ALMOST CONSTRAINED SUBSPACES OF BANACH SPACES - II

PRADIPTA BANDYOPADHYAY AND S. DUTTA

Abstract

A subspace Y of a Banach space X is an almost constrained $(A C)$ subspace of X if any family of closed balls centred at points of Y that intersects in X also intersects in Y. In this paper, we show that a subspace H of finite codimension in the space $C(K)$ of continuous functions on a compact Hausdorff space K is an $A C$-subspace if and only if H is the range of a norm one projection in $C(K)$. We also give a simple proof that the implication " $A C \Rightarrow 1$-complemented" holds for any subspace of the spaces $c_{0}(\Gamma)$ and c.

1. Introduction

Let X be a Banach space over real or complex scalars. A closed subspace Y of X is called 1-complemented or constrained if it is the range of a norm 1 projection on X.

Definition 1.1. [1, 2] A subspace Y of X is an almost constrained ($A C$) subspace of X if any family of closed balls centred at points of Y that intersects in X also intersects in Y.

Clearly, any 1-complemented subspace is an $A C$-subspace. In this paper, we continue our study [2] of the converse. As observed in [2, Example 2.6], the converse is not true in general, even for finite codimensional subspaces. In [2], working with real scalars, we obtained sufficient conditions for the converse to hold. But it remains an open question for X in its bidual $X^{* *}$ (see [7]).

In two recent preprints [10, 11], using different terminology, it has been shown that the converse holds for any subspace of the real sequence spaces

[^0]c_{0}, c, ℓ_{1}, the Lorentz sequence space $d(\omega, 1)$ and some subspaces of MusielakOrlicz sequence spaces equipped with the Luxembourg norm.

Let $C(K)$ denote the Banach space of all scalar-valued continuous functions on a compact Hausdorff space K with the supremum norm. And let $C_{0}(S)$ denote the Banach space of all scalar-valued continuous functions "vanishing at infinity" on a locally compact Hausdorff space S with the supremum norm. In this paper, we show in particular that, irrespective of the scalar field, an $A C$-subspace of finite codimension in $C(K)\left(\right.$ or $C_{0}(S)$) is 1-complemented. Our proof also leads to an explicit description of such a subspace in terms of the measures defining it. In particular we show

Theorem 1.2. Let H be a subspace of codimension n of $C(K)$. The following are equivalent :
(a) H is an $A C$-subspace.
(b) H is 1-complemented in $C(K)$.
(c) There exist measures $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ and distinct isolated points $\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$ of K such that
(i) $H=\bigcap_{i=1}^{n} \operatorname{ker} \mu_{i}$.
(ii) $2\left|\mu_{i}\left(\left\{k_{i}\right\}\right)\right| \geq\left\|\mu_{i}\right\|, i=1,2, \cdots, n$.

In [12, 13], 1-complemented subspaces of real $C(K)$ spaces have been characterized as being isometric to some $C(S)$ space. In [5, Theorem 1 and Proposition 1.11], for real or complex scalars, the general form of norm 1 projections onto subspaces of $C_{0}(S)$ is obtained in terms of a simultaneous extension operator E and some restriction operator Q, where S is locally compact Hausdorff space. Thus, our result is in a different direction, more in the line of [4]. Moreover, these results do not help in proving $(a) \Rightarrow(b)$ above. It would be interesting to see if one can characterize general $A C$ subspaces of $C_{0}(S)$ in the framework of [5].

Our technique also yields a simple proof that the converse holds for any subspace of the spaces $c_{0}(\Gamma)$ and c.

As in [2], an important tool in our study is the ortho-complement of a subspace Y in X.

Definition 1.3. (a) [9] Let X be a Banach space and $x, y \in X$. We say y is orthogonal to x (written $y \perp x$) in the sense of Birkhoff, if $\|y\| \leq\|\alpha x+y\|$ for every scalar α.
(b) [1] Let Y be a subspace of X. The ortho-complement of Y in X is defined as

$$
\begin{gathered}
\qquad O(Y, X)=\{x \in X: y \perp x \text { for all } y \in Y\} \\
\text { or, equivalently } O(Y, X)=\{x \in X:\|x+y\| \geq\|y\| \text { for all } y \in Y\} \text {. }
\end{gathered}
$$

As noted in [2], Y is an $A C$-subspace of X if and only if $X=Y+O(X, Y)$. On the other end of the spectrum are what we called very nonconstrained $(V N)$ subspaces in [1], where other equivalent formulations can be found.

Definition 1.4. [1] Y is said to be a very non-constrained $(V N-)$ subspace of X if $O(Y, X)=\{0\}$.

Thus a proper subspace cannot be simultaneously $V N$ - as well as $A C$ subspace.

