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GENERALIZED SUBDIFFERENTIAL
OF THE DISTANCE FUNCTION

S. DUTTA

(Communicated by Jonathan M. Borwein)

Abstract. We derive the proximal normal formula for almost proximinal sets
in a smooth and locally uniformly convex Banach space. Our technique leads
us to show the generic Fréchet smoothness of the distance function in the case
the norm is Fréchet smooth, and we derive a necessary and sufficient condition
for the convexity of a Chebyshev set in a Banach space X with norms on X
and X∗ locally uniformly convex.

1. Introduction

Let X be a real Banach space. The closed unit ball of X will be denoted by X1.
For a closed set K in X and x ∈ X, we denote the distance function of K at x
by dK(x) = inf{‖x − k‖ : k ∈ K}. dK is a 1-Lipschitz function on X. The metric
projection of x onto K is PK(x) = {k ∈ K : ‖x− k‖ = dK(x)}. The set K is called
proximinal (Chebyshev) if for every x ∈ X \K, PK(x) is nonempty (singleton). K
will be called almost proximinal if PK(x) is nonempty for a dense set of x ∈ X \K.

Let h : X → R be a Lipschitz function. For x, y ∈ X we define

h0(x, y) = lim sup
z→x, t→0+

h(z + ty) − h(z)
t

and the generalized subdifferential of h at x ∈ X is defined as

∂h(x) = {f ∈ X∗ : f(y) ≤ h0(x, y) ∀y ∈ X}.
Given a nonempty closed set K in X and the distance function dK at x there is

a geometrical object called the normal cone at x which is defined as

NK(x) =
⋃
λ≥0

λ∂dK(x)
w∗

,

the w∗-closed convex cone generated by ∂dK(x). In R
n, the generalized subdiffer-

ential of dK at x ∈ bdyK has a geometrical formulation as the convex hull of the
origin and the cluster points of vn

‖vn‖ where vn ⊥ K at points xn ∈ bdyK as xn → x

and ‖vn‖ → 0. The corresponding expression for the normal cone NK(x) in terms
of approximating normals to K in R

n is called the proximal normal formula.
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The best known infinite-dimensional formulation of the proximal normal formula
in Banach space was given by Borwein and Giles in [1]. In particular they derived
the formula for two different cases: For an almost proximinal set using uniform
Gâteux smoothness of norm on X and for nonempty closed sets in a smooth reflexive
Banach space with Kadec norm.

In the present note, we show that one can obtain the proximal normal formula
for an almost proximinal set if the norm on X is smooth and locally uniformly
convex. Our technique is based on observing density of the set E1(K), where
E1(K) denotes the set of points in X \K for which every minimizing sequence in K
converges to a unique nearest point. In the first section, we show that in a smooth
Banach space if E1(K) is dense, then we can give an explicit description of the
generalized subdifferential of the distance function and thereby obtain the proximal
normal formula. In the second section, we show that for any almost proximinal set
K in X, a sufficient condition for E1(K) to be dense is the local uniform convexity
(LUR) of the norm on X.

Differentiability properties of the distance function had been of great interest
in studies in optimization theory as it relates to the famous problem of convexity
of Chebyshev sets. The landmark theorem in this direction is that of Vlasov [5]:
If X∗ is strictly convex, then every Chebyshev set in X with continuous metric
projection is convex. Fitzpatrick [4] observed that in a Banach space with both the
norms on X and X∗ Fréchet smooth, a differentiability condition on the distance
function implies the convexity of Chebyshev sets. Note that Fréchet smoothness of
the norm on X∗ already implies reflexivity of X. Here we show that our technique
leads to generic (Fréchet) smoothness of the distance function in the case the norm
is (Fréchet) smooth. This improves a lot on the result of [1] where the authors
derived it for Hilbert spaces, and this helps us to give a necessary and sufficient
condition for the convexity of a Chebyshev set in Banach spaces where the norms
on X and X∗ are LUR.

2. The proximal normal formula

We take E(K) to be the set of points in X \ K which has nearest points in K
and E1(K) to be the set x ∈ E(K) such that every minimizing sequence for x in
K converges to a unique nearest point of x. By D we will mean the duality map
on X, that is, D(x) = {f ∈ X∗

1 : f(x) = ‖x‖}. For explanations of the properties
of the generalized subdifferential we use in this note, see [2].

Lemma 1. Let x ∈ E1(K). Then

∂dK(x) ⊆ D(x − PK(x)).

