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Weighted Chebyshev Centres and
Intersection Properties of Balls in Banach Spaces

Pradipta Bandyopadhyay and S Dutta

Abstract. Veselý has studied Banach spaces that admit weighted Chebyshev

centres for finite sets. Subsequently, Bandyopadhyay and Rao had shown, inter

alia, that L1-preduals have this property. In this work, we investigate why
and to what extent are these results true and thereby explore when a more
general family of sets admit weighted Chebyshev centres. We extend and

improve upon some earlier results in this general set-up and relate them with
a modified notion of minimal points. Special cases when we consider the family
of all finite, or more interestingly, compact subsets lead to characterizations of

L1-preduals. We also consider some stability results.

1. Introduction

Let X be a Banach space. We will denote by BX [x, r] the closed ball of radius
r > 0 around x ∈ X. We will identify any element x ∈ X with its canonical image
in X∗∗. Our notations are otherwise standard. Any unexplained terminology can
be found in either [6] or [10].

In this paper we continue the study of Banach spaces that admit weighted
Chebyshev centres that began with [3].

Definition 1.1. Let Y be a subspace of a Banach space X. For A ⊆ Y and
ρ : A −→ R+, define

φA,ρ(x) = sup{ρ(a)‖x− a‖ : a ∈ A}
A point x0 ∈ X is called a weighted Chebyshev centre of A in X for the weight ρ
if φA,ρ attains its minimum at x0.

When A is finite, Veselý [18] has shown that if X is a dual space, A admits
weighted Chebyshev centres in X for any weight ρ, that the infimum of φA,ρ over
X and X∗∗ are the same, and

Theorem 1.2. [18, Theorem 2.7] For a Banach space X and a1, a2, . . . , an ∈
X, the following are equivalent :
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(a) If r1, r2, . . . , rn > 0 and ∩n
i=1BX∗∗ [ai, ri] 6= ∅, then ∩n

i=1BX [ai, ri] 6= ∅.
(b) {a1, a2, . . . , an} admits weighted Chebyshev centres for all weights
r1, r2, . . . , rn > 0.

(c) {a1, a2, . . . , an} admits f-centres for every continuous monotone coer-
cive f : Rn

+ → R (see [18] for the definitions).

In this work, we investigate why and to what extent are these results true
and thereby explore when a more general family of sets admit weighted Chebyshev
centres. Extending the notion of central subspaces introduced in [3], we define an
A-C-subspace Y of a Banach space X with the centres of the balls coming from a
given family A of subsets of Y , the typical examples being those of finite, compact,
bounded or arbitrary sets. The first gives us the central subspace a la [3] and
the last one is related to the Finite Infinite Intersection Property (IPf,∞) [8]. We
extend and improve upon some results of [3, 18] in this general set-up and relate
them with a modified notion of minimal points. We also improve upon one of the
main results of [4] on the structure of the set of minimal points of a compact set. As
in [3], special cases when we consider the family of all finite, or more interestingly,
compact subsets lead to characterizations of L1-preduals. We also consider some
stability results.

2. General Results

We first extend Veselý’s result in [18] on dual spaces from finite sets to all the
way upto bounded sets and also strengthens its conclusions. We need the following
notions.

Definition 2.1. Let X be a Banach space and A ⊆ X.
(a) We define a partial ordering on X as follows : for x1, x2 ∈ X, we say
that x1 ≤A x2 if ‖x1 − a‖ ≤ ‖x2 − a‖ for all a ∈ A. We will denote
by mX(A) the set of points of X that are minimal with respect to the
ordering ≤A and often refer to them as ≤A-minimal points of X.

Note that ≤A defines a partial order on any Banach space containing
A and we will use the same notation in all such cases.

(b) A function f : X → R+ is said to be A-monotone if f(x1) ≤ f(x2)
whenever x1 ≤A x2.

(c) Let Y be a subspace of X and A ⊆ Y . Following [9], we say x ∈ X is
a minimal point of A with respect to Y if for any y ∈ Y , y ≤A x implies
y = x.

We denote the set of all minimal points of A with respect to Y in
X by AY,X . Note AY,X ⊇ A. For A ⊆ X, the set AX,X will be called
minimal points of A in X, and will be denoted simply by minA.

(d) For A ⊆ X bounded, the Chebyshev radius of A in X is defined by

r(A) = inf
x∈X

sup
a∈A

‖x− a‖.

Theorem 2.2. (a) If A ⊆ X is bounded and x /∈ A + r(A)B(X), then
there exists y ∈ X such that y ≤A x.

(b) If X = Z∗ is a dual space and A is bounded, then every A-monotone
and w*-lower semicontinuous (henceforth, lsc) f : X → R+ attains its
minimum. In particular, for every ρ, φA,ρ attains its minimum.
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(c) If X = Z∗ is a dual space, for every x0 ∈ X, there is a x1 ∈ mX(A)
such that x1 ≤A x0. In particular, the minimum in (b) is attained at a
point of mX(A).

Proof. (a). Let x /∈ A + r(A)B(X). Then, there exists ε > 0 such that
‖x − a‖ > r(A) + ε for all a ∈ A. By definition of r(A), there exists y ∈ X such
that supa∈A ‖y − a‖ < r(A) + ε. Clearly, y ≤A x.

(b). By (a), if x /∈ A + r(A)B(X), there exists y ∈ X such that y ≤A x,
and hence, f(y) ≤ f(x). Thus, the infimum of f over X equals the infimum over
A + r(A)B(X). Moreover, since X is a dual space and f is w*-lsc, it attains its
minimum over any w*-compact set. Thus f actually attains its minimum over X
as well.

Since the norm on X is w*-lsc, so is φA,ρ for every ρ.
(c). Consider {x ∈ X : x ≤A x0}. Let {xi} be a totally ordered subset. Let z

be a w*-limit point of xi. Since the norm is w*-lsc, we have

‖z − a‖ ≤ lim inf ‖xi − a‖ = inf ‖xi − a‖ for all a ∈ A.

