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STRONGLY PROXIMINAL SUBSPACES OF FINITE
CODIMENSION IN C(K)

BY

S. DUTTA (Beer-Sheva and Kolkata) and DARAPANENI NARAYANA (Bangalore)

Abstract. We characterize strongly proximinal subspaces of finite codimension in
C(K) spaces. We give two applications of our results. First, we show that the metric pro-
jection on a strongly proximinal subspace of finite codimension in C(K) is Hausdorff metric
continuous. Second, strong proximinality is a transitive relation for finite-codimensional
subspaces of C(K).

1. Introduction. Let X be a Banach space and Y a closed subspace
of X. The metric projection of X onto Y is the set-valued map defined by
PY (x) = {y ∈ Y : ‖x − y‖ = dist(x, Y )} for x ∈ X. If for every x ∈ X,
PY (x) 6= ∅, we say that Y is a proximinal subspace of X.

For a Banach space X, we denote the closed unit ball and the unit
sphere by BX and SX respectively. We restrict ourselves to real scalars. All
subspaces we consider are assumed to be closed.

In [7] and [8], G. Godefroy, V. Indumathi and F. Lust-Piquard studied
the following stronger version of proximinality.

Definition 1.1. Let Y be a closed subspace in a Banach space X and
x ∈ X. For δ > 0, consider the set

PY (x, δ) = {y ∈ Y : ‖x− y‖ < d(x, Y ) + δ}.
A proximinal subspace Y is said to be strongly proximinal at x ∈ X if given
ε > 0 there exists a δ > 0 such that

PY (x, δ) ⊆ PY (x) + εBY .

Necessary and sufficient conditions for strong proximinality of a finite-
codimensional subspace Y in a Banach space X are given in [7]. To describe
those results we need the notions of SSD-points and QP-points.
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Definition 1.2.

(a) Let X be a Banach space. The norm ‖ · ‖ is said to be strongly
subdifferentiable (for short SSD) at x ∈ X if the one-sided limit

lim
t→0+

‖x+ th‖ − ‖x‖
t

exists uniformly for h ∈ SX .
We say that x is an SSD-point of X if the norm is SSD at x. Recall
that the duality map JX∗ of X is defined as

JX∗(x) = {g ∈ B(X∗) : g(x) = ‖x‖} for x ∈ X.
In [4], it was shown that x is an SSD-point if and only if the duality
map JX∗ is (norm-norm) upper semicontinuous at x, that is, for every
ε > 0, there exists δ > 0 such that

JX∗(z) ⊆ JX∗(x) + εBX∗ if ‖z − x‖ < δ, ‖z‖ = ‖x‖.
(b) We say that x is a QP-point of X if there exists δ > 0 such that

JX∗(z) ⊆ JX∗(x) if ‖z − x‖ < δ, ‖z‖ = ‖x‖.
It was shown in [7, Lemma 3.3] that QP-points are SSD-points but the

converse is not true.

The following two propositions describe the connections between strongly
proximinal subspaces of finite codimension and QP- and SSD-points.

Proposition 1.3 ([7]). Let Y be a finite-codimensional subspace of a
Banach space X. If Y is strongly proximinal then Y ⊥ is contained in the
set of SSD-points of X∗.

It remains an open question if the converse of Proposition 1.3 is true.
However, we have the following result. Recall that a finite-dimensional Ba-
nach space E is called polyhedral if BE has finitely many extreme points.

Proposition 1.4 ([7]). Let Y be a finite-codimensional subspace of a
Banach space X such that Y ⊥ is contained in the set of QP-points of X∗.
Then Y ⊥ is polyhedral and Y is strongly proximinal.

In Theorem 2.1 of Section 2 we show that in C(K)∗, K a compact Haus-
dorff space, SSD-points and QP-points coincide and they are precisely the
finitely supported measures on K. As a corollary, a finite-codimensional sub-
space Y of C(K) is strongly proximinal if and only if Y ⊥ is contained in the
set of SSD-points of C(K)∗.