Equality holds if the norm on X is smooth at x−PK(x). Moreover, if the norm on
X is Fréchet smooth at x − PK(x), dK is Fréchet smooth at x.

Proof. Let f ∈ ∂dK(x). Since D(x − PK(x)) is a w∗-compact convex set, it is
enough to show that given any y ∈ X, ‖y‖ = 1, there is a g ∈ D(x − PK(x)) such
that f(y) ≤ g(y).

By definition of ∂dK(x), given any ε > 0 there exist zn → x and tn → 0+ such
that

f(y) − ε ≤ dK(zn + tny) − dK(zn)
tn

.
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Get kn ∈ K such that ‖zn − kn‖ < dK(zn) + t2n. Then {kn} is minimizing for x
as well and hence kn → PK(x). Now

f(y) − ε <
‖zn + tny − kn‖ − ‖zn − kn‖ + t2n

tn
.

By the mean value property of subdifferentials (see [2, Theorem 2.3.7]), there
exist gn ∈ D(wn) such that gn(tny) = ‖zn + tny−kn‖−‖zn −kn‖, where wn lies on
the line [zn − kn, zn + tny − kn]. Thus f(y)− ε < gn(y) + tn. Let g be a w∗-cluster
point of {gn}. Since wn → x − PK(x) in norm, by the upper semicontinuity of D,
we have g ∈ D(x − PK(x)) and f(y) − ε ≤ g(y). Thus we have the desired result.

If the norm on X is smooth at x−PK(x), D(x−PK(x)) is a singleton and so is
∂dK(x). Note that this implies dK is smooth at x.

If the norm is Fréchet smooth at x − PK(x), note that for f ∈ ∂dK(x) and any
z ∈ X, ‖z‖ = 1, we have

f(z) = lim
n→∞

dK(x + 1
nz) − dK(x)
1/n

≤ lim
n→∞

‖x − PK(x) + 1
nz‖ − ‖x − PK(x)‖
1/n

where the right-hand side converges to f(z) uniformly over all ‖z‖ = 1. Thus dK

is Fréchet smooth at x. �

Let E1(K) be dense in X \ K. For x ∈ X \ K, denote by Dx(K) the w∗-cluster
points of D(yn − PK(yn)), where yn ∈ E1(K) and yn → x. Our main result in this
section is the following:

Theorem 2. Let X be smooth. Let K be a closed set in X such that E1(K) is
dense in X \ K. Then for any x ∈ X \ K we have

∂dK(x) = cow∗{Dx(K)}.
Thus we have a proximal normal formula in X for X smooth. This reads as

follows:
Suppose K is a closed set in X such that E1(K) is dense in X \ K. Then for

x ∈ bdyK, NK(x) is the w∗-closed convex cone generated by the origin and Dx(K).

Proof. Let f ∈ Dx(K). Then there is a sequence {yn} ∈ E1(K), yn → x, fn ∈
D(yn−PK(yn)) such that fn → f in the w∗-topology. By Lemma 1, fn ∈ ∂dK(yn).
By upper semicontinuity of ∂dK , we have f ∈ ∂dK(x). Since ∂dK(x) is a w∗-closed
convex set, cow∗{Dx(K)} ⊆ ∂dK(x).

Conversely, let f ∈ ∂dK(x). As before, it is enough to show that for any y ∈ X,
‖y‖ = 1, there exists g ∈ cow∗{Dx(K)} such that f(y) ≤ g(y).

Given ε > 0 there are zn ∈ X \ K, zn → x and tn → 0+ such that for each n,

f(y) − ε/2 ≤ dK(zn + tny) − dK(zn)
tn

.

Choose yn ∈ E1(K) such that ‖zn + tny − yn‖ < t2n. Then dK(zn + tny) ≤
dK(yn) + t2n and dK(zn) > dK(yn − tny) − t2n. Thus for all sufficiently large n,

f(y) − ε/2 ≤ dK(yn) − dK(yn − tny)
tn

+ 2tn ≤ d0
K(yn, y) + ε/2 + 2tn.

Since by Lemma 1, ∂dK(yn) = D(yn − PK(yn)) is a singleton we have d0
K(yn, y) =

gn(y) where gn(yn − PK(yn)) = ‖yn − PK(yn)‖. Let g be a w∗-cluster point of gn.
We then have f(y) − ε ≤ g(y) and the result follows. �
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3. Density of E1(K)

In this section we investigate sufficient conditions on X such that for every almost
proximinal set K, E1(K) is dense in X \K. As mentioned in the introduction, this
sufficient condition turns out to be local uniform convexity (LUR) of the norm.