Thus the family {xi} is ≤A-bounded below by z.
By Zorn’s lemma, there is a x1 ∈ mX(A) such that x1 ≤A x0.
Now let x0 be a minimum for f . There is a x1 ∈ mX(A) such that x1 ≤A x0.

Clearly, f attains its minimum also at x1. �

Remark 2.3. (a) It follows that for any bounded set A, minA ⊆
A + r(A)B(X). This improves the estimates in [9] or [18].

(b) Apart from φA,ρ, there are many examples of A-monotone and w*-
lsc f : X = Z∗ → R+. One particular example that has been treated
extensively in [4] is the function φµ defined by φµ(x) =

∫
A
‖x− a‖2dµ(a),

where µ is a probability measure on a compact set A ⊆ X.
(c) Observe that though minimal points of A are ≤A-minimal, there is
some distinction between the two notions. The two notions coincide if X
is strictly convex. See Proposition 3.1 below.

Now, if A is a bounded subset of a Banach space X, then by Theorem 2.2, A
has a weighted Chebyshev centre in X∗∗. But what about a weighted Chebyshev
centre in X?

When A is finite, Veselý [18] has shown that the infimum of φA,ρ over X and
X∗∗ are the same, and A admits weighted Chebyshev centres in X for any weight
ρ if and only if X satisfies Theorem 1.2(a). We now show that both of these are
special cases of more general results. We need the following definition.

Definition 2.4. Let Y be a subspace of a Banach space X. Let A be a family
of subsets of Y .

(a) We say that Y is an almost A-C-subspace of X if for every A ∈ A,
x ∈ X and ε > 0, there exists y ∈ Y such that

‖y − a‖ ≤ ‖x− a‖+ ε forall a ∈ A.(1)

(b) We say that Y is an A-C-subspace of X if we can take ε = 0 in (a).
(c) If A is a family of subsets of X, we say that X has the (almost) A-IP
if X is an (almost) A-C-subspace of X∗∗.
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Some of the special families that we would like to give names to are :
(i) F = the family of all finite sets,
(ii) K = the family of all compact sets,
(iii) B = the family of all bounded sets,
(iv) P = the power set.

Since these families depend on the space in which they are considered, we will
use the notation F(X) etc. whenever there is a scope of confusion.

Remark 2.5. (a) Note that F-C-subspaces were called central (C)
subspaces in [3], P-C-subspaces were called almost constrained (AC) sub-
spaces in [1, 2]. Also if X has the F-IP, it was said to belong to the class
(GC) in [18, 3], and the P-IP was called the Finite Infinite Intersection
Property (IPf,∞) in [7, 2].

(b) The definition of almost A-C-subspace is adapted from the definition
of almost central subspace defined in [17]. The exact analogue of the
definition in [17] would have, in place of condition (1),

sup
a∈A

‖y − a‖ ≤ sup
a∈A

‖x− a‖+ ε.

Clearly, our condition is stronger. We observe below (see Proposition 2.7)
that this definition is more natural in our context.

(c) By the Principle of Local Reflexivity (henceforth, PLR), any Banach
space has the almost F-IP. More generally, if Y is an ideal in X (see
definition below), then Y is an almost F-C-subspace of X.

Definition 2.6. A subspace Y of a Banach space X is said to be an ideal in
X if there is a norm 1 projection P on X∗ with ker(P ) = Y ⊥.

Proposition 2.7. Let Y be a subspace of a Banach space X. Let A be a family
of bounded subsets of Y . Then the following are equivalent :

(a) Y is an almost A-C-subspace of X
(b) for all A ∈ A and ρ : A → R+, if ∩a∈ABX [a, ρ(a)] 6= ∅, then for every
ε > 0, ∩a∈ABY [a, ρ(a) + ε] 6= ∅.

(c) for every bounded ρ, the infimum of φA,ρ over X and Y are equal.

Proof. Equivalence of (a) and (b) is immediate and does not need A to be
bounded.

(a) ⇒ (c). Let Y be an almost A-C-subspace of X, A ∈ A and ρ : A → R+

be bounded. Let M = sup ρ(A). Let ε > 0. By definition, for x ∈ X, there exists
y ∈ Y such that

‖y − a‖ ≤ ‖x− a‖+ ε for all a ∈ A.

It follows that

ρ(a)‖y − a‖ ≤ ρ(a)‖x− a‖+ ρ(a)ε ≤ ρ(a)‖x− a‖+ Mε for all a ∈ A.

and hence,
φA,ρ(y) ≤ φA,ρ(x) + Mε.

Therefore,
inf φA,ρ(Y ) ≤ inf φA,ρ(X) + Mε.

As ε is arbitrary, the infimum of φA,ρ over X and Y are equal.
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(c) ⇒ (a). Let A ∈ A, x ∈ X and ε > 0. We need to show that there exists
y ∈ Y such that

‖y − a‖ ≤ ‖x− a‖+ ε for all a ∈ A.

If x ∈ Y , nothing to prove. Let x ∈ X \ Y . Let N = supa∈A ‖x − a‖. Let
ρ(a) = 1/‖x − a‖. Since x /∈ Y and A ⊆ Y , ρ is bounded. Then φA,ρ(x) = 1,
and therefore, inf φA,ρ(X) ≤ 1. By assumption, inf φA,ρ(Y ) = inf φA,ρ(X) ≤ 1,
and so, there exists y ∈ Y , such that φA,ρ(y) ≤ 1 + ε/N . This implies ‖y − a‖ ≤
‖x− a‖+ ε‖x− a‖/N ≤ ‖x− a‖+ ε for all a ∈ A. �

As noted before, by PLR, any Banach space has the almost F-IP. And therefore,
the result of [18] follows.

Proposition 2.8. Let A and A1 be two families of subsets of Y such that for
every A ∈ A and ε > 0, there exists A1 ∈ A1 such that A ⊆ A1 + εB(Y ). If Y is
an almost A1-C-subspace of X, then Y is an almost A-C-subspace of X as well.

Consequently, any ideal is an almost K-C-subspace and any Banach space has
the almost K-IP. In particular, if A is a compact subset of X and ρ : A −→ R+ is
bounded, then the infimum of φA,ρ over X and X∗∗ are the same.