The results of this paper hold for both real and complex scalars. For this purpose, we first show that the results from $[1,2]$ that we need here are scalar independent. In particular, in Section 2, we begin by characterizing $O(Y, X)$. We give a necessary condition for a subspace H of $C(K)$ to be a $V N$-subspace. If H is weakly separating in $C(K)$ (see Definition 2.4), this condition is also sufficient. However, it is not sufficient in general.

In Section 3, we prove our main result, Theorem 1.2. As a corollary, we have that if K has at most n isolated points, $n=0,1, \ldots$, then there is no $A C$-subspace of codimension $n+1$ in $C(K)$.

For a Banach space X, we will denote by B_{X} and S_{X} respectively the closed unit ball and the unit sphere of X. All subspaces we consider are norm closed. For a closed bounded convex set C, $\operatorname{ext} C$ denotes the set of extreme points of C. For $y^{*} \in Y^{*}$, the set of all Hahn-Banach (i.e., normpreserving) extension of y^{*} to X is denoted by $\operatorname{HB}_{X}\left(y^{*}\right)$. We will omit the subscript when the space is understood. We will denote by T the set of scalars of modulus 1 , i.e., $T=\{-1,1\}$ in the real case and $T=$ the unit circle in the complex case. Our notations are otherwise standard and can be found in [8].

2. $V N$-SUBSPACE OF $C(K)$

We begin by characterizing elements of $O(Y, X)$. This is a variant of [1, Lemma 2.10] and [2, Lemma 3.14] with a simpler proof that works for both real and complex scalars.

Definition 2.1. (a) A set $B \subseteq S_{X^{*}}$ is a norming set for X if for every $x \in X, \sup _{x^{*} \in B}\left|x^{*}(x)\right|=\|x\|$.
(b) A set $B \subseteq S_{X^{*}}$ is a boundary for X if for every $x \in X$, there exists $x^{*} \in B$ such that $\left|x^{*}(x)\right|=\|x\|$.

Lemma 2.2. Let Y be a subspace of a Banach space X. For $x \in X$, the following are equivalent :
(a) $x \in O(Y, X)$
(b) For every $y^{*} \in S_{Y^{*}}$, there exists $x^{*} \in H B\left(y^{*}\right)$ such that $x^{*}(x)=0$.
(c) $S_{\left.\operatorname{ker} x\right|_{Y}}$ is a boundary for Y.
(d) $S_{\left.\mathrm{ker} x\right|_{Y}}$ is a norming set for Y.

Proof. $(a) \Rightarrow(b)$. Given $y^{*} \in S_{Y^{*}}$, define z^{*} on $Z=\operatorname{span}(Y \cup\{x\})$ as

$$
z^{*}(y+\alpha x)=y^{*}(y), \quad y \in Y, \alpha \text { scalar }
$$

Clearly, $\left.z^{*}\right|_{Y}=y^{*}$ and $z^{*}(x)=0$. Moreover, since $x \in O(Y, X),\left\|z^{*}\right\|=1$. Thus, any $x^{*} \in \operatorname{HB}\left(z^{*}\right)$ works.
$(b) \Rightarrow(c) \Rightarrow(d)$ is clear.
$(d) \Rightarrow(a)$. Suppose $S_{\text {ker }\left.x\right|_{Y}}$ is a norming set for Y. Then for any $y \in Y$,

$$
\|y\|=\sup _{x^{*} \in S_{\mathrm{ker} x}}\left|x^{*}(y)\right|=\sup _{x^{*} \in S_{\mathrm{ker} x}}\left|x^{*}(x+y)\right| \leq\|x+y\|
$$

Thus $x \in O(Y, X)$.
The following lemma is again adapted from [2, Proposition 3.15]. Let Y be a subspace of a Banach space X. Define,

$$
C=\left\{x^{*} \in S_{X^{*}}: \operatorname{HB}_{X}\left(\left.x^{*}\right|_{Y}\right)=\left\{x^{*}\right\}\right\}
$$

Lemma 2.3. If $\left.C\right|_{Y}$ is a norming set for Y, then $O(Y, X)$ is a closed subspace of X. Hence if Y is in addition assumed to be an $A C$-subspace of X, then Y is complemented by a unique norm one projection in X.

Proof. We claim $C_{\perp}:=\left\{x \in X: x^{*}(x)=0\right.$ for all $\left.x^{*} \in C\right\}=O(Y, X)$.
To see this, let $x \in C_{\perp}$. Then $\operatorname{ker} x \supseteq C$ and hence, $S_{\mathrm{ker}} x_{Y}$ is a norming set for Y. By Lemma 2.2, it follows that $x \in O(Y, X)$. Conversely, if $x \in O(Y, X)$, by Lemma 2.2, it follows that $x^{*}(x)=0$ for every $x^{*} \in C$. Thus $x \in C_{\perp}$.

