall that BY is separable and By, does not have the (PC)-property.

2. Gs-EMBEDDINGS; REGULATORS AND SBFDD

The proof of the following simple lemma is standard and we omit it.

Lemma 2.1. Let X be a Banach space and I' C X*. Suppose X has a I'-
regulator for (P)-basic sequences. Then every I'-null tree (x4) aen<e n Sx

has a branch which is a (P)-basic sequence.

The following is one of our main results.

Theorem 2.2. Let E be a separable Banach space and T : E — X a one-
one bounded linear operator from E to a Banach space X. The following
assertions are equivalent.

(a) T is a Gs-embedding.

(b) There exists a T-RBCBS.

(¢) Every T-null tree in Sg has a branch which is a BCBS.

Proof. (a) < (b) is proved in [4].

(b) = (c¢) Let er be a T-regulator. Let (x4) be a T-null tree in Sg. Since
(1) is a T-null sequence, there exists ny such that | Tz1,, || < er({z1}).
Consider now the sequence (21, ), which is T-null. Hence there exists
ng such that |71 5, n.|l < er({x1,21,0,}). Continuing, we get the desired

branch.
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(¢) = (a) Suppose on the contrary, T' is not a Gs-embedding. By [8,
Theorem 1.2], there exists 6 > 0 and a d-separated sequence (y,) C Bpg,
(that is |ly; — y;|| > 0, for i # j) such that (T'yy,) is dense in itself.

We first construct 2 trees: (za)sen<e in Bg and a T-null tree v =
(UA)A€N<W in Sg such that

(i) the image (T'zq)qep of each branch (24)qeg, is dense in itself;

(ii) for any branch {uy,, }52; we have

(1) | Tury, il <270 i=1,2,..

(iii) any branch {zx, .k, }32, is d-separated sequence in Bp ;

(iv) for any branch {zy, ., }32; we have

(2) Span{ylv Zkl:--~7ki}’ioil = Span{ylv ukl:-wki}gil'

Denote by |A| the cardinality of the (finite) set A. We define the elements
z4 and u 4 by the induction on n = |A|. The elements z4 will be chosen from
{yi}.

Since (T'y;) is dense in itself, we can find y,, € (y;) such that
0<||Tyr — Tyn, || <6271 k=1,2,....

Put

-
Al =l

that is, we defined z4 and ua for |A] = 1. Next assume that we already
defined zp and up for |B| < n, and define z4 and uya for |A| = n+ 1. Write
n+1=243, 7=0,..2 —1. Let B be an initial segment of A with |B| = j.
Since {T'y;} is dense in itself, we can find ym, € (i), Ym, # 2c for every

2k = Yny, Uk k:1727"‘7

initial segments C' of A and such that
0<||T25 — Tym, | <6271 k=1,2,....
Now, if ¢ is the last element of A we put

A — ZB

A = Ymys, UA = ||ZA _ ZBH.

A straightforward verification shows that (i)-(iv) are satisfied.
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By our assumption in (c), v has a branch § = {uy, g, o>, which is a
BCBS. Put

o
Tp = Uky, ks Un = Zhy ks W =1,2,..., o = y1, ¥ = [2,]720-

If xg € [2,]02 then {z,}>°, is a boundedly complete basis of Y. If zo &
[2,]02, then {z,}7°, is a boundedly complete basis of Y. The next part
of the arguments in both cases is the same. So we assume without loss of
generality that {x,,}°° ; is a (boundedly complete) basis of Y.

CrLamM: Tly is a Gsg-embedding of Y into X.

We first show how to finish the proof with the help of the Claim, and then
prove it. By (iii) and (iv) {v,} C By is a J-separated sequence. However
by (i) the image {Tv,,} is dense in itself. This is a contradiction to T'|y is a
Gs-embedding (see [8, Theorem 1.2]). Thus (¢) = (a) is proved.

It remains to prove the claim. Let us introduce a new norm on Y by

n
Iyl =sup{I 3 aiwill : y =3 aszi}.

Clearly ||| - ||| is equivalent to the original norm. Denote by V' the unit ball
in the norm ||| - |||. We show that the image TV is closed in X.