Proof. Let A ∈ A and ε > 0. By hypothesis, there exist A1 ∈ A1 such that
A ⊆ A1 + εB(Y ). Let x ∈ X. Since Y is an almost A1-C-subspace of X, there
exists y ∈ Y such that

‖y − a1‖ ≤ ‖x− a1‖+ ε/3 for all a1 ∈ A1.

Now fix a ∈ A. Then there exists a1 ∈ A1 such that ‖a− a1‖ < ε/3. Then

‖y − a‖ ≤ ‖y − a1‖+ ‖a− a1‖ ≤ ‖x− a1‖+ 2ε/3
≤ ‖x− a‖+ ‖a− a1‖+ 2ε/3 ≤ ‖x− a‖+ ε.

Therefore, Y is an almost A-C-subspace of X as well.
Since any Banach space has the almost F-IP, by the above, it has the almost

K-IP too. The rest of the result follows from Proposition 2.7. �

Example 2.9. Veselý [18] has shown that if A is infinite, the infimum of φA,ρ

over X and X∗∗ may not be the same. His example is X = c0, A = {en : n ≥ 1}
is the canonical unit vector basis of c0 and ρ ≡ 1. Then inf φA,ρ(X) = 1 and
inf φA,ρ(X∗∗) = 1/2. The example clearly also excludes countable, bounded, or,
taking A ∪ {0}, even weakly compact sets. Thus c0 fails the almost B-IP, almost
P-IP and if A is the family of countable or weakly compact sets, then c0 fails the
almost A-IP too.

Stronger conclusions are possible for A-IP.

Lemma 2.10. Let Y be a subspace of a Banach space X. For A ⊆ Y , the
following are equivalent :

(a) For every A-monotone f : A −→ R+ and x ∈ X, there exists y ∈ Y
such that f(y) ≤ f(x).

(b) For every ρ : A −→ R+ and x ∈ X, there exists y ∈ Y such that
φA,ρ(y) ≤ φA,ρ(x).

(c) For every continuous ρ : A −→ R+ and x ∈ X, there exists y ∈ Y such
that φA,ρ(y) ≤ φA,ρ(x).

(d) For every bounded ρ : A −→ R+ and x ∈ X, there exists y ∈ Y such
that φA,ρ(y) ≤ φA,ρ(x).
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(e) Any family of closed balls centred at points of A that intersects in X
also intersects in Y .

(f) for any x ∈ X, there exists y ∈ Y such that y ≤A x.
It follows that whenever any of the above conditions is satisfied, for every A-
monotone f : A −→ R+, the infimum of f over X and Y are equal and if A
has a weighted Chebyshev centre in X, it has a weighted Chebyshev centre in Y .

Proof. (a) ⇒ (b) ⇒ (c), (b) ⇒ (d) and (e) ⇔ (f) ⇒ (a) are obvious.
(c) or (d) ⇒ (f). As in the proof of Proposition 2.7, let ρ(a) = 1/‖x−a‖. Then

ρ is continuous and bounded and φA,ρ(x) = 1. Thus, there exists y ∈ Y such that
φA,ρ(y) ≤ 1. This implies ‖y − a‖ ≤ ‖x− a‖ for all a ∈ A. �

We now conclude the discussion so far by obtaining the extension of Theo-
rem 1.2.

Theorem 2.11. For a Banach space X and a family A of bounded subsets
of X, the following are equivalent :

(a) X has the A-IP.
(b) For every A ∈ A and every f : X∗∗ −→ R+ that is A-monotone and
w*-lsc, the infimum of f over X∗∗ and X are equal and is attained at a
point of X.

(c) For every A ∈ A and every ρ, the infimum of φA,ρ over X∗∗ and X
are equal and is attained at a point of X.

Moreover, the point in (b) or (c) can be chosen to be ≤A-minimal.

We now study different aspects of A-C-subspaces.

Definition 2.12. Let Y be a subspace of a Banach space X. Let A ⊆ Y . For
x ∈ X and x∗ ∈ B(X∗), define

U(x,A, x∗) = inf{x∗(y) + ‖x− y‖ : y ∈ A}
L(x,A, x∗) = sup{x∗(y)− ‖x− y‖ : y ∈ A}

The following lemma is in [1]. We include the proof for completeness.

Lemma 2.13. Let Y be a subspace of a Banach space X and A ⊆ Y . For
x1, x2 ∈ X, x2 ≤A x1 if and only if for all x∗ ∈ B(X∗), U(x2, A, x∗) ≤ U(x1, A, x∗).

Proof. If x2 ≤A x1, then for all x∗ ∈ B(X∗), x∗(y) + ‖x2 − y‖ ≤ x∗(y) +
‖x1 − y‖. And therefore, U(x2, A, x∗) ≤ U(x1, A, x∗).

Conversely, suppose ‖x2 − y0‖ > ‖x1 − y0‖ for some y0 ∈ A. Then there
exists ε > 0 such that ‖x2 − y0‖ − ε ≥ ‖x1 − y0‖. Choose x∗ ∈ B(X∗) such that
‖x1− y0‖ ≤ ‖x2− y0‖− ε < x∗(x2− y0)− ε/2. Thus U(x1, A, x∗) ≤ x∗(y0) + ‖x1−
y0‖ < x∗(x2)− ε/2 < U(x2, A, x∗). �

Remark 2.14. Instead of B(X∗), it suffices to consider the unit ball of any
norming subspace of X∗.

We compile in the following propositions several interesting facts about A-C-
subspaces and the A-IP.

Proposition 2.15. Let Y be a subspace of a Banach space X. For a family A
of subsets of Y , the following are equivalent :

(a) Y is an A-C-subspace of X
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(b) for every x ∈ X and A ∈ A, there exists y ∈ Y such that U(y, A, x∗) ≤
U(x, A, x∗) for every x∗ ∈ B(X∗).

(c) for any A ∈ A, AY,X ⊆ Y .