The rest follows from [2, Proposition 2.2 and 3.7] and these results are easily seen to hold for both real and complex scalars.

For a subspace $H \subseteq C(K)$ which separates points in K, the Choquet boundary of H is defined in [14] as

$$
\partial H=\left\{k \in K: \phi k \in \operatorname{ext} B_{H^{*}}\right\}
$$

where for $k \in K, \phi k \in H^{*}$ is the evaluation functional. This definition coincides with the classical definition of the Choquet boundary when H also contains the constants. In this paper, we will use the same notation even when H does not necessarily separate points of K.

Definition 2.4. [16] A subspace Y of X is said to be weakly separating if Y separates points of the set

$$
D(Y)=\left\{x^{*} \in B_{X^{*}}:\left.x^{*}\right|_{Y} \in \operatorname{ext} B_{Y^{*}}\right\} .
$$

As noted in [16], if $H \subseteq C(K)$ separates points of K and contains the constants, or, if H is a closed ideal in $C(K)$, then H is weakly separating.

We now obtain a necessary condition for a subspace H of $C(K)$ to be a $V N$-subspace.

Proposition 2.5. Let H be a subspace of $C(K)$. If H is $V N$-subspace of $C(K)$ then $\overline{\partial H}=K$. Moreover, if H is weakly separating, the converse is also true.

Proof. Suppose, $\overline{\partial H} \neq K$. We can get an nonzero $f \in C(K)$ such that $\left.f\right|_{\overline{\partial H}}=0$. Since ∂H is a boundary for H, it follows from Lemma 2.2 that $f \in O(H, C(K))$.

For the converse, suppose H is weakly separating.
Claim. If $k \in \partial H, \operatorname{HB}_{C(K)}(\phi k)=\left\{\delta_{k}\right\}$.
Indeed, since $\phi k \in \operatorname{ext} B_{H^{*}}, \operatorname{HB}(\phi k)$ is a face of $B_{C(K)^{*}}$ containing δ_{k}. So if $\operatorname{HB}(\phi k)$ is not a singleton, it contains extreme points of $B_{C(K) *}$ other than δ_{k}. But any such point is of the form $\alpha \delta_{k^{\prime}}$ for some $k^{\prime} \in K$ and $\alpha \in T$. Thus, $\left.\delta_{k}\right|_{H}=\left.\alpha \delta_{k^{\prime}}\right|_{H}$. This contradicts that H is weakly separating.

Now let $f \in O(H, C(K))$. By Lemma 2.2 and the above claim, we have $f(k)=0$ for any $k \in \partial H$. Thus if $\overline{\partial H}=K$, then $f \equiv 0$ and hence, H is a $V N$-subspace of $C(K)$.

Remark 2.6. The proof of the above claim essentially shows that if Y is a weakly separating subspace of X, then $D(Y) \subseteq C$. This is also implicit
in the proof of [16, Lemma 1]. Thus if Y is also an $A C$-subspace, then by Lemma 2.3, it is complemented by a unique norm 1 projection.

As a corollary, we can characterize M-ideals in $C(K)$ which are $V N$ subspaces. Recall that any M-ideal in $C(K)$ is of the form $M=\{f \in$ $\left.C(K):\left.f\right|_{D}=0\right\}$ for some closed set $D \subseteq K$ (see [8, Example 1.4 (a)]) and that such subspaces are weakly separating.

Corollary 2.7. Let $D \subseteq K$ be a closed set. Let $M=\left\{f \in C(K):\left.f\right|_{D}=0\right\}$. Then M is a $V N$-subspace of $C(K)$ if and only if $K \backslash D$ is dense in K.

We now give an example to show that in general the above condition does not ensure that H is a $V N$-subspace of $C(K)$.

Example 2.8. Let X be any Banach space. Let $K=\overline{\operatorname{ext} B_{X^{*}}} w^{*}$. Then X naturally embeds as a point separating subspace of $C(K)$. Clearly we have $\partial X=\operatorname{ext} B_{X^{*}}$ and $\mathbf{1} \notin X$ where $\mathbf{1}$ is the constant function 1 in $C(K)$. Now for $x \in X$, get $x^{*} \in \operatorname{ext} B_{X^{*}}$ such that $x^{*}(x)=-\|x\|$. Then $\|\mathbf{1}-x\|_{\infty} \geq$ $\left|(\mathbf{1}-x)\left(x^{*}\right)\right|=1+\|x\|>\|x\|$. Thus $\mathbf{1} \in O(X, C(K))$ and X is not an $V N$-subspace of $C(K)$.

3. Proof of the Theorem 1.2

Let H be a finite codimensional subspace of $C(K)$. We will need the following result on the size of the set $K \backslash \partial H$. If H separates points, this follows directly from [6, Lemma 5.6, Theorem 7.3], and in the general case, we indicate how to modify the proof of [6].