Let Tu,, — v where u,, € V. Writing u,, = Y a*z;, without loss of
generality, we assume that lim,, a]" = a; for each ¢. It is straightforward to
check that sup,, || >°7 a;z;|| < 1. Since (xy) is BCBS, 3 a;x; converges to

some u € V. Given € we choose n such that > > | ||Tz;|| < {5. We then

£
4n||T|

choose m such that for all i = 1,--- ,n, |a]" — a;| < . Thus we have,

n oo
T — Tull < 1Y (af* — a;)Tail| + \Izn+1(aT —ai)Tzi| <e.

Hence T'u,, — Tu, u € V,v = Tu. Therefore v € TV. This shows T'|y is
a semi-embedding of Y in X and since Y is separable, T is a Gs-embedding.

This proves the claim. The proof of the theorem is complete. ([

Our next result shows the equivalence of existence of regulators and that

of special skipped blocking decompositions in a fairly general set up.

Proposition 2.3. Let X be a separable Banach space and (P) some stable
property a basic sequence may possess. The following assertions are equiva-

lent.
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(a) There is a separable subspace ' C X* such that X has a T'-
requlator Wp for (P)-basic sequences.

(b) X has a w—regulator Wp for (P)-basic sequences.
(¢) X has a (P) -SBFDD.

Proof. (a) = (b) is trivial.
(b) = (¢) For e > 0 and A = {f1, fo, -+, fn} a finite subset of Sx+,

denote
VA()_{xEBX |fz( )‘<€,Z:1727k}
Fix a sequence {ex}, 0 < ¢ < 1/6, k = 1,2,..., [[io,(1 +¢ep) <
i Yope ek < 1/4. Let (x,) € Sx be a dense sequence.

Put X; = [z1]. We can write X = X; @ Ey where Ey = D" for some
finite set D! C Sx«. Let T = {2}, 24,--- ,z}l} be a §-net in Sx,. For each
i=1,---j1, find 6} > 0 and finite subset A} C Sx~, such that

We({zi}) = Var(6}), i=1,...51.
Let Fy C Sx+ be a finite (1 + £1)!-norming set for X7, that is,

lz|| < (1 +e1)sup{f(z): f € F1}, =€ X;.

Now let 29 = ug + vo where up € X; and vo € Ey. Pick y; € Sx+ with
y; (UQ) 7é 0, and put

B = uiA) D' Ut JF, Bi= Bl
Let X5 be a finite dimensional subspace of Ejy containing vy such that
Ey=Xo®FEi. Thus X = X1 & X9 ® E1.

Put np = g min{es, 6} : i = 1,---j1} and let Tb = {27,23,---,22 } be a

’ ]2
ng-net in SXléBXz'

Next for each k, 1 < k < js, and for each pair (i,k), 1 <i < j;, 1 <
k < jg, find

62 >0, 64 >0,

and finite subsets

A2 C Sx-, A% C Sx-+,
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such that

Wp({z}) = Vaz (67). Wp({2i,20}) = Vaz (67,)-

Let Fy C Sx- be a finite (1 + 82)_1—norming set for X7 & Xo.

Write x3 = w3 + vz where ug € X1 ® Xo and v € E1. If vg # 0 pick
ys(vs) # 0. If v3 = 0 just put y5 = 0.

Put

By = B, [ Jwid)) | Jwu ) | {3t Fos Ba= By

Let X3 be a finite dimensional subspace of Fy containing vs such that
F1=X3® FEy. Thus X = X1 D X9 X3P Es.

Proceeding inductively, we construct:

(1) a sequence of finite-dimensional subspaces X C X and decreasing se-
quence of finite-codimensional subspaces Fr C X, k= 1,2, ..., such that
i)z, € X1@--©Xp, En 1 =X0119E, X=X1®--- 90X, ®E, 1, n=
1,2,...,

and

(2) an increasing sequence By C Sx+, k = 1,2,..., of finite sets, and a
M
(i) B, = B/, k=1,2,....