Proof. This follows from Lemma 2.13 and the definition of AY,X . �

Corollary 2.16. X has the P-IP if and only if for every x∗∗ ∈ X∗∗, there
exists x ∈ X such that x is dominated on B(X∗) by the upper envelop of x∗∗

considered as a function on B(X∗) equipped with the w*-topology.

Proof. Observe that for any x ∈ X, U(x, X, ·) ≡ x on B(X∗) and for x∗∗ ∈
X∗∗, U(x∗∗, X, x∗) is the upper envelop of x∗∗ considered as a function on B(X∗)
equipped with the w*-topology (see [8]). �

Proposition 2.17. (a) Let X be a Banach space and let Y be a sub-
space of X. Let A be a family of subsets of Y and let A1 be a subfamily
of A. If Y is a A-C-subspace of X, then Y is a A1-C-subspace of X as
well. In particular, P-IP implies B-IP implies K-IP implies F-IP.

(b) 1-complemented subspaces are A-C-subspaces for any A.
(c) Let Z ⊆ Y ⊆ X and let A be a family of subsets of Z. If Z is an
A-C-subspace of X, then Z is an A-C-subspace of Y . And, if Y is an
A-C-subspace of X, then the converse also holds.

Proof. The proof follows the same line of argument as in [3, Proposition 2.2].
We omit the details. �

Proposition 2.18. For a family A of subsets of a Banach space X, the fol-
lowing are equivalent :

(a) X has the A-IP
(b) X is a A-C-subspace of some dual space.
(c) for all A ∈ A and ρ : A → R+, ∩n

i=1BX [ai, ρ(ai) + ε] 6= ∅ for all finite
subset {a1, a2, . . . , an} ⊆ A and for all ε > 0 implies ∩a∈ABX [a, ρ(a)] 6= ∅.

In particular, any dual space has the A-IP for any A. Let S be any of the
families F , K, B or P. The S-IP is inherited by S-C-subspaces, in particular, by
1-complemented subspaces.

Proof. Clearly, (a) ⇒ (b), while (c) ⇒ (a) follows from the PLR.
(b) ⇒ (c). Let X be anA-C-subspace of Z∗. Consider the family {BZ∗ [a, ρ(a)+

ε] : a ∈ A, ε > 0} in Z∗. Then, by the hypothesis, any finite subfamily intersects.
Hence, by w*-compactness, ∩a∈ABZ∗ [a, ρ(a)] 6= ∅. Since X is an A-C-subspace of
Z∗, we have ∩a∈ABX [a, ρ(a)] 6= ∅. �

The following result significantly improves [3, Proposition 2.8] and provides yet
another characterization of the A-IP.

Proposition 2.19. Let Y be an almost F-C subspace of a Banach space X.
Let A be a family of subsets of Y . If Y has the A-IP, then Y is an A-C-subspace
of X. In particular, the conclusion holds when Y is an ideal in X.

Proof. Let x ∈ X, A ∈ A. Since Y be an almost F-C subspace of X, for all
finite subset {a1, a2, . . . , an} ⊆ A and for all ε > 0, ∩n

i=1BY [ai, ‖x − ai‖ + ε] 6= ∅.
Since Y has the A-IP, by Proposition 2.18(c), ∩a∈ABY [a, ‖x− a‖] 6= ∅. �

Since X is always an ideal in X∗∗, the following corollary is immediate.
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Corollary 2.20. For a Banach space X and a family A of subsets of X, the
following are equivalent :

(a) X has A-IP.
(b) X is an A-C-subspace of every superspace Z in which X embeds as an
almost F-C subspace.

(c) X is an A-C-subspace of every superspace Z in which X embeds as an
ideal.

3. Strict convexity and minimal points

Proposition 3.1. If a Banach space X is strictly convex, then for every A ⊆
X, minA = mX(A).

Proof. As we have already observed, minA ⊆ mX(A).
Let x0 ∈ mX(A) and x0 /∈ minA. Then there is an x ∈ X such that x 6= x0

and x ≤A x0. Since x0 ∈ mX(A), we must have ‖x− a‖ = ‖x0 − a‖ for all a ∈ A.
Since X is strictly convex, ‖(x + x0)/2− a‖ < ‖x0 − a‖ for all a. This contradicts
that x0 ∈ mX(A). Hence x0 ∈ minA. �

Remark 3.2. If X is strictly convex, by a similar argument, for every x0 ∈ X,
there is at most one x1 ∈ mX(A) such that x1 ≤A x0. Thus for a strictly convex
dual space, for every x∗0 ∈ X∗, there is a unique x∗1 ∈ mX∗(A) such that x∗1 ≤A x∗0.

Proposition 3.3. Let X be strictly convex. Let A be a compact subset of X.
For each continuous ρ, A admits at most one weighted Chebyshev centre.

Proof. Suppose A admits two distinct weighted Chebyshev centres x0, x1 ∈
X. Then φA,ρ(x0) = φA,ρ(x1) = r (say). Then for all a ∈ A, we have x1, x0 ∈
BX [a, r/ρ(a)]. By rotundity z = (x1 + x0)/2 is in the interior of BX [a, r/ρ(a)] for
all a. Thus, ρ(a)‖z − a‖ < r, for all a. Since ρ is continuous, φA,ρ(z) < r, which
contradicts that minimum value is r. �

Theorem 3.4. Let X be a Banach space such that
(i) X has the F-IP; and
(ii) for every compact set A ⊆ X, mX(A) is weakly compact.

Then X has the K-IP. Moreover, if X∗∗ is strictly convex, then the converse
also holds.

Proof. Let X have the F-IP and for every compact set A ⊆ X, let mX(A)
be weakly compact. Observe that for any B ⊆ A, we have mX(B) ⊆ mX(A).

Let A ⊆ X be compact and let x∗∗ ∈ X∗∗. By Lemma 2.10, it suffices to show
that there is a z0 ∈ X such that ‖z0 − a‖ ≤ ‖x∗∗ − a‖ for all a ∈ A.

