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Strongly Proximinal Subspaces in Banach Spaces

S. Dutta and Darapaneni Narayana

Abstract. We give descriptions of SSD- and QP -points in C(K)-spaces and
use this to characterize strongly proximinal subspaces of finite codimension

in L1(µ). We provide some natural class of examples of strongly proximi-

nal subspaces which are not necessarily finite codimensional. We also study
transitivity of strong proximinal subspaces of finite codimension.

1. Introduction

Let X be a Banach space and Y closed subspace of X. The metric projection
onto Y is the set valued map defined by PY (x) = {y ∈ Y : ‖x − y‖ = dist(x, Y )}
for x ∈ X. Y is said to be proximinal if PY (x) 6= ∅ for all x ∈ X.

For a Banach space X, we denote the closed unit ball and the unit sphere by
BX and SX respectively. We restrict ourselves to real scalars. All subspaces we
consider are assumed to be closed.

In [9, 10] the following stronger version of proximinality was considered:

Definition 1.1. Let Y be a closed subspace in a Banach space X and x ∈ X.
For δ > 0, consider the following set.

PY (x, δ) = {y ∈ Y : ‖x− y‖ < d(x, Y ) + δ}.
A proximinal subspace Y is said to be strongly proximinal at x ∈ X if given ε > 0
there exists a δ > 0 such that

PY (x, δ) ⊆ PY (x) + εBY .

It is to mention here that Vlasov studied the same notion under the name H-set
(see [17]).

In this paper we put together some new results related to strongly proxim-
inal subspaces in Banach spaces. We divide the main contents of this paper in
three sections. Section 2 contains descriptions of SSD-points and QP -points (see
Definition 1.2 below) in C(K)-spaces and characterization of strongly proximinal
subspaces of finite codimension in L1(µ). In section 3 we show that the notion of
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local U -proximinality studied by Lau in [15] is equivalent to strong proximinality.
This answers a question raised in [8, Remark 2.2]. We then present a general class
of example of strongly proximinal subspaces as subspaces which have 1 1

2 -ball prop-
erty (see below for details). In section 4 we discuss transitivity questions related to
strongly proximinal subspaces of finite codimension.

We now describe motivation and content of each section in detail.
In [8] strongly proximinal subspaces of finite codimension in subspaces of c0

were described. Similar description was given for K(`2) - the space of all compact
operators on `2 in [10]. Strongly proximinal subspaces of finite codimension in
C(K)-spaces were characterized recently in [4].

In all three examples mentioned above, the strongly proximinal subspaces of
finite codimension are described in terms of SSD-points and QP -points of the dual.

Definition 1.2. Let X be a Banach space.
(a) The norm ‖ · ‖ is said to be strongly subdifferentiable (in short SSD)
at x ∈ X if the one-sided limit

lim
t→0+

‖x + th‖ − ‖x‖
t

exists uniformly for h ∈ SX .
We say that x is an SSD-point of X if the norm is SSD at x. Recall

that the duality map JX∗ of X is defined as

JX∗(x) = {g ∈ B(X∗) : g(x) = ‖x‖} for x ∈ X.

In [5], it was shown that x is an SSD-point if and only if the duality map
JX∗ is (norm-norm) upper semi-continuous at x, that is,

for every ε > 0, there exists δ > 0 such that

JX∗(z) ⊆ JX∗(x) + εBX∗ for every z, ‖z − x‖ < δ, ‖z‖ = ‖x‖.

(b) We say that x is a QP -point of X if there exists δ > 0 such that

JX∗(z) ⊆ JX∗(x) for every z, ‖z − x‖ < δ, ‖z‖ = ‖x‖.

By [5], SSD-points of a dual Banach space X∗ attain their norms on X. It
was shown in [9, Lemma 3.3] that QP -points are SSD-points but the converse is
not true.

Following two propositions describe the connections between strongly proxim-
inal subspaces of finite codimension to QP - and SSD-points of the dual.

Proposition 1.3. [9] Let Y be a finite codimensional subspace of a Banach
space X. If Y is strongly proximinal then Y ⊥ is contained in the SSD-points of
X∗.

It remains an open question if the converse of Proposition 1.3 is true. The
following proposition gives sufficient condition for strong proximinality of subspaces
of finite codimension.

Proposition 1.4. [9] Let Y be a finite codimensional subspace of a Banach
space X such that Y ⊥ is contained in the QP points of X∗. Then Y is strongly
proximinal.
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In section 2 of this paper we show that SSD- and QP -points are same in C(K)-
spaces. As a corollary, we obtain description of all finite codimensional strongly
proximinal subspaces in L1(µ).

If Y is not of finite codimension in X, there exists no general criterion to
check for proximinality or strong proximinality of Y in X. One sufficient condition,
studied by Lau in [15] is the notion of locally U -proximinal and U -proximinal
subspaces.