(iii) there is a subset F},, C B, which (1 +¢&,) ! norms X1 ®---® X,,, n =
1,2, ...

sequence T,, = {z C Sxy¢..0x,, n=1,2,..., such that

(iv) for each k < n and each collection (i1, ..., i), 1 < i1 < j1,...,1 <ig < jg,
there exist 51’";% > 0 and finite sets A’i"”1 . C B, such that

ol =

VA?L. (5?1,1/9) = WP({ZZ'll’ o zlkk )

(v) T, is a myp-net in Sx,g..¢x, for n, = %min{sn,éi”;.l,i 1 < i <
jl,...,l S Zk S]k, k §n— 1}

From (i) it follows that X, N [Xp,];men = {0}, and X = [X,,]02 ;. Thus
(Xp) is a CMD. Next we need to verify the SBD-condition of Definition 1.3.

For simplicity we consider the case: n(k) = m(k) = 2k, k = 1,2,.... The

k?

verification for the general case is similar. So let y;, € Sx,,. We need to
check that (yx) is a (P)-basic sequence. By (v), there exists zif € Ty, such
that [|yx — 22%|| < nok, k =1,2,.... In particular,
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(3) D llye == < 1/4.
k=1

Since by (i), Xox C FEax_o and by (ii), Fox—o = BQTk_Q, it follows that
f(yx) = 0 for each f € Bgr_o. Hence

|f(z25)] < mok—2, f € Bopo, k=1,2, ...

In particular

(4) |f(zz2kk)| S E2k—2; f S FQk—Qa k= 1727
2k 2k—2 2k—2
(5) |f(z0)] < 05 i JEATT k=12,

We claim that {zf}f} is a basic sequence with basis constant < 2. Fix
a finite set of numbers {a;}77] and denote S, = >}F_, aszlf and Sp41 =
21 arz2k. By using (ifi) find f € F, with [|Sa]| < (1+ en)|f(Sn)|- Next

we write

1all < (L4 en)l f(Sns1) = flant12] 2] < (L4 en)(|Sna1l] + enlantal) <

In+1

(1 + &n) (1Sntall + en((|Snsall + [[Snl])-

Therefore

(14 ¢,)?
|[Snl] < 1 . 1Snsa |l < (14 )| Snsall,

—en(l+ep)
where we used that ¢,, € (0,1/6). Hence {zzzkk} is a basic sequence with basis
constant C' < [[02,(1 +¢e,)* < 2.

Next from (iv) and (5) it follows that {zf}f} has property (P). Finally

from (3) we conclude that {yx} is a (P)-basic sequence.

(¢) = (a) Let (Xg)r>1 be a (P)-SBFDD for X. A standard argument
shows that there is a constant C' > 1 such that every skipped block sequence
of (X)k>1 is a (P)-basic sequence with basis constant at most C. Fix
ep >0, dDep < %

We define a regulator Wp({z;}%_,) for (P)-basic sequences inductively.
Start with £ = 1. Fix ¢ € Sx. Put pg = —1 and find p; and y € S[Xi]i(l)+2
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such that x = y 4+ z where ||z]| < 5. We take Y1 = [X;]i>p,42. Then Y7 is
a finite codimensional subspace of X. Let A; C SYIL be a finite
Sle_. We define

€1

Zz-net in

€1
4 )
This defines W on each one point subset of Sx.

Wp({z1}) = Va, (

Suppose Wp has been defined for all k-point subsets of Sx, k& > 1 and
{‘Tla Zo, - 733143-‘,-1} - SX such that

€
Wp({x1, 22, -+ ,a1}) = VAk(ﬁ),

where Ay, is a finite %—net in SYkL7 Y = [Xilisprt2-

If xpr1 & Wp({z1, 22, ,2}) we define Wp({x1, 22, - ,xp11}) =
Wp({x1, 22, -+ ,x}).

