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Abstract. In this paper, we consider farthest points and the farthest distance

map of a closed bounded set in a Banach space. We show, inter alia, that

a strictly convex Banach space has the Mazur-like intersection property for

weakly compact sets if and only if every such set is the closed convex hull of

its farthest points, and recapture a classical result of Lau in a broader set-up.

We obtain an expression for the subdifferential of the farthest distance map in

the spirit of Preiss’ Theorem which in turn extends a recent result of Westphal

and Schwartz, showing that the subdifferential of the farthest distance map

is the unique maximal monotone extension of a densely defined monotone

operator involving the duality map and the farthest point map.

1. Introduction

We work with real scalars. The closed unit ball and the unit sphere of a Ba-
nach space X will be denoted by B(X) and S(X) respectively. Our notations are
otherwise standard. Any unexplained terminology can be found in [3].

For a closed and bounded set K in a Banach space X, the farthest distance
map rK is defined as rK(x) = sup{‖z − x‖ : z ∈ K}, x ∈ X. For x ∈ X, we
define the farthest point map as QK(x) = {z ∈ K : ‖z − x‖ = rK(x)}, i.e.,
the set of points of K farthest from x. Note that this set may be empty. Let
D(K) = {x ∈ X : QK(x) 6= ∅}. The set of farthest points of K will be denoted
by far(K), i.e., far(K) = ∪{QK(x) : x ∈ D(K)}. Call a closed and bounded set K

densely remotal if D(K) is norm dense in X.
We say that a Banach space X has the Mazur Intersection Property (MIP) if

every closed bounded convex set in X is the intersection of closed balls containing
it. The MIP is a well studied notion in geometry of Banach space and several au-
thors have studied Mazur-like intersection properties for different families of closed
bounded convex sets. See [1, 2] and references thereof for a survey and unified
treatments. However, no complete characterization is available, in particular, for
every weakly compact convex set in X to be intersection of balls.
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Lau [7, Theorem 3.3] had shown that a reflexive Banach space X has the MIP
if and only if every closed bounded convex set in X is the closed convex hull of
its farthest points. In Section 2, we show that in a strictly convex Banach space
X, every weakly compact convex set is intersection of balls if and only if every
such set is the closed convex hull of its farthest points. Similar conclusions hold
for compact convex sets, compact convex sets of finite affine dimension. And if X

has the Radon-Nikodým Property (RNP), then similar result holds for w*-compact
convex sets in X∗.

For a closed and bounded set K ⊆ X, x ∈ X and α > 0, a crescent of K

determined by x and α is the set C(K, x, α) = {z ∈ K : ‖z − x‖ > rK(x)− α}.
The simple but crucial observation in proving the main result in our next section

is that for each of the above mentioned families of sets, every crescent of such a set
contains a farthest point of the set. This also gives Lau’s result in [7, Theorem 3.3]
as an obvious corollary.

Recall that the subdifferential of a convex function φ : X → R at x ∈ X is

∂φ(x) = {x∗ ∈ X∗ : x∗(y − x) ≤ φ(y)− φ(x) for all y ∈ X}.

The subdifferential of the function φ(x) = 1
2‖x‖

2 is referred to as the duality map
on X and is denoted by D.

Since rK is a continuous convex function, ∂rK is a maximal monotone operator
defined on X. In [9, Proposition 4.3], the authors showed that if X is a reflexive
Banach space with X∗ Fréchet smooth, then for a closed bounded set K, ∂rK is
the unique maximal monotone extension of D I−QK

rK
and for each x ∈ X,

(1) ∂rK(x) =
⋂
δ>0

co{D I −QK

rK
(y) : ‖y − x‖ < δ}.

Note that this is actually the Preiss’ Theorem (see [8]) for ∂rK .
For a nonreflexive space, such a statement needs qualification as D I−QK

rK
(y) may

be empty for some y. Nonetheless, even in nonreflexive spaces, for a densely remotal
set K (e.g., K weakly compact), D I−QK

rK
is a well-defined monotone operator with

dense domain. We show that if X is LUR, then ∂rK remains the unique maximal
monotone extension of D I−QK

rK
and an analogue of (1) is available where we need to

take the w*-closure and choose y from the set D1(K) defined below. We believe this
provides with the only version of the Preiss’ Theorem for ∂rK is the non reflexive
case.