Proposition 3.1. Let H be a subspace of codimension n in $C(K)$. Then the set $K \backslash \partial H$ contains at most n points.

Proof. (Sketch): We adapt the argument in [6]. First we need a little modification of the proof of [6, Lemma 7.2].

Consider the map $p: T \times K \rightarrow T \phi(K)$ given by $p(\alpha, k)=\alpha \phi k$. We claim p^{-1} admits a Borel measurable selection $s: T \phi(K) \rightarrow T \times K$, i.e., for each $L \in T \phi(K)$, if $s(L)=(\alpha, k)$ then $L=\alpha \phi k$ on H.

To see this, we first define a Borel measurable map $s_{1}: T \phi(K) \rightarrow T$. Let $L \in T \phi(K)$. In the real case, just define $s_{1}(L)=1$ if $L=\phi k$ and $s_{1}(L)=-1$ if $L=-\phi k$. Then s_{1} is continuous.

In the complex case, define,

$$
\theta(L)=\inf \left\{\theta \in[0,2 \pi): e^{-i \theta} L \in \phi(K)\right\}
$$

Then θ is lower semicontinuous, and hence, the map $s_{1}(L)=e^{i \theta(L)}$ is Borel.

We now define a measurable selection π for ϕ^{-1} as follows: First define an equivalence relation on K by letting $k \approx k^{\prime}$ if $h(k)=h\left(k^{\prime}\right)$ for all $h \in H$, or, equivalently, $\phi k=\phi k^{\prime}$. Since $\operatorname{codim}(H)=n$, all equivalence classes are finite and only finitely many are not singletons. For each $k \in K$, choose and fix one element from the equivalence class of k and call it $\pi(k)$.

Then the final map s defined in [6, Lemma 7.2], namely,

$$
s(L)=\left(s_{1}(L), \pi\left(s_{1}(L)^{-1} L\right)\right)
$$

has the desired properties.
Now following [6, Theorem 7.3], for each $L \in S_{H^{*}}$, we can get a regular Borel measure ν on K as follows: By Choquet's Theorem [15], there exists a maximal probability measure λ on $B_{H^{*}}$ whose resultant is L. Since λ is maximal, its support is contained in $T \phi(K)$. Let μ be the probability measure on $T \times K$ induced by s, i.e., $\mu(f)=\lambda(f \circ s)$ for $f \in C(T \times K)$. Now take $\nu=\mathcal{H} \mu$, where \mathcal{H} is the Hustad map of μ defined by

$$
(\mathcal{H} \mu)(g)=\int_{T \times K} \alpha g(k) d \mu(\alpha, k), \quad g \in C(K) .
$$

As in the proof of [6, Theorem 7.3], it is easily verified that ν satisfies,
(i) $\nu=L$ on H.
(ii) $\|\nu\|=\|L\|=1$.
(iii) ν is a boundary measure.

To conclude the proof, if there are $(n+1)$ distinct points $k_{1}, k_{2}, \ldots, k_{n+1} \in$ $K \backslash \partial H$, by the argument above, there exist boundary measures $\nu_{1}, \nu_{2}, \ldots, \nu_{n+1}$ such that the measures $\mu_{i}=\delta_{k_{i}}-\nu_{i} \in H^{\perp}$. Since ν_{i} 's are boundary measures, $\mu_{i}\left(k_{j}\right)=\delta_{i j}$ and hence $\mu_{1}, \mu_{2}, \ldots, \mu_{n+1}$ are linearly independent. This contradicts that the dimension of H^{\perp} is n.

Now we prove our main theorem.
Proof of Theorem 1.2. $(a) \Rightarrow(b)$. Suppose H is of codimension n and is an $A C$-subspace of $C(K)$.

Modifying the definition of \approx used above, let $k \sim k^{\prime}$ if there exists $\alpha \in T$ such that $h(k)=\alpha h\left(k^{\prime}\right)$ for all $h \in H$. Again, since this implies $\delta_{k}-\alpha \delta_{k^{\prime}} \in$ H^{\perp} and $\operatorname{codim}(H)=n$, all equivalence classes are finite and only finitely many are not singletons.

Let $K_{0}=\left\{k \in K: \operatorname{HB}_{C(K)}(\phi k)=\left\{\delta_{k}\right\}\right\}$.
Claim 1. The set $K \backslash K_{0}$ is finite.
By Proposition 3.1, $\left(K \backslash K_{0}\right) \cap(K \backslash \partial H)$ contains at most n points.
Let $k \in \partial H \backslash K_{0}$. Then, $\operatorname{HB}(\phi k)$ is not a singleton and as in the proof of Proposition 2.5 , there exists $k^{\prime} \in K$ such that $k \neq k^{\prime}$ and $k \sim k^{\prime}$. Thus k belongs to an equivalence class that is not singleton. By the observation above, $\partial H \backslash K_{0}$ is finite. This proves the claim.