If 11 € Wp({w1,22,--+ ,24}) then for all f € A, |f(zrs1)| < -
Since Ay is a 4,f%-net in SYkJ_, we can write xy41 = s +t where s € Sy,
and ||t < Z—’,g. Next we choose pr11 > pr + 2 and ypy1 € S[Xklﬁﬁié such
that s = ygy1 + 2 where [|2]| < 3. Note that |[xx11 — yri1ll < 5. Put
Yir1 = [Xile>pei+2- Yes1 is a finite codimensional subspace of X. Let

. 8k+1 _ .
Agy1 C SYkil be a finite zi5-net in SYkLH . We define

k41
WP({l'lny? e 7$k+1}) = VAk+1(4k+1)'

Put I = cl span Uy, Ay, and we check that Wp is a regulator for (P)-basic

sequences. To this end, let (x) C Sx satisfies xp11 € Wp({z1, 22, -+ ,z}).
For each k, there exists yp € Syy o , such that [z — yxl| < 5k. Hence
Pr—1+
Yollre —wrll < 205 < 3. By the construction (y;) is a skipped block

sequence of (X )x>1, and hence (y;) is a (P)-basic sequence of basis constant
at most C. By the stability of (P) it follows that (xy) is (P)-basic sequence
as well. This completes the proof. O

3. APPLICATIONS.

The first application of Theorem 2.2 is a characterization of separable
dual spaces among duals of separable spaces. We start with a proposition

which is essentially proved in [4].
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Proposition 3.1. Let a Banach space E admit a compact semi-embedding
T: FE — X which is a Gs— embedding. Then E is isometric to a separable

dual space.

Proof. Let K = T'(Bg). Then K is a compact symmetric convex set. Let
Y = Ay(K) be the space of all affine continuous functions on K vanishing at
the origin with sup-norm. A standard argument shows that F is isometric
to Y*. The rest of the proof runs along the lines of the proof of Theorem 3,
(2)= (3), in [4]. The proof is complete.

Theorem 3.2. Let E be a separable Banach space. The following assertions
are equivalent.

(a) E* is separable.

(b) There exists a w*-RBCBS for E*.

(¢) E* has property (t*).

Proof. (a) < (b) is proved in [4, Theorem 3|. (b) = (c) follows from
Lemma 2.1.

(¢) = (a) Let A : o — E be a compact operator with dense range.
Denote T' = A* : E* — {5. It is clear that T is a compact semi-embedding
and every normalized T-null tree is w*-null. Therefore from Theorem 2.2,
(¢) = (a), it follows that T' is a Gs-embedding of E* into ¢s (recall that
the notion of Gs-embedding is separably defined). Apply Proposition 3.1 to
complete the proof. O

We now consider (PC)-spaces. The following theorem provides a charac-
terization of separable Banach spaces with the (PC') property in terms of
the trees in the unit sphere. This also provides an alternative proof of the

result (E) from the introduction.

Theorem 3.3. Let E be a separable Banach space. The following assertions
are equivalent.
(a) E has the (PC)-property.
(b) There exists a separable subspace I' C E* such that E has a Wr-
RBCBS.
(¢) E has a BCSBFDD (Xg)g>1-
(d) There exists a separable subspace ' C E* such that every I'-null
tree in Sg has a branch which is BCBS.
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Proof. (a) < (b) is formulated in the short note [5] without proof. We give

a proof here for the sake of completeness.

(a) = (b) Since E has the (PC)-property it follows [8] that there is a
compact Gs-embedding T : E — ls. We take I' = T*[y. Then I is separable.
By [4] (see Theorem 2.2, (a) < (b)), there exists a T-RBCBS e on E.

We define a Wp-RBCBS as follows. Let x € Sg. Since T* Bx+ is compact
there is a finite 24D et {f1}™, in T*Bx~. Define

2
er({z})

Wr({z}) = {y € Be : |} (y)| < 5

i=1,--m}.

It is easily seen that for any y € Wr({z}), we have ||Ty|| < ep({z}).
Now let 1,22 € Sg. By the compactness of T* Bx~ there is a ET({gil’M})—

net {f?}2, in T*Bx~. Define

er({z1,22})

Wr({z1,22}) = {y € Bg : | /7 (y)| < 5

) Z:17n2}

The same argument as above shows that if y € Wp({z1, z2}), then ||Ty| <
er({z1, z2}).