In the following proposition we collect some properties of the set E1(K). Given
x ∈ X \ K and δ > 0 we define PK(x, δ) = {k ∈ K : ‖x − k‖ < dK(x) + δ}.

Proposition 3. Suppose K is a closed set in X.
(a) x ∈ E1(K) if and only if given any ε > 0 there is a δ > 0 such that

diameter PK(x, δ) < ε.
(b) If x ∈ E1(K), then the metric projection PK is single-valued and continuous

at x.
(c) E1(K) is a Gδ in X.

Proof. (a). This follows from the definition of E1(K).
(b). Again, PK is a singleton follows from the definition. To show continuity, let

xn → x. Then any kn ∈ PK(xn) is a minimizing sequence for x as well and hence
converges to PK(x).

(c). For each n ≥ 1, consider the set Gn = {x ∈ X \K : there exists δ > 0, such
that diameter PK(x, δ) < 1/n}. From (a) it follows that E1(K) =

⋂
n≥1 Gn. We

need to show each Gn is open.
Let x ∈ Gn. Thus there is a δ > 0 such that diaPK(x, δ) < 1/n. Choose

0 < α < δ/2 and β = δ − 2α. Then for y ∈ X \ K, ‖y − x‖ < α and k ∈ PK(y, β)
we have ‖x − k‖ < ‖y − k‖ + α < dK(y) + β + α < dK(x) + β + 2α = dK(x) + δ.
Thus PK(y, β) ⊆ PK(x, δ) and thus y ∈ Gn as well. This shows Gn is open. �

We now present our main theorem of this section:

Theorem 4. Let X be a Banach space with LUR norm and K be a closed almost
proximinal set in X. Then E1(K) is a dense Gδ in X \ K.

Remark 5. In conjunction with Theorem 2 we observe that if the norm on X is
both LUR and smooth, for every almost proximinal set K we have the proximal
normal formula.

The proof of the following corollary follows from Lemma 1 and Proposition 3.
In Theorem 10 of [1] the authors showed this for Hilbert spaces.

Corollary 6. Let the norm on X be LUR and (Fréchet) smooth. Then the distance
function generated by an almost proximinal set K is generically (Fréchet) smooth
on X \ K.

The proof of Theorem 4 is based on the observation that if we consider our set
K to be X minus the open unit ball, then any point in the open unit ball has a
nearest point on the unit sphere and if the space is LUR, for any such point except
the origin, every minimizing sequence converges.

Proof of Theorem 4. By Proposition 3, it suffices to show that E1(K) is dense in
E(K). So, let x ∈ E(K) and k0 ∈ PK(x). We show that given any 0 < ε < 1/3,
the point x0 = x − ε(x − k0) ∈ E1(K).

We note that dK(x0) = (1−ε)dK(x). Let {kn} be a minimizing sequence for x0.
It is easy to observe that ‖x − kn‖ → dK(x) as well. Now, ‖x0 − kn‖ → dK(x0),
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that is,
‖kn − x + ε(x − k0)‖ → (1 − ε)dK(x).

Since

1 − ε ≤
∥∥∥∥ kn − x

‖x − kn‖
− ε

k0 − x

dK(x)

∥∥∥∥
≤ 1

dK(x)
‖kn − x − ε(k0 − x)‖ + ‖kn − x‖

[
1

dK(x)
− 1

‖x − kn‖

]
,

we have ∥∥∥∥ kn − x

‖x − kn‖
− ε

k0 − x

dK(x)

∥∥∥∥ → 1 − ε.

Let un = (kn −x)/‖x−kn‖, u0 = (k0−x)/dK(x) and λ = (1−2ε)/(1−ε). Note
that, since e < 1/3, 1/2 < λ < 1. Then ‖un‖ = ‖u0‖ = 1 and

‖2un − [λun + (1 − λ)u0]‖ → 1.

Since
‖2un − (λun + (1 − λ)u0)‖ ≥ 2 − ‖λun + (1 − λ)u0‖ ≥ 1

we have ‖λun + (1 − λ)u0)‖ → 1 as well. Let

fn(λ) = 1 − ‖λun + (1 − λ)u0‖.
Using convexity of the norm, we get that

‖λun + (1 − λ)u0‖ ≤ (2 − 2λ)
∥∥∥∥un + u0

2

∥∥∥∥ + (2λ − 1).

It follows that
fn(λ) ≥ (2 − 2λ)fn(1/2) ≥ 0.