Now let $I=\{k \in K: f(k) \neq 0$ for some $f \in O(H, C(K))\}$.
If $f \in O(H, C(K))$ and $k \in K_{0}$, then since $\operatorname{HB}(\phi k)=\left\{\delta_{k}\right\}$, by Lemma 2.2, $f(k)=0$. Thus $I \subseteq K \backslash K_{0}$.

Therefore, by the claim above, I is finite and since there are nonzero $f \in O(H, C(K))$, each point of I is an isolated point of K.

Claim 2. If K_{1} is a non-singleton equivalence class, then $K_{1} \backslash I$ is at most singleton.

Let $k_{1}, k_{2} \in K_{1}$. Let $f \in C(K)$ be such that $f\left(k_{i}\right)=i$. Since H is an $A C$-subspace, there is $h \in H$ such that $f-h \in O(H, C(K))$. By definition of $\sim,|h|$ is constant on K_{1}. Thus, $f-h$ cannot be zero at both k_{1} and k_{2}. That is, at least one of them must be in I. Since this is true for any pair of points $k_{1}, k_{2} \in K_{1}$, the claim is proved.

Now, if $K_{1} \backslash I$ is a singleton, call that element k_{0}. Otherwise, choose and fix $k_{0} \in K_{1}$ arbitrarily. By definition, for any $k \in K_{1}$, there exists $\alpha(k) \in T$ such that $\delta_{k_{0}}-\alpha(k) \delta_{k} \in H^{\perp}$. That is, $H \subseteq \cap_{k \in K_{1}} \operatorname{ker}\left[\delta_{k_{0}}-\alpha(k) \delta_{k}\right]$. Let

$$
H_{1}=\bigcap_{K_{1}} \bigcap_{k \in K_{1}} \operatorname{ker}\left[\delta_{k_{0}}-\alpha(k) \delta_{k}\right]
$$

where the intersection is taken over all non-singleton equivalence class K_{1}. In other words, H_{1} is the space of all $g \in C(K)$ such that $g(k)=\alpha(k) g\left(k_{0}\right)$ if $k \in K_{1}$, which is a non-singleton equivalence class, with the above choice of k_{0} and $\alpha(k)$.

Then, $H \subseteq H_{1} \subseteq C(K)$. Therefore, H is an $A C$-subspace of H_{1}.

Claim 3. For any $z^{*} \in \operatorname{ext} B_{H^{*}}, \mathrm{HB}_{H_{1}}\left(z^{*}\right)$ is a singleton. And hence, by Lemma 2.3, there exists a unique norm 1 projection P_{1} from H_{1} onto H.

If $\mathrm{HB}_{C(K)}\left(z^{*}\right)$ is a singleton, nothing to prove.
Suppose $\mathrm{HB}_{C(K)}\left(z^{*}\right)$ is not a singleton. As before, any two extreme points of $\mathrm{HB}_{C(K)}\left(z^{*}\right)$ are \sim-equivalent, and, by definition of H_{1}, they coincide on H_{1}. This proves the claim.

Claim 4. There exists a norm 1 projection P_{2} from $C(K)$ to H_{1}.
Let $f \in C(K)$. Define $P_{2} f$ as follows : If $\{k\}$ is an equivalence class, let $P_{2} f(k)=f(k)$. If $k \in K_{1}$, which is a non-singleton equivalence class, then with the choice of k_{0} and $\alpha(k)$ as above, let $P_{2} f(k)=\alpha(k) f\left(k_{0}\right)$. Since $K_{1} \backslash\left\{k_{0}\right\} \subseteq I$ and each point of I is an isolated point of $K, P_{2} f \in H_{1}$ and the claim is proved.

The composition $P=P_{1} P_{2}$ is a norm 1 projection from $C(K)$ to H.
Remark 3.2. In this entire argument, the finite codimensionality of H is used only to prove the continuity of $\alpha(k)$ on K_{1}. Thus, the same proof goes through for any $A C$-subspace if any point of K_{1} is an isolated point. This is used in Proposition 3.4 below.
$(b) \Rightarrow(a)$ is immediate.
$(b) \Rightarrow(c)$. Now, let P be a norm 1 projection on $C(K)$ with range H. Then ker $P \subseteq O(H, C(K))$ and is of dimension n. Thus we can choose n distinct points $k_{1}, k_{2}, \ldots, k_{n} \in I$ and n linearly independent functions $f_{1}, f_{2}, \ldots, f_{n} \in \operatorname{ker} P$ such that $f_{i}\left(k_{j}\right)=\delta_{i j}$.