Let x ∈ X and k ∈ QK(x). We say x ∈ D1(K) if k is contained in crescents of K,
determined by x of arbitrarily small diameter. It is easy to note that if x ∈ D1(K),
then QK(x) is nevessarily singleton.



FARTHEST POINTS AND THE FARTHEST DISTANCE MAP 3

2. Intersection of Balls and Farthest Points

Here is the main theorem of this section. As mentioned in the introduction, this,
in particular, gives the only known characterization of when every weakly compact
convex set in X is intersection of balls.

Theorem 2.1. (a) If X is a strictly convex Banach space and C is one of
the following families of sets,
(i) K = {all compact convex sets in X}.

(ii) F = {all compact convex sets in X with finite affine dimension}.
(iii) W = {all weakly compact convex set in X}.
then every K ∈ C is intersection of balls if and only if every K ∈ C is the
closed convex hull of its farthest points.

(b) If X has the RNP, then X∗ has the w*-MIP if and only if every w*-
compact convex set in X∗ is the w*-closed convex hull of its farthest points.

(c) [7] If X is reflexive, then X has the MIP if and only if every closed
bounded convex set in X is the closed convex hull of its farthest points.

Proof. (a) We give the proof for the family W of weakly compact sets. The same
proof works in the other cases too.

Necessity : Let K ∈ W and thus by [7, Theorem 2.3], K is densely remotal. We
claim every crescent of K contains a farthest point of K.

To see this, let C(K, x, α) be any crescent of K, Choose ε such that 0 < εα/2
and then take β such that 0 < β < α − 2ε. Since K is densely remotal, there
exists y ∈ D(K) such that ‖x − y| < ε. Then C(K, y, β) ⊆ C(K, x, α) and clearly
QK(y) ⊆ C(K, y, β).

Now let L = co(far(K)). Suppose K \ L 6= ∅. Then L is the intersection of balls
containing it as well and hence there exists a crescent C of K disjoint from L. By
above obsevation C ∩ far(K) 6= ∅. But, of course, far(K) ⊆ L. This proves the
necessity.

Sufficiency : Suppose there exists K ∈ W that is not intersection of balls. Let
K̃ = ∩{B : B is a closed ball and K ⊆ B}. Let x0 ∈ K̃ \K. Choose y0 ∈ K and
0 < λ < 1 such that z0 = λx0 + (1− λ)y0 /∈ K.

Let K1 = co(K ∪ {z0}). Then K1 ∈ W. We will show that far(K1) ⊆ K, and
hence, K1 6= co(far(K1)).

Let x ∈ X. Then K̃ ⊆ {u ∈ X : ‖u−x‖ ≤ rK(x)}. Note that rK(x) ≤ rK1(x) ≤
r eK(x) = rK(x). Clearly, z0 as well as any point of the form

(2) v = αz0 + (1− α)z, α ∈ (0, 1], z ∈ K,
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are not extreme points of K̃, and since X is strictly convex, they are not farthest
points as well. Therefore, ‖v − x‖ < rK(x). Thus, QK1(x) ⊆ K. Since x ∈ X was
arbitrary, far(K1) ⊆ K.

(b) If X has the RNP, by [4, Proposition 3], each w*-compact set K ⊆ X∗ is
densely remotal. Thus, necessity can be proved as in (a).

For sufficiency, note that if there exists a w*-compact set K that is not in-
tersection of balls, since K = ∩λ>0[K + λB(X∗)], passing to some K + λB(X∗)
if necessary, we may assume that K has nonempty interior. Now if we choose
y0 ∈ int(K), then z0 and any point of the form (2) are interior points of K̃, and
hence the result follows as before. �

The following observation is immediate from the above arguments.

Proposition 2.2. Every closed bounded convex set in X is the closed convex hull
of its farthest points if and only if

(a) X has the MIP; and
(b) for every closed bounded convex set K ⊆ X and every closed ball B with
K \B 6= ∅, K \B contains a farthest point of K.

Note that the proof of Theorem 2.1 shows that if K is densely remotal, then K

satisfies (b) above. Following example shows that we cannot dispense with (b).

Example 2.3. The space c0 has a strictly convex Fréchet differentiable renorming
[3, Theorem 7.1 (ii)] which, thus, has the MIP. However, since the unit ball of the
usual norm on c0 lacks extreme points, it must lack farthest points in the new norm.

Remark 2.4. This also shows that even if X∗ has the RNP, there may exist a closed
bounded convex set in X with far(K) = ∅ (Compare this with [4, Proposition 3]).