Let {an} be a norm dense sequence in A. Take a sequence εk → 0. By com-
pactness of A, for each k, there is a nk such that A ⊆

⋃nk

1 BX [an, εk]. Since X has
the F-IP, there exists zk ∈ ∩nk

1 BX [an, ‖x∗∗− an‖] and zk ∈ mX({a1, a2 · · · ank
}) ⊆

mX(A). Then ‖zk−a‖ ≤ ‖x∗∗−a‖+2εk for all a ∈ A. Now, by weak compactness of
mX(A), we have, by passing to a subsequence if necessary, zk → z0 weakly for some
z0 ∈ X. Since the norm is weakly lsc, we have ‖z0−a‖ ≤ lim inf ‖zk−a‖ ≤ ‖x∗∗−a‖
for all a ∈ A.

Conversely, let X have the K-IP and X∗∗ be strictly convex. Let A ⊆ X be
compact. It is enough to show that any sequence {xn} ⊆ mX(A) has a weakly
convergent subsequence. Without loss of generality, we may assume that {xn} are
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all distinct. By Remark 2.3 (a), mX(A) ⊆ A + r(A)B(X) is bounded. Let x∗∗ be
a w*-cluster point of {xn} in X∗∗. It suffices to show that x∗∗ ∈ X.

Suppose x∗∗ ∈ X∗∗ \ X. Since X has the K-IP, there exists x0 ∈ mX(A)
such that ‖x0 − a‖ ≤ ‖x∗∗ − a‖ for all a ∈ A. Since X∗∗ is strictly convex,
‖(x∗∗+x0)/2−a‖ < ‖x∗∗−a‖ for all a ∈ A. Since (x∗∗+x0)/2 ∈ X∗∗ \X, by K-IP
again, there exists z0 ∈ mX(A) such that ‖z0−a‖ ≤ ‖(x∗∗+x0)/2−a‖ < ‖x∗∗−a‖
for all a ∈ A.

Since A is compact, there exists ε > 0 such that ‖z0 − a‖ < ‖x∗∗ − a‖ − ε for
all a ∈ A. Observe that

‖z0 − a‖ < ‖x∗∗ − a‖ − ε ≤ lim inf
n

‖xn − a‖ − ε for all a ∈ A.

Therefore, for every a ∈ A, there exists N(a) ∈ N such that for all n ≥ N(a),
‖z0− a‖ < ‖xn− a‖− ε. By compactness, there exists N ∈ N such that ‖z0− a‖ <
‖xn − a‖ − ε/4 for all n ≥ N and a ∈ A. Thus, z0 ≤A xn for all n ≥ N . Since
xn ∈ mX(A) and X is strictly convex, z0 = xn for all n ≥ N . This contradiction
completes the proof. �

Remark 3.5. In proving sufficiency, one only needs that {zk} has a subsequence
convergent in a topology in which the norm is lsc. The weakest such topology is
the ball topology, bX . So it follows that if X has the F-IP and for every compact
set A ⊆ X, mX(A) is bX -compact, then X has the K-IP. Is the converse true?

Corollary 3.6. [4, Corollary 1] Let X be a reflexive and strictly convex Ba-
nach space. Let A ⊆ X be a compact set. Then min(A) is weakly compact.

Remark 3.7. Clearly, our proof is simpler than the original proof of [4].
If Z is a non-reflexive Banach space with Z∗∗∗ strictly convex, then X = Z∗

is a non-reflexive Banach space with K-IP such that X∗∗ is strictly convex. Thus,
our result is also stronger than [4, Corollary 1].

4. L1-preduals and P1-spaces

Our next theorem extends [3, Theorem 7], exhibits a large class of Banach
spaces with the K-IP and produces a family of examples where the notions of F-
C-subspaces and K-C-subspaces are equivalent.

Definition 4.1. (a) [12] A Banach space X is called an L1-predual
if X∗ is isometrically isomorphic to L1(µ) for some positive measure µ.

(b) [11] A family {BX [xi, ri]} of closed balls is said to have the weak
intersection property if for all x∗ ∈ B(X∗) the family {BR[x∗(xi), ri]} has
nonempty intersection in R.

Theorem 4.2. For a Banach space X, the following are equivalent :
(a) X is a K-C-subspace of every superspace
(b) X is a K-C-subspace of every dual superspace
(c) X is a F-C-subspace of every superspace
(d) X is an almost F-C-subspace of every superspace
(e) X is a F-C-subspace of every dual superspace
(f) X is an almost F-C-subspace of every dual superspace
(g) X is an L1-predual.
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Proof. Observe that if X ⊆ Y ⊆ Y ∗∗ and X is a A-C-subspace of Y ∗∗,
then X is a A-C-subspace of Y . Thus (a) ⇔ (b) and (c) ⇔ (e). And clearly,
(a) ⇒ (c) ⇒ (d) ⇒ (f).

(f) ⇒ (g). Since the definition of almost central subspaces in [17] is weaker
than our definition of almost F-C-subspaces, this follows from [17, Theorem 1,
2 ⇒ 3]

(g) ⇒ (a). Suppose X is an L1-predual, and let X ⊆ Y . Let A ⊆ X be compact
with at least three points. Let y0 ∈ Y . Then the family of balls {BX [a, ‖y0 − a‖] :
a ∈ A} have the weak intersection property. Since X is an L1-predual and since the
centres of the balls are in a compact set, by [14, Proposition 4.4], ∩a∈ABX [a, ‖y0−
a‖] 6= ∅.

If A has two points, observe that two balls intersect if and only if the distance
between the centres is less than or equal to the sum of the radii, it is independent
of the ambient space. �

Corollary 4.3. Every L1-predual has the K-IP and hence also the F-IP.

Proposition 4.4. Suppose X is an L1-predual space. Then for a subspace
Y ⊆ X, the following are equivalent :

(a) Y is an ideal in X
(b) Y is a K-C-subspace of X
(c) Y is a F-C-subspace of X
(d) Y is an almost F-C-subspace of X
(e) Y itself is an L1-predual

Proof. (e) ⇒ (b) follows from Theorem 4.2 and (e) ⇒ (a) follows from [16,
Proposition 1]. And clearly, (b) ⇒ (c) ⇒ (d) and (a) ⇒ (d).