Get n measures $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ such that $H=\bigcap_{i=1}^{n}$ ker μ_{i} and $\mu_{i}\left(f_{j}\right)=\delta_{i j}$. Then for any $f \in C(K)$,

$$
P f=f-\sum_{i=1}^{n} \mu_{i}(f) f_{i}
$$

Fix $1 \leq i \leq n$. Let $\mu_{i}\left(\left\{k_{i}\right\}\right)=\beta$, that is, $\mu_{i}=\beta \delta_{k_{i}}+\sigma$.
Now given $\varepsilon>0$, choose $g \in S_{C(K)}$ such that $\|\sigma\|-\varepsilon \leq-\sigma(g)$. Define $g_{1} \in C(K)$ by

$$
g_{1}(k)= \begin{cases}1 & \text { if } k=k_{i} \\ g(k) & \text { otherwise }\end{cases}
$$

Note that $\left\|g_{1}\right\|=1, \mu_{i}\left(g_{1}\right)=\beta+\sigma(g)$, and

$$
\left|P g_{1}\left(k_{i}\right)\right|=\left|g_{1}\left(k_{i}\right)-\mu_{i}\left(g_{1}\right)\right|=|1-(\beta+\sigma(g))| \leq 1 .
$$

Thus, $\operatorname{Re}(\beta)+\sigma(g) \geq 0$ and hence, $\operatorname{Re}(\beta) \geq-\sigma(g) \geq\|\sigma\|-\varepsilon$, or,

$$
2|\beta| \geq|\beta|+\|\sigma\|-\varepsilon=\left\|\mu_{i}\right\|-\varepsilon .
$$

Since ε was arbitrary, we have $2|\beta| \geq\left\|\mu_{i}\right\|$.
$(c) \Rightarrow(b)$. Suppose there exist norm 1 measures $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ and distinct isolated points $\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$ satisfying (i) and (ii). Then $1_{k_{1}}, 1_{k_{2}}, \ldots, 1_{k_{n}} \in C(K)$ and it suffices to show that $\operatorname{span}\left\{1_{k_{i}}: 1 \leq i \leq\right.$ $n\} \subseteq O(H, C(K))$. To see this let $f=\sum_{i=1}^{n} a_{i} 1_{k_{i}}$ where a_{i} 's are scalars. We show that ker f in $C(K)^{*}$ is a boundary for H.

Let $h \in H, h \neq 0$. If there exists $k \in K, k \notin\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$ such that $|h(k)|=\|h\|$, then δ_{k}, which is in ker f, norms h.

So suppose $\{k \in K:|h(k)|=\|h\|\} \subseteq\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$. Without loss of generality, we may assume $\{k \in K:|h(k)|=\|h\|\}=\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}$ for some $m \leq n$.

Let $1 \leq i \leq m$. We decompose μ_{i} in its atomic and non-atomic parts as $\mu_{i}=\lambda_{i}+\nu_{i}$. Let $\lambda_{i}=\sum_{j} \alpha_{i j} \delta_{k_{i j}}$ with $k_{i 1}=k_{i}$. Thus, by (ii), $\left|\alpha_{i 1}\right| \geq 1 / 2$ and $\sum_{j}\left|\alpha_{i j}\right|+\left\|\nu_{i}\right\|=\left\|\mu_{i}\right\|=1$. Note that since $0=\mu_{i}(h)=\lambda_{i}(h)+\nu_{i}(h)$, we have,

$$
\begin{aligned}
\left|\lambda_{i}(h)\right| & =\left|\sum \alpha_{i j} h\left(k_{i j}\right)\right| \geq\left|\alpha_{i 1}\right| \cdot\left|h\left(k_{i 1}\right)\right|-\sum_{j \geq 2}\left|\alpha_{i j}\right| \cdot\left|h\left(k_{i j}\right)\right| \\
& \geq\|h\|\left(\left|\alpha_{i 1}\right|-\sum_{j \geq 2}\left|\alpha_{i j}\right|\right)=\|h\|\left(2\left|\alpha_{i 1}\right|-\sum\left|\alpha_{i j}\right|\right) \\
& \geq\|h\|\left\|\nu_{i}\right\| \geq\left|\nu_{i}(h)\right|=\left|\lambda_{i}(h)\right|
\end{aligned}
$$

Thus equality holds throughout. It follows that if $\lambda_{i}(h)=0$ then $\nu_{i}=0$. Moreover, for all $j,\left|h\left(k_{i j}\right)\right|=\|h\|$. Thus, $\left\{k_{i j}\right\} \subseteq\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}$.