Section 3 contains two applications of our results from Section 2. The
first one is a continuity property of the metric projection PY , where Y is a
strongly proximinal subspace of finite codimension in C(K). We will need
the following definitions.
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Definition 1.5. Suppose Y is a proximinal subspace of a Banach
space X.

(a) PY is called lower semicontinuous at x ∈ X if given ε > 0 and
y0 ∈ PY (x), there exists δ > 0 such that for z satisfying ‖z−x‖ < δ,
one can find y ∈ PY (z) such that ‖y − y0‖ < ε.

(b) PY is called lower Hausdorff semicontinuous (henceforth lHsc) at x
if it is lower semicontinuous at x and the δ in (a) above can be chosen
independent of y0 ∈ PY (x). Equivalently, PY is lHsc at x if for any
xn → x,

sup{d(y, PY (xn)) : y ∈ PY (x)} → 0.

(c) PY is called upper Hausdorff semicontinuous (henceforth uHsc) at
x if given ε > 0, there exists δ > 0 such that for every z satisfying
‖z − x‖ < δ we have PY (z) ⊆ PY (x) + εBY .

(d) PY is called Hausdorff metric continuous at x if it is continuous as a
single-valued map from X to 2Y with respect to the Hausdorff metric
defined by

h(A,B) = max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)}, A,B ∈ 2Y .

Remark 1.6.

(a) It is a simple consequence of the definition that if Y is a strongly
proximinal subspace then PY is uHsc.

(b) If Y is proximinal in X, then PY is Hausdorff metric continuous if
and only if PY is both lHsc and uHsc.

(c) Sometimes in the literature (see [2, 11]) lower Hausdorff semi-
continuity is referred to as strong lower semicontinuity.

In [11] it was shown that if X ⊆ c0 and Y ⊆ X is a strongly proximinal
subspace of finite codimension in X, then PY is Hausdorff metric continuous.
A more general result was obtained in [2], where the authors showed that
if X is a Banach space with property (∗) (see [2, 3] for the definition) and
Y ⊆ X is a proximinal subspace of finite codimension, then PY is lHsc.
By [2], every separable polyhedral space has a renorming with property (∗).
In particular, if 1 ≤ α < ω1 is a countable ordinal then the space C(ωα) is
an `1-predual and hence isomorphically polyhedral space. Thus C(ωα) has
a renorming with property (∗) (see [5]).

As a first application of our results, we show in Section 3 that if Y is
a strongly proximinal subspace of finite codimension in C(K), then PY is
Hausdorff metric continuous.

A second application is to show that the relation of being a strongly prox-
iminal subspace is transitive for finite-codimensional subspaces in C(K). In
particular, we show that if Y and M are finite-codimensional subspaces
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in C(K) such that Y ⊆ M ⊆ X, Y is strongly proximinal in M and M is
strongly proximinal in C(K), then Y is strongly proximinal in C(K). A sim-
ilar result for proximinal subspaces of finite codimension in subspaces of c0

was established in [10]. However, in [1], the authors constructed an example
to show that the transitivity of proximinal subspaces of finite codimension
in C(K) fails in general.

2. Strongly proximinal subspaces of C(K). The following theorem
is our main result in this section.

Theorem 2.1. Let µ ∈ C(K)∗ with ‖µ‖ = 1. Then the following asser-
tions are equivalent.

(a) µ is finitely supported.
(b) µ is a QP-point.
(c) µ is an SSD-point.

Proof. (a)⇒(b). We write µ =
∑n

i=1 αiδki where ki ∈ K and
∑n

i=1 |αi|
= 1. If F ∈ JC(K)∗∗(µ) then F (µ) =

∑n
i=1 αiδki(F ) = 1 =

∑n
i=1 |αi|.

It follows that F ∈ JC(K)∗∗(µ) if and only if δki(F ) = sign(αi), i =
1, . . . , n.