(d) ⇒ (e). This again is an easy adaptation of the proof of [17, Theorem 1,
2 ⇒ 3]. We omit the details. �

The analog of Theorem 4.2 for P-C-subspaces involves P1-spaces.

Definition 4.5. Recall that a Banach space is a P1-space if it is 1-
complemented in every superspace.

Theorem 4.6. For a Banach space X, the following are equivalent :
(a) X is a P1-space
(b) X is 1-complemented in every dual space that contains it
(c) X is a P-C-subspace of every superspace
(d) X is a P-C-subspace of every dual space that contains it
(e) X is isometric to C(K) for some extremally disconnected compact
Hausdorff space K.

Proof. (a) ⇔ (b) and (c) ⇔ (d) follow as in the first paragraph of Theo-
rem 4.2. And clearly, (a) ⇒ (c).

(d) ⇒ (a). By Proposition 2.18 and Theorem 4.2, (d) implies X is an L1-
predual with P-IP. Recall that [12, Theorem 3.8] a Banach space X is a P1-space
if and only if every pairwise intersecting family of closed balls in X intersects. And
that X is a L1-predual if and only if X∗∗ is a P1-space.

Now given a pairwise intersecting family of closed balls in X, since X∗∗ is a
P1-space, they intersect in X∗∗. And since X has P-IP, they intersect in X too.

(a) ⇔ (e) is also observed in [12, Section 11]. �
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Proposition 4.7. Let A be a family of subsets of X such that F ⊆ A. Then,
the following are equivalent :

(a) X is an L1-predual with A-IP
(b) X is an A-C-subspace of every superspace
(c) for every A ∈ A, every pairwise intersecting family of closed balls in X
with centres in A intersects.

Proof. (a) ⇒ (b). Since X has the A-IP, it is an A-C-subspace of every
superspace in which it is an ideal (Proposition 2.20) and since X is an L1-predual,
it is an ideal in every superspace [16, Proposition 1]. Thus (b) follows.

(b) ⇒ (a). Since F ⊆ A, this is immediate.
(a) ⇒ (c). This is similar too the proof of Theorem 4.6 (d) ⇒ (a).
(c) ⇒ (a). If every finite family of pairwise intersecting closed balls in X

intersects, then X is an L1-predual. And that X has the A-IP follows from Propo-
sition 2.18 (c). �

Let C(T,X) be the space of all X-valued bounded continuous functions on
a topological space T equipped with the sup norm. We now characterize when
C(T,X) is a real L1-predual. First we need the following lemma.

Lemma 4.8. Suppose Y is a subspace of a Banach space X and Y is a
real L1-predual. Let A ⊆ Y be a compact set and r : A → R+ be such that
∩a∈ABX [a, r(a)] 6= ∅. Let y ∈ ∩a∈ABY [a, r(a) + ε] for some ε > 0. Then there
exists z ∈ ∩a∈ABY [a, r(a)] such that ‖y − z‖ ≤ ε.

Proof. Since ∩a∈ABX [a, r(a)] 6= ∅, and intersection of intervals is an interval,
for any y∗ ∈ B(Y ∗), ∩a∈ABR[y∗(a), r(a)] 6= ∅ and is a closed interval. As y∗(y) ∈
∩a∈ABR[y∗(a), r(a) + ε] for any y∗ ∈ B(Y ∗), the family {BY [y, ε], BY [a, r(a)] :
a ∈ A} is a weakly intersecting family of balls in Y . Since Y is a L1-predual,
BY [y, ε] ∩ ∩a∈ABY [a, r(a)] 6= ∅. �

Proposition 4.9. A Banach space X is a real L1-predual if and only if for
each paracompact space T , C(T,X) is a real L1-predual.

Proof. Since X is 1-complemented in C(T,X), hence a K-C-subspace, by
Proposition 4.4, if C(T,X) is an L1-predual, then so is X.

Conversely, suppose X is a real L1-predual. Let Z = C(T,X),
{f1, f2, . . . , fn} ⊆ Z and r1, r2, . . . , rn > 0 be such that the family {BZ [fi, ri] :
i = 1, . . . , n} intersects weakly. Then for each t ∈ T , the family {BX [fi(t), ri] : i =
1, . . . , n} intersects weakly, and since X is a real L1-predual, they intersect in X.
Consider the multi-valued map F : T → X given by F (t) = ∩n

i=1BX [fi(t), ri]. Note
for each t, F (t) is a nonempty closed convex subset of X.

Claim : F is lower semicontinuous, that is, for each U open in X, the set
V = {t ∈ T : F (t) ∩ U 6= ∅} is open in T .

Let t0 ∈ V . Let x0 ∈ F (t0) ∩ U . Let ε > 0 be such that ‖x − x0‖ < ε implies
x ∈ U . Let W be an open subset of t0 such that t ∈ W implies ‖fi(t)−fi(t0)‖ < ε/2
for all i = 1, . . . , n. We will show that W ⊆ V .

Let t ∈ W . Then for any i = 1, . . . , n, ‖x0 − fi(t)‖ ≤ ‖x0 − fi(t0)‖+ ‖fi(t0)−
fi(t)‖ ≤ ri + ε/2. Therefore, x0 ∈ ∩n

i=1BX [fi(t), ri + ε/2]. By Lemma 4.8, there
exists z ∈ F (t) = ∩n

i=1BX [fi(t), ri] such that ‖x0−z‖ ≤ ε/2 < ε. Then z ∈ F (t)∩U ,
and hence, t ∈ V . This completes the proof of the claim.



12 BANDYOPADHYAY AND DUTTA

Now since T is paracompact, by Michael’s selection theorem, there exists g ∈ Z
such that g(t) ∈ F (t) for all t ∈ T . It follows that g ∈ ∩n

i=1BZ [fi, ri]. �

Remark 4.10. For T compact Hausdorff, this result follows from [13, Corollary
2, p 43]. But our proof is simpler.

5. Stability Results

In this section we consider some stability results. With a proof similar to [3,
Proposition 14], we first observe that

Proposition 5.1. K-IP is a separably determined property, i.e., if every sep-
arable subspace of a Banach space X have K-IP, then X also has K-IP.