Definition 1.5. Let Y be a proximinal subspace of a Banach space X. We
say that Y is locally U-proximinal if there exists a function ε : (X \Y )×R+ → R+

such that for each fixed x, ε(x, .) is continuous, increasing on δ and ε(x, δ) → 0 as
δ → 0 and

(1 + δ)BX ∩ (BYx
+ Y ) ⊆ BX + ε(x, δ)BY for all δ > 0

where Yx = span (Y, x).
Y is called U proximinal if the function ε can be chosen independent of x and

(1 + δ)BX ∩ (BX + Y ) ⊆ BX + ε(δ)BY

In section 3, we actually show that the notion of local U -proximinality studied
in [15] is equivalent to strong proximinality. Our next class of examples of strongly
proximinal subspaces are subspaces with 1 1

2 -ball property.

Definition 1.6. Y ⊆ X is said to have the 1 1
2 -ball property if x ∈ X, y ∈ Y ,

B(x, r)∩Y 6= ∅ and ‖x−y‖ < r+s, then the intersection Y ∩B(x, r)∩B(y, s) 6= ∅.

For example of subspaces with 11
2 -ball property see [18].

We show that if Y has 1 1
2 -ball property in X then Y is strongly proximinal

and the metric projection PY , considered as a single valued map from X to 2Y , is
2-Lipschitz continuous with respect to the Hausdorff metric defined on 2Y . Recall
that for A,B ∈ 2Y , the Hausdorff metric is given by

dH(A,B) = inf{r > 0 : A ⊆ B + rBY and B ⊆ A + rBY }.
To the end of section 3 we consider stability result related to function modules.

Definition 1.7. A function module is a triple (K, (Xk)k∈K , X), where K is a
non void compact Hausdorff space, (Xk)k∈K a family of Banach spaces and X, a
closed subspace of the space Π∞k∈KXk such that:

(a) X is a C(K)-module,
(b) For every x ∈ X, the map k → ‖x(k)‖k is upper semi continuous,
(c) Xk = {x(k) : x ∈ X} for every k ∈ K,
(d) {k ∈ K : Xk 6= {0}} = K.

Let Y ⊆ X. A triple (K, (Yk)k∈K , Y ) is called a sub-module of (K, (Xk)k∈K , X)
if it is a function module over K and for each k ∈ K, Yk ⊆ Xk.

Suppose X is a C(K) module over a compact Hausdorff space K and Y is a
closed subspace of X which is a sub-C(K) module. Suppose further that each fiber
Yk, k ∈ K has 1 1

2 -ball property in Xk. We show that in this case Y is strongly
proximinal in X and PY is 2-Lipschitz continuous with respect to the Hausdorff
metric on 2Y . As a corollary it follows that if Y has 1 1

2 -ball property in X, then
for every compact Hausdorff space K, C(K, Y ) is strongly proximinal in C(K, X)
and the metric projection is 2-Lipschitz continuous in Hausdorff metric.
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In section 4 we consider transitivity of the relation ‘strongly proximinal sub-
space of finite codimension’. The transitivity question in this context is the follow-
ing.

Suppose Y and M are finite codimensional subspaces of X such that Y ⊆ M ⊆
X; Y is strongly proximinal in M and M is strongly proximinal in X. When is Y
strongly proximinal in X?.

By [13] it follows that for strongly proximinal subspaces of finite codimension in
c0 transitivity holds. Similarly it was shown in [4] that transitivity holds for strongly
proximinal subspaces of finite codimension in C(K). Here we give an example to
show that the same fails in `1. We then consider transitivity of proximinal and
strongly proximinal subspaces of finite codimension in C(K). In particular we
show that there exist Y, M subspaces of finite codimension in C(K) such that Y
is a strongly proximinal in M and M is proximinal in X but Y is not proximinal
in C(K).

2. Strongly proximinal subspaces in L1(µ)

We first show that the SSD and QP -points coincide in C(K)-spaces.
Let f ∈ C(K). Consider the following set.

Pf = {k ∈ K : |f(k)| = 1 }.

Theorem 2.1. Let f ∈ C(K) with ‖f‖ = 1. Then the following assertions are
equivalent.

(a) Pf is a clopen set.
(b) f is a QP -point.
(c) f is an SSD-point.

Proof. (a) ⇒ (b) We first note that for any g ∈ C(K) we can write,

extJC(K)∗(g) = E1(g) ∪ E2(g),

where E1(g) = {δk : g(k) = 1} and E2(g) = {−δk : g(k) = −1}. Also note that
JC(K)∗(g) is the w∗-closed convex hull of extJC(K)∗(g).