Observe that since the bidual of a space with the MIP has the w*-MIP, Theo-
rem 2.1(b) shows that every w*-compact convex set in `∞, with the bidual of the
above norm, is the w*-closed convex hull of its farthest points. Thus, there is a
closed bounded convex set K ⊆ c0, such that no farthest point of the w*-closure of
K in X∗∗ comes from K.

3. The Farthest Distance Map

We begin by collecting some simple properties of the set D1(K). Recall that a
sequence {zn} ⊆ K is called a maximizing sequence for x if ‖x− zn‖ −→ rK(x).

Proposition 3.1. Let K be closed bounded set in a Banach space X.
(a) x ∈ D1(K) if and only if any maximizing sequence for x converges.
(b) If x ∈ D1(K), then QK is single valued and continuous at x and QK(x)
is a strongly exposed point of K.



FARTHEST POINTS AND THE FARTHEST DISTANCE MAP 5

(c) D1(K) is a Gδ in X.

The following proposition shows that any discussion on D1(K) naturally require
some convexity conditions on the norm.

Proposition 3.2. (a) A Banach space X is strictly convex if and only if
for every compact set K and k ∈ far(K), there exists x ∈ D1(K), such that
QK(x) = {k}.

(b) A Banach space X is LUR if and only if for every closed bounded set K

and k ∈ far(K), there exists x ∈ D1(K), such that QK(x) = {k}.

Proof. (a) Let K be a compact set in a strictly convex Banach space X. Let
k ∈ far(K). Then, k ∈ QK(x) for some x ∈ D(K). Let t > 1. Strict convexity of
the norm shows that for y = k + t(x− k), QK(y) = {k}. Now compactness shows
that y ∈ D1(K).

Conversely, if X is not strictly convex, there exists x, y ∈ S(X) such that the line
segment [x, y] ⊆ S(X). Clearly, K = [x, y] is compact and K ⊆ QK(0). But any
point of the open segment (x, y) cannot be strongly exposed and therefore, cannot
be in the set QK(D1(K)).

(b) Observe that S(X) ⊆ QB(X)(0). For any x ∈ S(X) and any sequence
{xn} ⊆ B(X) that is maximizing for −x, we have ‖x + xn‖ → 2. So if X is LUR,
xn → x. Thus −x ∈ D1(B(X)) and x ∈ QB(X)(−x). Now for a closed bounded
set K ⊆ X and k ∈ far(K), get x ∈ D(K) such that k ∈ QK(x), and apply this
argument with suitable translation and scaling to the ball B[x, rK(x)].

To prove the converse, let K = B(X). Then, S(X) = far(B(X)). So by the
hypothesis, it follows that every point in S(X) is a strongly exposed point of B(X),
and therefore, X is strictly convex.

Now let x0 ∈ S(X). By hypothesis, there exists x ∈ D1(B(X)) such that
QK(x) = {x0}. Then ‖x−x0‖ = rB(X)(x) = 1+‖x‖. By strict convexity, it follows
that x = αx0 for some α ∈ R and |α− 1| = 1 + |α|. Therefore, α < 0.

To show X is LUR, let {xn} ⊆ B(X) be such that ‖xn + x0‖ → 2. For each n

consider the function on (0, 1),

fn(λ) = 1− ‖λxn + (1− λ)x0‖

Then for all λ ∈ (0, 1), fn(λ) ≥ 0. And by triangle inequality,

2fn(1/2) ≥ fn(λ) + fn(1− λ) ≥ fn(λ) ≥ 0

By assumption, fn(1/2) → 0. Thus, for any λ ∈ (0, 1), fn(λ) → 0. In particular,
putting λ = 1/(1− α), we get ‖xn − αx0‖ → (1− α), that is {xn} is a maximizing
sequence for x = αx0. Hence, xn → x0. �

The following two lemmas are crucial in proving our main theorem of this section.
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Lemma 3.3. Suppose X is LUR and K ⊆ X is densely remotal. Then D1(K) is
a dense Gδ in X.

Proof. By Proposition 3.1(d), it suffices to show that D1(K) is dense in X.
Let x ∈ D(K). Get k ∈ QK(x). 0 < ε < 1. Let y = k + (1 + ε)(x − k).

Then, ‖x− y‖ = εrK(x). It is easy to see that rK(y) = (1 + ε)rK(x) and by strict
convexity, k is a unique farthest point from y.