Definition 5.2. [10] A subspace Y of a Banach space X is called a semi-L-
summand if there exists a (nonlinear) projection P : X −→ Y such that

P (λx + Py) = λPx + Py, and
‖x‖ = ‖Px‖+ ‖x− Px‖

for all x, y ∈ X, λ scalar.

In [3], it was shown that semi-L summands are F-C-subspaces. Basically the
same proof actually shows that

Proposition 5.3. A semi-L-summand is an A-C-subspace for any A.

Our next result concerns proximinal subspaces.

Definition 5.4. A subspace Z of a Banach space X is called proximinal if for
every x ∈ X, there exists z0 ∈ Z such that ‖x− z0‖ = d(x, Z) = infz∈Z ‖x− z‖.

The map PZ(x) = {z0 ∈ Z : ‖x − z0‖ = infz∈Z ‖x − z‖} is called the metric
projection.

Proposition 5.5. Let Z ⊆ Y ⊆ X, Z proximinal in X.
(a) Let A be a family of subsets of Y/Z. Let A′ be a family of subsets of
Y such that for any x ∈ X and A ∈ A, there exists A′ ∈ A′ such that for
any a + Z ∈ A, {a + PZ(x− a)} ∩A′ 6= ∅. Suppose Y is a A′-C-subspace
of X. Then Y/Z is a A-C-subspace of X/Z.

Let S be any of the families F , B or P.
(b) If Y is a S(Y )-C-subspace of X, then Y/Z is a S(Y/Z)-C-subspace of
X/Z.

(c) Suppose the metric projection has a continuous selection. Then, if Y
is a K(Y )-C-subspace of X, Y/Z is a K(Y/Z)-C-subspace of X/Z.

(d) Let Z ⊆ Y ⊆ X∗, Z w*-closed in X∗. If Y is a S(Y )-C-subspace
of X∗, then Y/Z is a S(Y/Z)-C-subspace of X∗/Z, and hence, has the
S(Y/Z)-IP.

(e) Let X have the S(X)-IP. Let M ⊆ X be a reflexive subspace. Then
X/M has the S(X/M)-IP.

Proof. (a). Let A ∈ A and x + Z ∈ X/Z. Choose A′ as above. Then,
for a + Z ∈ A, there exists z ∈ PZ(x − a) (depending on x and a) such that
a + z ∈ A′. Since Y is a A′-C-subspace of X, there exists y0 ∈ Y such that
‖y0 − a − z‖ ≤ ‖x − a − z‖ for all a + Z ∈ A. Clearly then ‖y0 − a + Z‖ ≤
‖y0 − a− z‖ ≤ ‖x− a− z‖ = ‖x− a + Z‖.
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If S is the family under consideration in (b) and (c) above and A = S(Y/Z),
then for any choice of A′ as above, S(Y ) ⊆ A′. Hence, (b) and (c) follows from
(a). For (d), we simply observe that any w*-closed subspace of a dual space is
proximinal. And (e) follows from (d). �

As in [3, Corollary 4.6], we observe

Proposition 5.6. Let Z ⊆ Y ⊆ X, Z proximinal in Y and Y is a semi-L-
summand in X. Then Y/Z is a P-C-subspace of X/Z.

Let us now consider the c0 or `p sums.

Theorem 5.7. Let Γ be an index set. For all α ∈ Γ, let Yα be a subspace of
Xα. Let X and Y denote resp. the c0 or `p (1 ≤ p ≤ ∞) sum of Xα’s and Yα’s.

(a) For each α ∈ Γ, let Aα be a family of subsets of Yα such that {0} ∈ Aα

and for any A ∈ Aα, there exists B ∈ Aα such that A ∪ {0} ⊆ B.
Let A be a family of subsets of Y such that for any α ∈ Γ, the α-

section of any A ∈ A belongs to Aα.
Then Y is an A-C-subspace of X if and only if for each α ∈ Γ, Yα is

an Aα-C-subspace of Xα.
Let S be any of the families F , K, B or P.

(b) Y is a S(Y )-C-subspace of X if and only if for any α ∈ Γ, Yα is a
S(Yα)-C-subspace of Xα.

(c) The S-IP is stable under `p-sums (1 ≤ p ≤ ∞).

Proof. (a). The proof is very similar that of to [3, Theorem 4.7]. We omit
the details.

(c). Xα has S-IP if and only if Xα is a S-C-subspace of some dual space Y ∗
α .

Now the `p-sum (1 ≤ p ≤ ∞) of Y ∗
α ’s is a dual space. �

Remark 5.8. The result for F-IP has already been noted by [18] with a much
different proof. The stability of the P-IP under `1-sums is noted in [15] again with
a different proof.

[18] also notes that F-IP is stable under c0-sum. And Corollary 4.3 shows
that c0 has the K-IP. However, we do not know if the K-IP is stable under c0-
sums. As for the B-IP or P-IP, we now show that c0-sum of any infinite family of
Banach spaces lacks the B-IP, and therefore, also the P-IP. This is quite similar to
Example 2.9.

Proposition 5.9. Let Γ be an infinite index set. For any family of Banach
spaces Xα, α ∈ Γ, X = ⊕c0Xα lacks the B-IP.

Proof. For each α ∈ Γ, let xα be an unit vector in Xα and define eα ∈ X by

(eα)β =
{

xα if β = α
0 otherwise

Then the set A = {eα : α ∈ Γ} is bounded and the balls BX∗∗ [eα, 1/2] intersect at
the point (1/2xα) ∈ X∗∗, but the balls BX [eα, 1/2] cannot intersect in X. �

Remark 5.10. As before, taking A∪{0}, it follows that X lacks the A-IP even
for A = weakly compact sets.

Coming to function spaces, we note the following general result.
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Proposition 5.11. Let Y be a subspace of a Banach space X and A be a family
of subsets of Y .

(a) For any topological space T , if C(T, Y ) is a A-C-subspace of C(T,X),
then Y is a A-C-subspace of X. Moreover, if C(T,X) has A-IP, X has
A-IP.