Continuing, we get the desired regulator Wr.

(b) = (a) Let I' C E* be a separable subspace and Wr be a RBCBS. 1t is

easily seen that I' is total. Let K C I' be a norm-compact convex symmetric
subset such that clspanK = I'. Without loss of generality we can assume
that for {z;}1 C Sg, there exists ¢ = e({z;}}') such that

WF({xi}?zl) = {.CU c BE : |f]($)‘ <eg, fj S K, ] = 1, ...,m}, {mi}?zl C SE
Next define a new norm on the space E as follows
|l[#[|] = max{|g(z)[ : g € K}.

Let X be the completion of the space E with norm |||.|||, and T": E — X be
a natural (one-to-one) embedding. Clearly, T*(Bx~) = K. Now we define a
map er({z;}]" ) = €, where ¢ has come from (6). It is not difficult to see
that ep is a T-RBCBS. By [4] (see Theorem 2.2, (b) < (a)) we conclude
that T is a Gs-embedding. Therefore E admits a compact Gs-embedding.
By [8] E has the (PC)-property.

The equivalence of (b) and (c) follows from Proposition 2.3.

(b) = (d) follows from Lemma 2.1.
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(d) = (a) We start as in the beginning of the proof of (b) = (a), and
construct the space X and the compact one-to-one operator T' : £ — X
such that clspanT™(X*) = TI', (the condition (d) guarantees the totality of
I'). Form (d) it follows that any 7-null tree has a branch which is BCBS.
By Theorem 2.2, (¢) = (a), we get that T is a Gs-embedding. By the
result from [8] mentioned in the introduction we conclude that E has the
(PC)-property. O

Let (Xj)k>1 be a CMD for a Banach space X. (Xj)g>1 is said to be
shrinking if for every f € X*, lim, ||f|ix,},.,0ll = 0. By [19, Theorem
4.1], X has a shrinking SBFDD if and only if X* is separable. Also, it
was shown in [19] that a SBFDD, which is skipped-shrinking, meaning that

every skipped block sequence generates a shrinking basic sequence, is in fact,
a shrinking SBFDD.

Corollary 3.4. Let E* be separable. The following assertions are equiva-
lent.

(a) E has the (PC)-property.

(b) E has a w-RBCBS.

(¢) E has a w-regulator for shrinking boundedly complete basic se-

quences.

(d) E has a shrinking BOCSBFDD (Xj)g>1-

(e) E has property (t).

Proof. Taking I' = X*, in Theorem 3.3, (a) = (b) follows.
(b) = (c) Let W be a w-RBCBS. We define a regulator W; for boundedly

complete shrinking basic sequences.

Let (f,) be a dense sequence in Sg+. Take &, | 0. Define Wy : ¥ — B
as Wi({z1, 22, - xn}) = W({z1,22, - 2n}) NV foe 5. (€n). If (z) € SE
satisfies xn 41 € Wi({{x1, 22, - x,}) then z,y1 € W({z1, 22, - x,}) and
hence it is BCBS. Also xp11 € Vi, fy.... ., (€n). By the density of (fy) it

follows that for every f € E* — 0. Thus (z,) is shrinking.

s 1 Mkl

(¢) = (d) By Proposition 2.3 it follows that E has a skipped shrinking
BCSBFDD (X} )k>1, that is, every skipped block sequence of (X)i>1 gen-
erates a shrinking and BCBS. It was noted in [19] that an SBFDD, which

is skipped-shrinking, is in fact, a shrinking SBFDD.
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(d) = (e) follows from Lemma 2.1 and (e) = (a) follows from Theo-
rem 3.3. g

Remark 3.5. By [3, 19] the Banach spaces with the (PC)-property and
separable dual form the class of Banach spaces such that the unit ball is
Polish in the weak topology. Thus Corollary 3.4 gives a tree characterization

of this class of Banach spaces among the spaces with separable dual.