Claim 5. $\lambda_{i}(h) \neq 0$ for some $1 \leq i \leq m$.
If not, let $\lambda_{i}(h)=0$ for every $1 \leq i \leq m$.
Then, for every $1 \leq i \leq m, \mu_{i}$ is of the form $\mu_{i}=\sum_{j=1}^{m} \alpha_{i j} \delta_{k_{j}}$. But $\mu_{1}, \mu_{2}, \ldots, \mu_{m}$ are linearly independent, and $0=\mu_{i}(h)=\sum_{j=1}^{m} \alpha_{i j} h\left(k_{j}\right)$, for every $1 \leq i \leq m$. This implies $h\left(k_{j}\right)=0$, for all $1 \leq j \leq m$. But $\|h\|=\left|h\left(k_{j}\right)\right| \neq 0$. A contradiction that proves the claim.

So let $\lambda_{i_{0}}(h) \neq 0$ for some $1 \leq i_{0} \leq m$. Now, define

$$
\nu_{0}=-\frac{\|h\|}{\lambda_{i_{0}}(h)} \nu_{i_{0}}
$$

Then $\nu_{0}(h)=\|h\|$ and since equality holds above,

$$
\left\|\nu_{0}\right\|=\frac{\|h\|}{\left|\lambda_{i_{0}}(h)\right|}\left\|\nu_{i_{0}}\right\|=1
$$

Further since ν_{0} is a non-atomic measure, $\nu_{0} \in \operatorname{ker} f$, showing that $\operatorname{ker} f$ is a boundary for H.

Remark 3.3. Natural modifications of the proof of $(a) \Rightarrow(b)$ above show that the implication " $A C \Rightarrow$ 1-complemented" also holds for finite codimensional subspaces of $C_{0}(S)$ for a locally compact Hausdorff space S.

Proposition 3.4. In the space c of all convergent sequence of scalars, any AC-subspace is 1-complemented.

For any set Γ, in the space $c_{0}(\Gamma)$, any $A C$-subspace is 1-complemented.
Proof. Let H be an $A C$-subspace of c. We define the equivalence relation \sim on \mathbb{N} as in the proof of $(a) \Rightarrow(b)$ in Theorem 1.2. If each non-singleton equivalence class K_{1} is finite, we can proceed exactly as before to define H_{1} and the projections P_{1} and P_{2}. The finiteness of K_{1} ensures that P_{2} takes values in c, and hence, in H_{1}.

If some K_{1} is infinite, note that for any $h \in H,\left|h_{n}\right|$ is constant on K_{1}. Since $h \in c$, this constant is $\left|\lim _{n} h_{n}\right|$. Thus, there is at most one infinite equivalence class. If we now further partition K_{1} with the equivalence relation $m \approx n$ if $h_{m}=h_{n}$ for all $h \in H$, then again since $h \in c$, only one subclass-the one on which $h_{n}=\lim _{n} h_{n}$ for all $h \in H$-will be infinite and we can proceed as before, defining $\left(P_{2} f\right)_{n}=\lim _{n} f_{n}$ on that subclass.

If H is an $A C$-subspace of $c_{0}(\Gamma)$, we can proceed as above to define an equivalence relation \sim on Γ. Again, at most one equivalence class K_{1} is infinite, and $h \equiv 0$ on K_{1}. Thus defining $P_{2} f(\gamma)=0$ for $\gamma \in K_{1}$ works.

Remark 3.5. Notice that the proof for c and c_{0} in [11] is essentially similar, but our argument is simpler and straightforward and works also for complex scalars and uncountable Γ.

From the proof of $(c) \Rightarrow(b)$ in Theorem 1.2 it follows that if H is complemented by a unique norm one projection, then for each $i=1,2, \cdots, n$,
the condition $2\left|\mu_{i}\left(k_{i}\right)\right| \geq\left\|\mu_{i}\right\|$ holds for exactly one isolated atom k_{i} of μ_{i}. If H is a hyperplane in $C(K)$, this condition is also sufficient. That is,

Proposition 3.6. Let $\mu \in S_{C(K)^{*}}$ and $H=\operatorname{ker} \mu$. Then H is complemented by a unique norm one projection if and only if $|\mu(\{k\})| \geq 1 / 2$ holds for exactly one isolated atom of μ.

Proof. Let P be projection of norm one on $C(K)$ with range H. Then there exists $f_{0} \in O(H, C(K))$ such that $\mu\left(f_{0}\right)=1$ and $P f=f-\mu(f) f_{0}$ for all $f \in C(K)$.