Let ν ∈ SC(K)∗ be such that ‖µ−ν‖ < ε where ε = min{|αi| : 1 ≤ i ≤ n}.
Then k1, . . . , kn are atoms of ν and sign(αi) = sign(ν(ki)).

Now let G ∈ JC(K)∗∗(ν). We claim δki(G) = sign(ν(ki)) = sign(αi), i =
1, . . . , n. Indeed, assume δki(G) 6= sign(ν(ki)) for some i. We can write
ν =

∑n
i=1 ν(ki)δki + ν1 where ν1 = ν|K\{k1,...,kn}. But then G(ν) =∑n

i=1 ν(ki)δki(G) + G(ν1) <
∑n

i=1 |ν(ki)| |δki(G)| + |G(ν1)| = 1. This con-

tradicts G ∈ JC(K)∗∗(ν). Thus δki(G) = sign(αi), i = 1, . . . , n, and hence
G ∈ JC(K)∗∗(µ). This proves µ is a QP-point.

(b)⇒(c). Follows from [7, Lemma 3.3].

(c)⇒(a). Let µ = µ+ − µ− be the Jordan decomposition of µ. Then
|µ| = µ+ + µ− is a probability measure and supp(|µ|) = supp(µ). It is now
straightforward to verify that |µ| is an SSD-point if and only if µ is. Thus
without loss of generality, we may assume that µ is a probability measure.

We first note that if f ∈ JC(K)(µ) then f = 1 on supp(µ).

Suppose supp(µ) is not finite. By regularity of µ we can find a de-
creasing sequence {Vn}n≥1 of open sets in K such that µ(Vn) > 0 and
limn µ(Vn) = 0. Let µn = µK\Vn/‖µK\Vn‖. Then ‖µn‖ = 1 and ‖µ− µn‖ =
µ(Vn)/‖µK\Vn‖ → 0.

Fix xn ∈ Vn ∩ supp(µ). Let fn : K → [0, 1] be such that fn(xn) = 0 and
fn = 1 on K \ Vn. Then fn ∈ JC(K)(µn) but ‖fn − f‖ = 1. This contradicts
µ being an SSD-point.
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Remark 2.2.

(a) Recall that x∗ ∈ SX∗ is called a point of (norm-weak) upper semicon-
tinuity of the preduality map of X∗ if given any weak neighborhood
V of the origin in BX , there exists δ > 0 such that if y∗ ∈ SX∗

satisfies ‖x∗ − y∗‖ < δ, then JX(y∗) ⊆ JX(x∗) + V . It was proved in
[6] that an SSD-point of a dual space attains its norm and is a point
of (norm-weak) upper semicontinuity of the preduality map. Now if
µ ∈ C(K)∗ with supp(µ) uncountable then we can actually show
that µ is not even point of (norm-weak) upper semicontinuity of the
preduality map of C(K)∗. To see this, first note that µ is not a purely
atomic measure. Thus there exists k ∈ supp(µ) such that µ(k) = 0.
Let fn ∈ SC(K) be such that fn(k) = 0 for all n and µ(fn)→ 1. Set
V = {g ∈ BC(K) : g(k) < 1/2}. We have fn 6∈ JC(K)(µ) +V for all n.
By [6, Lemma 2.1], the preduality map is not (norm-weak) upper
semicontinuous at µ.

(b) If K is countably compact, it is not true in general that if µ is a
point of (norm-weak) upper semicontinuity of the preduality map of
C(K)∗ then µ is a finitely supported measure. For example, consider
the space of convergent sequences c and µ = (1/2n)∞n=1 ∈ `1. Then
Jc(µ) = J`∞(µ) = (1, 1, . . .) and by [6, Theorem 2.3], µ is a point of
(norm-weak) upper semicontinuity of the preduality map of `1.

We can now describe strongly proximinal subspaces of finite codimension
in C(K).