We now claim y ∈ D1(K). Let {zn} ⊆ K be a maximizing sequence for y. That
is, ‖zn − y‖ → (1 + ε)rK(x). Then,∥∥∥∥ (zn − x) + ε(k − x)

(1 + ε)

∥∥∥∥ → rK(x)

Then yn = (zn − x)/rK(x) ∈ B(X), y0 = (k − x)/rK(x) ∈ S(X), and for
λ = 1/(1+ε), we have ‖λyn +(1−λ)y0‖ → 1. Notice that since ε < 1, 1/2 < λ < 1.
As in the proof of Proposition 3.2(b), let fn(λ) = 1−‖λyn+(1−λ)y0‖. By convexity
of the norm,

fn(λ) ≥ (2− 2λ)fn(1/2) ≥ 0

Since fn(λ) → 0, we have that fn(1/2) → 0, that is, ‖yn + y0‖ → 2. Since X is
LUR, yn → y0 and hence, zn → k. �

Remark 3.4. It follows that for any weakly compact set K in a LUR Banach
space, D1(K) is a dense Gδ in X. So our result is more general than [5, Corollary
2.8], where it is proved that if the norm on X∗ is Fréchet differentiable, then for
any closed and bounded subset K ⊆ X, D1(K) is residual.

Lemma 3.5. Let x ∈ D1(K). Then, ∂rK(x) = D I−QK

rK
(x).

Moreover, rK is Gâteaux (resp. Fréchet) differentiable at x if and only if the
norm is Gâteaux (resp. Fréchet) differentiable at x−QK(x).

Proof. Let QK(x) = {k} and x∗ ∈ D( x−k
rK(x) ). Then x∗(x− k) = rK(x). For z ∈ X,

x∗(z − x) = x∗(z)− x∗(k)− rK(x) ≤ rK(z)− rK(x). Thus x∗ ∈ ∂rK(x).
Conversely, let x∗ ∈ ∂rK(x). Since D I−QK

rK
(x) is a w*-closed convex subset of

S(X∗), it is enough to show that for any z ∈ S(X), there is an x∗0 ∈ D
I−QK

rK
(x)

such that x∗(z) ≤ x∗0(z).
Let {kn} ⊆ K be such that ‖x + z/n − kn‖ > rK(x + z/n) − 1/n2. Then {kn}

is a maximizing sequence for x, and hence, kn → k. Now

x∗(
z

n
) = x∗(x +

z

n
)− x∗(x) ≤ rK(x +

z

n
)− rK(x) < ‖x +

z

n
− kn‖ − rK(x) +

1
n2

.

Choose x∗n ∈ D(x + z/n− kn). Then

x∗n(
z

n
) = x∗n(x +

z

n
− kn)− x∗n(x− kn) ≥ ‖x +

z

n
− kn‖ − rK(x).
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Combining the two, we have x∗(z) ≤ x∗n(z) + 1/n. Let x∗0 be a w*-cluster point of
{x∗n}. Since x + z/n− kn converges to x− k in norm, we have x∗0 ∈ D

I−QK

rK
(x) and

x∗(z) ≤ x∗0(z), as desired.
Thus, the norm is Gâteaux differentiable is at x− k ⇔ D( x−k

rK(x) ) is singleton ⇔
so is ∂rK(x) ⇔ rK is Gâteaux differentiable at x.

Now, let {x∗} = ∂rK(x) = D( x−k
rK(x) ). For any λ ∈ R and z ∈ B(X), x∗(λz) ≤

‖x + λz − k‖ − ‖x− k‖ ≤ rK(x + λz)− rK(x). Therefore,∣∣∣∣‖x + λz − k‖ − ‖x− k‖
λ

− x∗(z)
∣∣∣∣ ≤ ∣∣∣∣rK(x + λz)− rK(x)

λ
− x∗(z)

∣∣∣∣ .

Thus, Fréchet differentiability of rK at x implies that of the norm at x− k.
Conversely, let the norm be Fréchet differentiable at x − k. Let xn → x,

x∗n ∈ ∂rK(xn) and x∗ ∈ ∂rK(x), then {x∗n} ⊆ B(X∗) and since rK is Gâteaux
differentiable at x, x∗n → x∗ in the w*-topology. Since x∗ ∈ D I−QK

rK
(x), x∗ is a

w*-norm point of continuity of B(X∗), and therefore, x∗n → x∗ in norm. It follows
that rK is Fréchet differentiable at x. �

Remark 3.6. [5, Theorem 3.2(a)] proves only the “necessity” part of this result.
Our proof is also simpler.