(b) Let (Ω,Σ, µ) be a probability space. If for some 1 ≤ p < ∞, Lp(µ, Y ) is
a A-C-subspace of Lp(µ,X), then Y is a A-C-subspace of X. Moreover,
if Lp(µ,X), has A-IP, then X has A-IP.

Proof. For (a) and (b), let F (X) denote the corresponding space of functions
and identify X with the constant functions. In (a), point evaluation and in (b),
integral over Ω gives us a norm 1 projection from F (X) onto X. Thus X inherits
A-IP from F (X).

Now suppose F (Y ) is an A-C-subspace of F (X). Let P : F (Y ) → Y be the
above norm 1 projection. Let x ∈ X and A ∈ A. Then, there exists g ∈ F (Y ) such
that ‖g−a‖ ≤ ‖x−a‖ for all a ∈ A. Let y = Pg. Then, ‖y−a‖ ≤ ‖g−a‖ ≤ ‖x−a‖
for all a ∈ A. �

The following Proposition was proved in [3].

Proposition 5.12. (a) Let X has Radon Nikodym Property and is 1-
complemented in Z∗ for some Banach space Z. Then for 1 < p < ∞,
LP (µ,X) is 1-complemented in Lq(µ, Y )∗ (1/p + 1/q = 1), and hence has
the P-IP.

(b) Suppose X is separable and 1-complemented in X∗∗ by a projection P
that is w*-w universally measurable. Then for 1 ≤ p < ∞ LP (µ,X) is
1-complemented in Lq(µ,X∗)∗ (1/p + 1/q = 1), and hence has the P-IP.

Since the B-IP or P-IP is inherited by 1-complemented subspaces and c0 lacks
the B-IP, the next result follows essentially from the arguments of [17].

Proposition 5.13. (a) Let X be a Banach space containing c0 and
let Y be any infinite dimensional Banach space. Then X ⊗ε Y fails the
B-IP and P-IP.

(b) If C(K, X) has the B-IP, then either K is finite or X is finite dimen-
sional. C(K, X) has the P-IP if and only if either (i) K is finite and X
has the P-IP or (ii) X is finite dimensional and K is extremally discon-
nected.

(c) For any nonatomic measure space (Ω,Σ, µ) and a Banach space X
containing c0, L1(µ,X) fails the B-IP.

In the next Proposition, we prove a partial converse of Proposition 5.11(a)
when Y is finite dimensional and K is compact and extremally disconnected.

Proposition 5.14. Let S be any of the families F , K, B or P. Let Y be a finite
dimensional a S(Y )-C-subspace of a Banach space X. Then for any extremally
disconnected compact space K, C(K, Y ) is a S(C(K, Y ))-C-subspace of C(K, X).

Proof. We argue similar to the proof of [3, Proposition 4.11]. Let K be
homeomorphically embedded in the Stone-Cech compactification β(Γ) of a discrete
set Γ and let φ : β(Γ) → K be a continuous retract. Let A ∈ S(C(K, Y )) and
g ∈ C(K, X). Note that since Y is finite dimensional, by the defining property
of β(Γ), any Y -valued bounded function on Γ has a norm preserving extension
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in C(β(Γ), Y ). Thus C(β(Γ), Y ) can be identified with
⊕

`∞(Γ) Y . Lift A to this
space. In view of Theorem 5.7, this space is S(Y )-C-subspace of ⊕∞X. This latter
space contains C(β(Γ), X). Thus by composing the functions with φ, we get a
f ∈ C(K, Y ) such that ‖f − h‖ ≤ ‖g − h‖ for all h ∈ A. Hence the result. �

And now for a partial converse of Proposition 5.11(b).

Theorem 5.15. Let Y be a separable subspace of X. If Y is a P-C-subspace
of X, then for any standard Borel space Ω and any σ-finite measure µ, Lp(µ, Y ) is
a P-C-subspace of Lp(µ,X).

Proof. Let f ∈ Lp(µ,X). Since Y is a P-C-subspace of X, for each x ∈ X,
∩y∈Y BY [y, ‖x− y‖] 6= ∅.

Define a multi-valued map F : Ω −→ Y , by

F (t) =

{ ⋂
y∈Y BY [y, ‖f(t)− y‖] if f(t) ∈ X \ Y

{f(t)} if f(t) ∈ Y

Let G = {(t, z) : z ∈ F (t)} be the graph of F .
Claim : G is a measurable subset of Ω× Y .
To establish the claim, we show that Gc is measurable. Since Y is separable,

let {yn} be a countable dense set in Y . Observe that z /∈ F (t) if and only if
either f(t) ∈ Y and z 6= f(t) or f(t) ∈ X \ Y and there exists yn such that
‖z − yn‖ > ‖f(t)− yn‖. And hence,

Gc =
{

f(t) ∈ Y and z 6= f(t)
}
∪

⋃
n≥1

{
f(t) ∈ X \ Y and ‖z − yn‖ > ‖f(t)− yn‖

}
is a measurable set.

By von Neumann selection theorem, there is a measurable function g : Ω −→ Y
such that (t, g(t)) ∈ G for almost all t ∈ Ω.

Observe that ‖g(t)‖ ≤ ‖f(t)‖ for almost all t. Hence g ∈ Lp(µ, Y ). Also for
any h ∈ Lp(µ, Y ) we have ‖g(t) − h(t)‖ ≤ ‖f(t) − h(t)‖ for almost all t. Thus,
‖g − h‖p ≤ ‖f − h‖p for all h ∈ Lp(µ, Y ). �

Question 5.16. Suppose Y is a separable K-C-subspace of X. Let (Ω,Σ, µ) be
a probability space. Is Lp(µ, Y ) a K-C-subspace of Lp(µ,X)?

Remark 5.17. This question was answered in positive in [3] for F-C-subspaces
and we did it for P-C-subspaces. Both the proofs are applications of von Neumann
selection Theorem. The problem here is for a compact set A in Lp(µ, Y ) and ω ∈ Ω
the set {f(ω) : f ∈ A} need not be compact in Y .
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