Corollary 2.3. Let Y be a finite-codimensional subspace in C(K).
Then the following assertions are equivalent.

(a) Y is strongly proximinal.
(b) Every closed subspace Z of finite codimension with Y ⊆ Z ⊆ X is

strongly proximinal.
(c) Every hyperplane containing Y is strongly proximinal.
(d) Y ⊥ ⊆ {f ∈ X∗ : f is an SSD-point of X∗} = {f ∈ X∗ : f is an

QP-point of X∗}.

Proof. (a)⇒(b). Since Y is strongly proximinal, Y ⊥ ⊆ SSD-points of X∗

by Proposition 1.3. By the equivalence of (b) and (c) in Theorem 2.1, Y ⊥ ⊆
QP-points of X∗. Since Z⊥ ⊆ Y ⊥ the result follows from Proposition 1.4.

(b)⇒(c). Follows trivially.

(c)⇒(d). Follows from Proposition 1.3 and the equivalence of (b) and
(c) in Theorem 2.1.

(d)⇒(a). Follows from Proposition 1.4.
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3. Applications. Our first application is the following result on conti-
nuity of the metric projection.

Theorem 3.1. Let Y be a strongly proximinal subspace of finite codi-
mension in C(K). Then PY is Hausdorff metric continuous.

We need to fix some notation for which we closely follow [11].

Let Y be a proximinal subspace of codimension n in a Banach space X.
For x ∈ X, set QY (x) = x− PY (x). For {f1, . . . , fk} ⊆ Y ⊥ with 1 ≤ k ≤ n
we define

Qf1,...,fk(x) =

k⋂

i=1

{z ∈ BX : fi(z) = fi(x)}.

Note that QY (x) ⊆ Qf1,...,fk(x), and if {f1, . . . , fn} is a basis of Y ⊥ then
QY (x) = Qf1,...,fn(x).

Let E be an n-dimensional polyhedral space and Φ ∈ SE. Consider the
sets

AΦ = {f ∈ BE∗ : f(Φ) = 1}, CΦ = {f ∈ extBE∗ : f(Φ) = 1}.
Then CΦ is a finite set and

⋂
f∈AΦ JE(f) =

⋂
f∈CΦ JE(f). Let {f1, . . . , fk},

1 ≤ k ≤ n, be a maximal linearly independent subset of CΦ. Then⋂k
i=1 JE(fi) is a minimal face of BE containing x.

Let D(Y ) = {x ∈ X : dist(x, Y ) = 1}.
Definition 3.2. Suppose x ∈ D(Y ) and there exists a maximal inde-

pendent set {f1, . . . , fk} ⊆ SY ⊥ , 1 ≤ k ≤ n, such that

Qf1,...,fk(x) =
k⋂

i=1

JX(fi).

Then we say x is a k-corner point with respect to {f1, . . . , fk}.
We summarize the above discussion in the following lemma. Note that

if Y ⊥ is polyhedral, then so is X/Y .

Lemma 3.3. Let Y be a proximinal subspace of codimension n in X.
Suppose Y ⊥ is polyhedral and x ∈ D(Y ). Then there exists a maximal inde-
pendent set {f1, . . . , fk} ⊆ SY ⊥ , 1 ≤ k ≤ n, such that x is a k-corner point
with respect to {f1, . . . , fk}.

The following result was proved in [11]. Though it is stated for Hausdorff
metric continuity of PY , it is evident from the proof given there that it is
valid for both lHsc and uHsc.

Theorem 3.4 ([11, Theorem 3.10]). Let X be a Banach space and Y
a proximinal subspace of codimension n in X with Y ⊥ polyhedral. Assume
that whenever x ∈ D(Y ) is a k-corner point with respect to a set of linearly
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independent functionals {f1, . . . , fk} in Y ⊥ for some positive integer 1 ≤
k ≤ n, then the map Qf1,...,fk is Hausdorff metric continuous at x. Then the
metric projection PY is Hausdorff metric continuous on X.