As before, let $K_{0}=\left\{k \in K: \operatorname{HB}_{C(K)}(\phi k)=\left\{\delta_{k}\right\}\right\}$. Let $k \in K \backslash K_{0}$. Then there exists a measure $\nu \in B_{C(K) *}$ such that $\nu \neq \delta_{k}$ and $\left.\nu\right|_{H}=\phi k$. It follows that $\nu-\delta_{k}=\alpha \mu$ for some scalar $\alpha \neq 0$. Let $\mu(\{k\})=\beta$, that is, $\mu=\beta \delta_{k}+\lambda$. Then $\|\lambda\|=1-|\beta|$ and

$$
1 \geq\|\nu\|=\left\|(1+\alpha \beta) \delta_{k}+\alpha \lambda\right\|=|1+\alpha \beta|+|\alpha|(1-|\beta|) \geq 1+|\alpha|(1-2|\beta|)
$$

Since $\alpha \neq 0$, we get $|\beta| \geq 1 / 2$. Thus $\{k\}$ is an atom of μ with $|\mu(\{k\})| \geq 1 / 2$. Now, if $|\mu(\{k\})| \geq 1 / 2$ holds only for $k=k_{0}$, it follows from the above argument that $K \backslash K_{0}=\left\{k_{0}\right\}$. Since $\left.f_{0}\right|_{K_{0}}=0$ we conclude f_{0} must be a scalar multiple of $1_{k_{0}}$. This shows P is unique.

It was shown in [1] that a hyperplane H in any Banach space is 1complemented if and only if it is an $A C$-subspace and if and only if it is not an $V N$-subspace. The following corollary is immediate from Theorem 1.2.

Corollary 3.7. For $n=0,1,2, \ldots$, if K is a compact Hausdorff space with at most n isolated points, then there is no $A C$-subspace in $C(K)$ of codimension $n+1$. In particular, if K has no isolated points, there is no 1-complemented hyperplane in $C(K)$. Thus every hyperplane is a $V N$ subspace.

Remark 3.8. It is easy to check that the norm of a projection onto a hyperplane of $C(K)$ is at least 2 if K does not have isolated points.

Acknowledgements. We thank the referee for comments and suggestions that improved the paper and also for pointing out the references [10, 11].

References

[1] P. Bandyopadhayay, S. Basu, S. Dutta and B.-L. Lin, Very non-constrained subspaces of Banach spaces, Extracta Math., 18 (2003), 161-185.
[2] Pradipta Bandyopadhayay and S. Dutta, Almost constrained subspaces of Banach spaces, Proc. Amer. Math. Soc., 132 (2004), 107-115.
[3] Pradipta Bandyopadhayay and S. Dutta, Weighted Chebyshev centres and intersection properties of balls in Banach spaces, Function spaces (Edwardsville, IL, 2002), 43-58, Contemp. Math., 328, Amer. Math. Soc., Providence, RI, 2003.
[4] Marco Baronti, Norm-one projections onto subspaces of ℓ^{∞}, Arch. Math. (Basel), 51 (1988), 242-246.
[5] Y. Friedman and B. Russo, Contractive projections on $C_{0}(K)$, Transaction Amer. Math. Soc. 273(1), (1982), 57-73.
[6] R. Fuhr and R. R. Phelps, Uniqueness of complex representing measures on the Choquet boundary, J. Functional Analysis, 14, 1973, 1-27.
[7] G. Godefroy and N. J. Kalton, The ball topology and its applications, Banach space theory (Iowa City, IA, 1987), 195-237, Contemp. Math., 85, Amer. Math. Soc., Providence, RI, 1989.
[8] H. Harmand, D. Werner and W. Werner, M-Ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics 1547, Springer-Verlag, Berlin, 1993.
[9] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61 (1947), 265-292.
[10] Han Ju Lee, Anna Kaminska and G. Lewicki, Extreme and smooth points in Lorentz and Marcinkiewicz spaces, IMUJ Preprint 2006/01.
[11] G. Lewicki and G. Trombetta, Optimal and one-complemented subspaces, IMUJ Preprint 2005/12.
[12] Karl Lindberg, Contractive projections in continuous function spaces, Proc. Amer. Math. Soc., 36 (1972), 97-103.
[13] Joram Lindenstrauss and Daniel E. Wulbert, On the classification of the Banach spaces whose duals are L_{1} spaces, J. Func. Anal., 4 (1969), 332-349.
[14] R. R. Phelps, The Choquet representation in the complex case, Bull. Amer. Math. Soc., 83 (1977), 299-312.
[15] Robert R. Phelps, Lectures on Choquet's theorem, Second edition, Lecture Notes in Mathematics 1757. Springer-Verlag, Berlin, 2001.
[16] D. E. Wulbert, Some complemented function spaces in $C(X)$, Pacific J. Math., 24 (1968), 589-602.
(Pradipta Bandyopadhyay) Stat-Math Division, Indian Statistical Institute, 202, B. T. Road, Kolkata 700 108, India. E-mail : pradipta@isical.ac.in
(S. Dutta) Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur 208016, India. E-mail: sudipta@iitk.ac.in

[^0]: 2000 Mathematics Subject Classification. 46E15, 46B20.
 September 3, 2007.
 Key words and phrases. Norm one projection, ortho-complement.
 Research of S. Dutta partially supported by the Institute for Advanced Studies in Mathematics at Ben-Gurion University of the Negev.