Since fn(λ) → 0, we have that fn(1/2) → 0, that is, ‖un + u0‖ → 2. Since X is
LUR, un → u0 and hence, kn → k. �

We conclude this note with a result on the continuity of metric projection on
Chebyshev sets. Our result, in conjunction with the result of Vlasov quoted in the
introduction, gives a necessary and sufficient condition for convexity of Chebyshev
sets in a Banach space X such that both X and X∗ are LUR. We believe this
improves upon the known results in this direction.

Proposition 7. Suppose the norm on X is both LUR and Fréchet smooth. Then
for a Chebyshev set K ⊆ X and x ∈ X \K, the metric projection PK is continuous
at x if and only if ∂dK(x) is a singleton.

Proof. Let K ⊆ X be a Chebyshev set and x ∈ X \K be such that PK is continuous
at x. From Theorem 2 and Theorem 4, we have ∂dK(x) = cow∗{Dx(K)}.

Now, let f ∈ Dx(K). By definition of Dx(K), there exists {xn} ⊆ E1(K),
xn → x and fn ∈ D(xn − PK(xn)) such that fn → f in the w∗-topology. But by
continuity of PK , xn − PK(xn) → x − PK(x). Therefore, f ∈ D(x − PK(x)). That
is, Dx(K) ⊆ D(x − PK(x)). Hence, ∂dK(x) = cow∗{Dx(K)} ⊆ D(x − PK(x)) as
well. Now, since X is smooth, ∂dK(x) must be a singleton.

Conversely, let K ⊆ X be a Chebyshev set and x ∈ X \ K be such that ∂dK(x)
is a singleton. By [1, Lemma 1], this implies ∂dK(x) ⊆ D(x − PK(x)). Since X is
smooth, we actually have ∂dK(x) = D(x − PK(x)).

Now, let yn ∈ X \ K, yn → x. We want to show PK(yn) converges to PK(x).
Define xn = yn − 1

n (yn − PK(yn)). By the proof of Theorem 4, xn ∈ E1(K) and
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PK(xn) = PK(yn) for all n > 3. Note that xn → x as well and by Theorem 1,
∂dK(xn) ⊆ D(xn − PK(xn)). Let fn ∈ ∂dK(xn) and let f be a w∗-cluster point of
fn. Then by upper semicontinuity of ∂dK , f ∈ ∂dK(x) = D(x − PK(x)). Since X
is Fréchet smooth, this would imply that fn → f in norm as well. Hence,

f

(
xn − PK(xn)

‖xn − PK(xn)‖

)
→ 1.

Now since the norm on X is LUR, f strongly exposes x−PK(x)
‖x−PK(x)‖ . Thus

xn − PK(xn)
‖xn − PK(xn)‖ → x − PK(x)

‖x − PK(x)‖ .

Since ‖xn − PK(xn)‖ = dK(xn) → dK(x) = ‖x − PK(x)‖, we have PK(xn) =
PK(yn) → PK(x) as desired. �

Theorem 8. Suppose the norms on X and X∗ are LUR. Then a Chebyshev set K
is convex in X if and only if ∂dK(x) is a singleton for all x ∈ X \ K.

Proof. If K is convex, then ∂dK coincides with the usual subdifferential of dK , and
if the norm on X∗ is LUR, then dK is Fréchet smooth at each x ∈ X \ K (see [3,
page 365]). Thus ∂dK(x) is a singleton for each such x.

Conversely, let ∂dK(x) be a singleton for each x ∈ X \K. By Proposition 7, we
have that the metric projection on K is continuous. Thus by Vlasov’s Theorem, K
is convex. �

Remark 9. (a) dK being a Lipschitz function, the condition ∂dK(x) is a singleton
for all x ∈ X \ K reduces to strict differentiability of dK (see [2], page 30 for
definition and Proposition 2.2.4 for the equivalence of these two). In particular,
this is satisfied when dK is continuously differentiable on X \ K.

(b) In [4, Theorem 3.6], the author showed that for a closed set K in a Banach
space X with the norms of X and X∗ Fréchet differentiable, if for each x ∈ X \ K
there exists a unit vector u ∈ X such that the directional derivative DudK(x) = 1,
then K is convex. A close look at the proof given in that paper actually shows
that this condition implies E1(K) = X \ K and thus the set is Chebyshev and by
Lemma 1 we also have that ∂dK(x) is a singleton for each x ∈ X \ K. Thus the
result follows as a simple corollary of Theorem 8.
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