4. PROPERTY (s) AND (s*)

In this section we prove that the properties (¢) and (¢t*) are indeed stronger
than properties (s) and (s*) and the tree hypothesis in Theorem 2.2, The-
orem 3.2, and Corollary 3.4 cannot be in general weakened to the sequence

hypothesis.
We start with general result which we then apply to the space JT.

Theorem 4.1. Let X be a separable Banach space satisfying the following
conditions.
(a) X has the (PC)-property.
(b) X* is separable.
(¢) X**/X is reflexive.
Then X** has property (s*).

The proof of the following lemma follows from a standard argument.

Lemma 4.2. Let L be a Banach space and E C L such that E = [Xj]k>1
where (Xy) is a CMD of E with dim Xy < 0o, k > 1 and let q be the quotient
map from L to L/E. LetY be a finite dimensional subspace of L. For each
n, let Z, C E be the finite dimensional subspace defined by Z, = [Xi]}_;.
Then given any 0 < & < 1, there exists an integer s such that for anyy € Y,

one can find m € Zs satisfying
ly +mll < (1 +¢)llgyll +llyll

PrROOF OF THEOREM 4.1: Let (y,) C Sx++ be w*-null. We need to find
a subsequence of (y,,) which is BCBS.
Denote by ¢ the quotient map from X** to X**/X. We will choose the

required subsequence of (y,,) in the following two steps.
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STEP 1: We choose a subsequence (yg,) of (y,) to satisfy the following
property.

(%) Let~; >0, v; | be such that ) ~; converges. Let (a;) be a bounded se-
quence of reals. Suppose for e >0 and C > 0 we have z, = Z?:”np_lﬂ a;Yk,
satisfies, for all p, C > ||z,|| > € and ||qz|| < vp27P. Then there exists d > 1
such that {zp}>2 ; is a BCBS.

Since X has the (PC)-property it follows by Theorem 3.3, that there exists
a boundedly complete SBFDD (X;) for X. Let us denote N, = [Xi]#kl.
Then each Ny, is a finite dimensional subspace of X* and so is F, = [Ng|7_;.
Note that F,] = [X;]2, ;. We take Z, = [Xi|7_,.

By repeated use of Lemma 4.2 we find a subsequence (yy,, ) and two strictly

increasing sequences (sy), (t,) of natural numbers satisfying the following

conditions.

(6) 1Y | i [ < 27"

(7) Ify €Y, =y, -, Yk, there exists m € Z, such that
ly +mll < (1 +p)llayll +llyll

(8) For each m € Z;, there exists m € [Xj]iz,lw such that

lm +m| < (1+ ~,)dist(m, [Xj]fiﬁz) + Ypllm||-

Since 2z, € Yy, by Equation 7 there exists m, € Z,, such that [z, +
mp|l < (1 + v,)lla2p|l + ¥n, l12p]]. Since [|gz,|| < 4,277, we can find p large
enough such that

9) l|2p + mpll < p-

By Equation 6, for each r, Hyknp,ﬁr‘Ftn | < 2—(np71+r)%p71+1.

p—1+1
Hence 5n, Il < 0% oo lad Ikl ]l Since (as) is bounded,
choosing p large enough, we can have [|z,|F, || <~p. By Equation 9, it

p—1+1
follows that HmP|Ftnp_1+1 | < 2v,. This implies dist(m,, [Xj]fitnp_lw) <

27,.  We now choose, by Equation 8, m, € [Xj]ff"”

i=ta, 42 such that
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[myp + mp| < (1 + ’Vnp)diSt(mpa [Xj]to:p_l+2) + ’anHmpH <2(1+ '7np)7p +
Yy (C ) < (C+5)7-

Clearly, (my) is a skipped block sequence of (X;) and thus a BCBS.
Since )7, converges, there exists ¢ such that (m;),>¢ is a BCBS. But
|zp + my|| < 7p and hence there exists d such that (z,),>q is a BCBS.

STEP 2: Let (yg, ) be the subsequence obtained from Step 1. To simplify
notation, we denote this subsequence by (yi). Let us observe that (x) holds
for any subsequence of (y) (by putting some a; = 0, if necessary).