We are now ready to prove Theorem 3.1. We separate out the following
simple lemma from the proof of Theorem 2.1.

Lemma 3.5. Suppose µ ∈ SC(K)∗ is given by µ =
∑n

i=1 αiδki .

(a) If f ∈ JC(K)(µ) then f(ki) = sign(αi), i = 1, . . . , n.
(b) If fn ∈ BC(K) are such that µ(fn) → 1 then fn(ki) → sign(αi),

i = 1, . . . , n.

Proof of Theorem 3.1. By Remark 1.6(a), PY is uHsc. Thus by Re-
mark 1.6(b) we only need to show that PY is lHsc. Also, scaling by the
norm of z ∈ X, it is evident that PY is lHsc at z if and only if PY is lHsc at
every x ∈ D(Y ).

Let x ∈ D(Y ). Since Y is strongly proximinal it follows from Corol-
lary 2.3 that Y ⊥ ⊆ QP-points of C(K)∗. By Proposition 1.4, Y ⊥ is polyhe-
dral. Thus Lemma 3.3 implies there exists a maximal linearly independent
set {µ1, . . . , µm} ⊆ SY ⊥ , 1 ≤ m ≤ n, such that x is an m-corner point
with respect to {µ1, . . . , µm}. By Theorem 3.4, it is enough to prove that
Qµ1,...,µm is lHsc at x.

By Theorem 2.1, for each j = 1, . . . ,m, supp(µj) is a finite set, say⋃m
j=1 supp(µj) = {k1, . . . , kl}. For each i = 1, . . . , l, we choose a neighbor-

hood θi of ki such that θi ∩ θj = ∅, i 6= j.

Let ε > 0 be given and xn ∈ D(Y ) with xn → x. Suppose y ∈
Qµ1,...,µm(x). We need to produce an n0 such that for n ≥ n0, there ex-
ists vn ∈ Qµ1,...,µm(xn) such that ‖vn − y‖ < ε.

Since Qµ1,...,µm(x) =
⋂m
i=1 JC(K)(x), it follows from Lemma 3.5 that if

ki ∈ supp(µj) for some j = 1, . . . ,m then y(ki) = sign(µj(ki)).

Fix zn ∈ Qµ1,...,µm(xn). Since xn → x, we have µj(zn)→ 1, j = 1, . . . ,m.
Thus by Lemma 3.5, there exists n0 such that |zn(ki)− sign(µj)(ki)| < ε/2
whenever ki ∈ supp(µj).

We define further neighborhoods Bi of ki as follows:

Bi =

{
θi ∩ {s ∈ K : y(s) > 1− ε} if y(ki) = 1,

θi ∩ {s ∈ K : y(s) < −1 + ε} if y(ki) = −1.

Let v′n ∈ BC(K) be such that

v′n(k) =

{
zn(k) if k ∈ {k1, . . . , kl},
y(k) if k ∈ K \⋃n

i=1 Bi.

Then set

v′′n = v′n ∧ (y + ε) and vn = v′′n ∨ (y − ε).
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Then vn(ki) = xn(ki) and by construction vn ∈ Qµ1,...,µm(xn). Also, it is
straightforward to verify that ‖vn − y‖ < ε for n > n0. This completes the
proof.

Remark 3.6. Recall that a proximinal subspace Y of X is called a
Chebyshev subspace if PY (x) is single-valued for each x ∈ X. Clearly, if Y
is a Chebyshev subspace of X then the Hausdorff metric continuity of PY
amounts to the continuity of PY in the usual sense. R. R. Phelps in [13]
constructed a Chebyshev subspace Y in C(K) with codim Y = 2 for some
extremally disconnected compact Hausdorff space K. However, a result of
P. D. Morris (see [12, Theorem 4]) states that if Y is a Chebyshev subspace of
finite codimension greater than one in C(K), then PY cannot be continuous.
Thus the strong proximinaliy condition in Theorem 3.1 cannot be replaced
by Y being proximinal (even Chebyshev) in C(K).