Combining Lemma 3.5 with Lemma 3.3, it follows that in a Banach space with
smooth LUR norm, the farthest distance map rK of a densely remotal set K is
Gâteaux differentiable on a dense Gδ.

We now state the main theorem of this section. This gives an expression for ∂rK

in the spirit of Preiss’ Theorem [8]. Note that our result does not need smoothness
of the norm and with (Fréchet) smoothness, by Theorem 3.5, we get back Preiss’
Theorem for ∂rK .

Theorem 3.7. Let K be such that D1(K) is dense in X and x ∈ X. Then

∂rK(x) =
⋂
δ>0

co∗{∂rk(y) : y ∈ D1(K) and ‖y − x‖ < δ}.

Proof. Let x∗ ∈ RHS and ε > 0. Choose δ < ε/3. For z ∈ X, choose y ∈ D1(K)
and y∗ ∈ ∂rK(y) such that ‖y − x‖ < δ and x∗(z − x) < y∗(z − x) + δ. Thus,

x∗(z − x) < y∗(z − x) + δ = y∗(z − y) + y∗(y − x) + δ ≤ rK(z)− rK(y) + 2δ

≤ rK(z)− rK(x) + 3δ ≤ rK(z)− rK(x) + ε.

Since ε is arbitrary, we have x∗ ∈ ∂rK(x).
Conversely, let x∗ ∈ ∂rK(x). As in Lemma 3.5, we will show given any z ∈ S(X)

there is an x∗0 ∈ RHS such that x∗(z) ≤ x∗0(z).
For each n, get yn ∈ D1(K) such that ‖x + z/n− yn‖ < 1/n2. Then

x∗(
z

n
) ≤ rK(x +

z

n
)− rK(x) ≤ rK(yn)− rK(yn −

z

n
) +

2
n2

.
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Let x∗n ∈ ∂rK(yn). Let kn ∈ QK(yn). Then

x∗n(
z

n
) = x∗n(yn − kn)− x∗n(yn −

z

n
− kn) ≥ rK(yn)− rK(yn −

z

n
).

Thus x∗(z) ≤ x∗n(z) + 2/n. Let x∗0 be a w*-cluster point of x∗n. Then x∗0 ∈ RHS

and x∗(z) ≤ x∗0(z). �

Combining the Lemma 3.3, Lemma 3.5 and Theorem 3.7 we obtain the following:

Corollary 3.8. Suppose K is a densely remotal set in a LUR Banach space X.
Then ∂rK is the unique maximal monotone extension of the densely defined mono-
tone operator D I−QK

rK
and for each x ∈ X, we have,

∂rK(x) =
⋂
δ>0

co∗{D I −QK

rK
(y) : y ∈ D1(K) and ‖y − x‖ < δ}.

Remark 3.9. In [9, Proposition 4.3] obtained the similar conclusion for reflexive
Banach spaces with X∗ Fréchet smooth.

We end this section with a result on range of ∂rK . Compare this with [9,
Theorem 4.2].

Theorem 3.10. Let X be a smooth (resp. Fréchet smooth) Banach space. Let
K ⊆ X be a closed and bounded set such that D1(K) is dense in X, then the image
of D1(K) under ∂rK is w*-dense (resp. norm dense) in S(X∗).

Proof. Let NA(X) denote the set of norm attaining functionals in S(X∗). By
Bishop-Phelps Theorem, NA(X) is norm dense in S(X∗). Let x∗0 ∈ NA(X) and
x0 ∈ S(X) such that x∗0(x0) = 1. By density of D1(K), choose xn ∈ D1(K) such
that ‖xn − nx0‖ < 1/n and let x∗n ∈ ∂rK(xn). Then ‖xn‖ → ∞. Therefore, by [9,
Lemma 4.1], lim x∗n(xn/‖xn‖) = lim ‖x∗n‖ = 1. But since xn/‖xn‖ → x0 in norm,
x∗n(x0) → 1 as well. Thus, any w*-cluster point of {x∗n} is in D(x0). Since the norm
is smooth, this set is singleton. Hence, x∗n → x∗0 in w*-topology.

Now, if the norm on X is Fréchet smooth, then x∗0 chosen above is a w*-norm
point of continuity of B(X∗). Thus ∂rK(D1(K)) is norm dense in S(X∗). �
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