Recall that (yi) is a normalized w*-null sequence in X**. By a well known
result we can choose a subsequence, call it (y;) again, such that (yy) is basic,
with basic constant C7.

The following two cases can occur.

CASE 1: Suppose for some subsequence (yg,,), ||qyk,,|| — 0. Since X is
a separable Banach space with the (PC)-property, it follows from [8] (see
Theorem 3.3) that (y,,) has subsequence which is a BCBS.

CASE 2: infy ||qyk|| > . Without loss of generality and passing to a
subsequence if necessary, we assume that there exists h € X+, [|h]| = 1
and some a > 0 such that |h(yx) — a| < 27%. Since X**/X is reflexive,
it follows that for some subsequence, which we denote by (yx) again, there
exists z € X** qui — qz.

Suppose (ay) is such that sup, || > 7 aryr| < M for some M. Then
sup,, |h(3-T agyr)| < M and since |h(yx) — | < 27F, we get sup,, | S_7 ax| <
oo. Hence there exists (ny) such that > |* aj converges, to say, a.

We consider the following two cases.

CASE (a): llqyx — q2|| — 0.

In this case, it is straightforward to observe that > " axqyr — qu for
some u € X**.

CaSE (b): |lqyx — qz|| > € for some € > 0. Since X**/X is reflexive, we
assume without loss of generality that (¢(yx — z)) is a BCBS.

Writing > 3%, arque = d>op%q anq(yr — 2) + (O_p%, ar)gz and using the
bounded completeness of (¢(yx — 2)), it follows Y /% | arqys converges.

Thus in both the cases, we obtain, for some suitable subsequence
of (yg), there exists (ng) such that ) )'* arqyr converges whenever
sup,, || >-7 aryk|l < co. We claim (yg) is a BCBS.
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To show this, observe that, since (yj) is basic, it is enough to show that
there exists (ny) such that > %, a;y; converges whenever sup,, | Y7 a;y;i|| <
M for some M. Thus assume on the contrary, that > " a;y; does not
converge for any sequence (ng). Note that by the consideration above,
there exists (ny) such that Y ;* a;q(y;) converges. Let 7, > 0 be such

that ) 7, < oo. Then there exists ¢ > 0 and a subsequence (ny,) such

n

k ng _
that ||Enk§j_11 a;yi|| > & but Hq(zn;fl ayi)|| < 2 P. Observe that
I ZZ’;ZT& a;yi]| < 2M. Since (yx) is a basic sequence with basis constant
(1, it follows that |a;| < 4M Cy and hence is bounded.
Taking z, = Zzzzfl a;y; and C' = 2M, it follows from (x) that there
exists d such that (2)p>4 is a BCBS. However sup,, || >5/_; 2p[| < 2M. Thus

sz 4 %p converges. This contradicts ||z,|| > e.

The proof is complete.

Example 4.3. Consider the James tree space JT'. It is a separable dual
space with non-separable dual JT*. Denoting the pre-dual of JT by B
it is known that B has the (PC)-property (see [l]and [3]), and JT*/B is
isomorphic to £2(I") for some uncountable set I' (see [16]). It follows from
Theorem 4.1 that JT™ has property (s*). Therefore the space JT™ shows
that the property (s*) is not enough for a dual space to be separable. Next let
A :ls — JT be a one-to-one linear compact operator with dense range. Put
Ty = A* : JT* — ly. Since JT™ is not separable it follows from Proposition
3.1 that T} is not a Gs—embedding. Since the notion of Gs—embedding is
separably defined, it follows that there is a separable subspace £ C JT*
such that the restriction 7" = Ti|g is not a Gs—embedding. However, by
using the (s*) property of JT* it is easy to see that any sequence {z,} C Sg
with lim,, Tz, = 0 contains a subsequence which is BCBS. This shows that
the tree hypothesis in Theorem 2.2 cannot be weakened to the sequence

hypothesis.

Example 4.4. An example of a separable Banach space E with separable
dual such that E fails the (PC)-property but has property (s) is the space
By constructed in [8]. It is known that JT,, = B}, is separable and B
fails the (PC)-property (see [10, 11]). In the following proposition we prove
By has property (s).