Our next application of Theorem 2.1 is to show that strong proximinality
is transitive for finite-codimensional subspaces of C(K). We begin by the
following lemma which is a simple consequence of the definition of an SSD-
point in terms of one-sided differentiability mentioned in the introduction.

Lemma 3.7. Let Y and Z be two closed subspaces of a Banach space X
such that X = Y ⊕`1 Z and x ∈ X. Let x = y + z where y ∈ Y, z ∈ Z.
Then x is an SSD-point in X if and only if both y and z are SSD-points in
the respective subspaces.

Proposition 3.8. Let Y be a strongly proximinal subspace of finite codi-
mension in C(K). Suppose µ ∈ C(K)∗ attains its norm on Y and µ|Y = F
is an SSD-point of Y ∗. Then µ is an SSD-point of C(K)∗.

Proof. Suppose the codimension of Y is n and µ1, . . . , µn spanY ⊥.
By Theorem 2.1, supp(µi) is a finite set for every i, 1 ≤ i ≤ n. So
D =

⋃n
i=1 supp(µi) is finite.

Let J = {h ∈ C(K) : h|D = 0}. Then J is an M -ideal of finite codimen-
sion in C(K). Observe that J ⊆ Y ⊆ C(K) and by [9, Corollary I.1.19], J is
an M -ideal in Y as well.

By [9, Example I.1.4(a)], there exists a subspace N ⊆ C(K)∗ isometric
to J∗ such that C(K)∗ = J⊥⊕`1 N . Similarly, we can write Y ∗ = J⊥1 ⊕`1 M
where J⊥1 is J⊥ for J considered as a subspace of Y , andM ⊆ Y ∗ is isometric
to J∗.

We write F = F1 +F2, where F1 ∈ J⊥1 , F2 ∈M . Since F is an SSD-point
of Y ∗, by Lemma 3.7, F1, F2 are SSD-points in the respective summands.
Since SSD-points of a dual Banach space are norm attaining (see [6]), it
follows that F2 attains its norm on J .
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Now write µ = µ1 + µ2 where µ1 ∈ J⊥, µ2 ∈ N . The support of µ1 is
contained in D, and thus µ1 is finitely supported. Hence by Theorem 2.1,
µ1 is an SSD-point of J⊥. It remains to show that µ2 is an SSD-point in N .
Without loss of generality we assume ‖µ2‖ = 1. Since µ2|J = F2|J , µ2|J
attains its norm on J .

If µ2 is not an SSD-point of N , then there exist ε > 0 and νn ∈ C(K)∗

with ‖νn‖ = ‖νn|J‖ = 1 and hn ∈ J such that ‖νn − µ2‖ → 0, νn(hn) = 1
but dist(hn, {x ∈ J : µ2(x) = 1}) ≥ ε for all n.

But µ2(x) = F2(x) for all x ∈ J and ‖νn|Y − F2‖ → 0. Thus
dist(hn, {x ∈ J : F2(x) = 1}) ≥ ε for all n. This contradicts F2 being
an SSD-point in M .

Corollary 3.9. Let Y ⊆ C(K) be a subspace of finite codimension
and M a subspace of C(K) such that Y ⊆ M ⊆ C(K). If Y is strongly
proximinal in M and M is strongly proximinal in C(K), then Y is strongly
proximinal in C(K). In other words, strong proximinality is transitive for
finite-codimensional subspaces of C(K).

Proof. Considering Y as a subspace of M , by Proposition 1.3, we know
that Y ⊥ is contained in the set of SSD-points of M ∗. Since M is strongly
proximinal, by Proposition 3.8, Y ⊥ is contained in the set of SSD-points of
C(K)∗. The conclusion follows from Corollary 2.3.
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