Proposition 4.5. Bo, has property (s).
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Proof. We will use the following properties of the space By, (see [8, 9] for
details).

There exists a sequence of Banach spaces (X}), each isometric to ¢9 such
that

(i) (Xk) is a (complemented) Schauder decomposition of Bu.
(i) (X3) is a BCSBD of Ba.

Let P, : X — >, ®X}, denote the projection on the first n components
of >, @X}. Since (X}) is a Schauder decomposition, we have sup,, || Py || <
c for some ¢ > 0.

Let (x;) € Sp,, be a w-null sequence. For each n, we have (P,x;)i>1 is
weakly null. We consider the following two cases.

CASE 1: For infinitely many n, lim; || P,x;|| = 0. Choose n; and i; such
that || P, @, || < ¢c'472 We can write x;, = s1 + t; where s1 € [Xg]}L,
and t1 € [Xp]32, o1, llsill = llzi, — 1]l < ¢7'472 There exists m; and
y1 € [Xi]}2, 1 such that [[ty—y || < ¢7'47". Note that [|lz;, —y || < ¢ '47%

Choose ng > mj + 1 and i such that ||P,,x;,| < ¢ 1473, We can write
T, = 53 +t2 where sy € [Xi[}2, and t2 € [Xi]32,, 11, [Is2]l = |7, — t2fl <
| such that [|to —ya|| < c71472

¢~'473. There exists mo and yy € [X;]}2

2712—1—
Thus ||zi, — ya|| < c71472.
Continuing, we obtain, a subsequence (z; ) of (z;) and y, €
[Xk]zn:’“nkﬂ, ng +1 < my < ngy1 such that Z;OH% -yl < 2% (yx)
is a skipped block sequence of (Xj), and hence it is a BCBS. By stability

(x;,) is a BCBS.

CASE 2: There exists m such that for all n > m, liminf; || P,z;|| > § for

some 6. Without loss of generality, we assume for all n, lim; || P,2;]| > 6.

Since the range of each P, is {2, by a standard diagonal argument we can
find a subsequence of (z;), which we denote by (z;) again, such that for each

n, % is ¢1 equivalent to the unit vector basis of /5.
n

We claim (z;) is BCBS. If not, there exists (a;) such that
sup,, || Yo aixi]| < oo but Y a;z; does not converge. Note that for each
n, sup,, || Yo, ai P < oo and hence Y a; P,x; converges. Thus Y. |a;|?

converges.
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Since ) a;z; does not converge, there exist an increasing sequence (np)
and € > 0 such that

Np
I il > e
TLP,1+1
but
Tp
1
(> laif?) < KaP
’I’Lpfl—i-l
where k = %
Let Zp—1 = ZZiilJrl a;Xj;.
‘We have
no
[Pizall = | ) aiPra]
ni+1
n2
Pyx;
< ; Pix;
02 el
no 1
< ccl(z lag)?)2 <471
ni1+1
Thus there exists ui,v; such that z; = w; + v; where uy € X; and

V1 € [Xk]k22 with HU1|| < 4-1,
We can find {1 and y; such that y; € [Xk]éjzg and ||v; — 1] <471, Note
that ||z1 — y1]] < 275

Consider P}, 2. Similar to above we have,

n3
1 _
1Py s2zal| < cer () lail)? <472
no+1
We find w9, v9,7y2 and a number lo such that zo = wuo + v9, us €
[Xk]f,;if, luz|| <472 and ys € [Xk]%:lﬁ& We again have ||z2 — 3o < 272
Continuing, we obtain a sequence of increasing integers [, and vectors
Yp € [Xk]iz_ﬁ:a such that ||z, — yp|| < 27P. But (yp) is a skipped block
sequence of (Xj) and hence by (i), is a BCBS. Thus there exists a d > 1
such that (2p)p>q is a BCBS as well. Since for any k, supy, || ZZIS Zp|| < 00
it follows that > _, 2, converges. This contradicts that ||zp|| > ¢ and the

proof is complete. O
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