For n ∈ N we take An = {k ∈ K : |f(k)| > 1− 1
n}. Then Pf = ∩n≥1An. Since

Pf is a clopen set, there exists n0 such that for all n ≥ n0, An = Pf .
Take δ < 1

n0
. Suppose g ∈ SC(K) is such that ‖f − g‖ < δ. If δk ∈ E1(g) then

g(k) = 1 and hence f(k) > 1−δ > 1− 1
n0

. Thus k ∈ Pf . Similarly if δk ∈ E2(g) then
f(k) < −1 + δ < −1 + 1

n0
and hence k ∈ Pf . This gives extJC(K)∗(g) ⊆ JC(K)∗(f)

and hence JC(K)∗(g) ⊆ JC(K)∗(f). This shows f is a QP -point.
(b) ⇒ (c) Follows from [9, Lemma 3.3].
(c) ⇒ (a) It is straightforward to verify that if f is an SSD-point of C(K) then

so is |f |. Since Pf = P|f |, without loss of generality we assume f ≥ 0.
By continuity of f , Pf is a closed set. To show Pf is also open, we claim that

there exists n0 such that An = Pf for all n ≥ n0.
If not, for each n we can find kn ∈ Un = f−1(1 − 1

n , 1). Choose hn ∈ SC(K)

such that hn(kn) = 1, h ≥ 0 and hn|Uc
n

= 0. Taking gn = f + (1− f)hn we obtain
that gn(kn) = 1, 1 ≥ gn(k) ≥ f(k) for all k ∈ K and gn → f in norm.

Let µ ∈ JC(K)∗(f). Since f ≥ 0, µ is supported on the set {k ∈ K : f(k) = 1}.
Thus for any n, dist(δkn

, JC(K)∗(f)) = 1. But δkn
∈ JC(K)∗(gn) and gn → f . This

contradicts f is an SSD-point. �
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Remark 2.2. In [3] Contreras, Paya and Werner obtained a characterization of
SSD-points in a C∗-algebra as elements which has clopen spectrum. Theorem 2.1
is a special case of their results. However, the proof presented here is simple and
straightforward.

For a finite measure space (T, µ), identifying L∞(µ) as a C(K) space, and
applying Theorem 2.1 we have that SSD and QP points coincide in L∞(T, µ).
This immediately provides the following characterization of strongly proximinal
subspaces on L1(µ).

Corollary 2.3. Let Y ⊆ L1(µ) be of finite codimension. Then the following
assertions are equivalent.

(a) Y is strongly proximinal.
(b) Every closed subspace Z of finite codimension with Y ⊂ Z ⊆ X is
strongly proximinal.

(c) Every hyperplane containing Y is strongly proximinal.
(d) Y ⊥ ⊆ {f ∈ L∞(µ) : f is an SSD point } = {f ∈ L∞(µ) : f is a QP point }.

Remark 2.4. It was shown in [12] that for any n ≥ 2, there exists a closed
subspace Y ⊆ L1(T, µ) of codimension n such that every closed subspace Z sat-
isfying Y ⊆ Z ⊆ L1(µ), Y 6= Z, is proximinal but Y is not proximinal in L1(µ).
Corollary 2.3 shows, however, that the situation is completely different for strongly
proximinal subspaces.

3. More Examples of Strongly Proximinal Subspaces

In this section we provide sufficient conditions for strong proximinality for sub-
spaces which are not necessarily of finite codimension.

We begin by showing that locally U -proximinal subspaces considered in [15]
are same as strongly proximinal subspaces. This answers a question raised in [9].

Proposition 3.1. A subspace Y of a Banach space X is locally U -proximinal
if and only if Y is strongly proximinal.

Proof. It was noted in [9, Remark 2.2] that locally U -proximinal subspaces
are strongly proximinal. We need to show the converse.

Suppose Y is strongly proximinal. Let x ∈ X \Y be such that dist(x, Y ) = 1 =
‖x‖. Choose f ∈ SY ∗

x
such that f(x) = 1 and Y = ker f .

For δ > 0 define,

ε(x, δ) = dH((1 + δ)BYx
∩ f−1(1), BYx

∩ f−1(1)).

It follows by [15, Proposition 2.2] that

ε(x, δ) = inf{r > 0 : (1 + δ)BX ∩ (BYx
+ Y ) ⊆ BX + rBY }.

Also, by [9] (see pages 110 and 111) one gets

x− PY (x) = BYx
∩ f−1(1); x− PY (x, δ) = (1 + δ)BYx

∩ f−1(1)

so that

ε(x, δ) = dH(x− PY (x), x− PY (x, δ)) = inf{r > 0 : PY (x, δ) ⊆ PY (x) + rBY }.
Strongly proximinality of Y now implies ε(x, δ) is a continuous increasing func-

tion of δ such that ε(x, δ) > 0 for every x ∈ X \ Y, δ > 0 and ε(x, δ) → 0 as δ → 0.
The proof is complete. �
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It was shown in [15, Theorem 3.3] that if Y is a locally U -proximinal subspace
in X and for each δ > 0, ε(·, δ) is an upper semi-continuous function on X \Y , then
PY is continuous in Hausdorff metric. It follows from this that if Y is U -proximinal
then PY is continuous in Hausdorff metric and has continous selection s : X → Y
(see [15, Theorem 3.4 and Corollary 3.5]).

Here are some examples of locally U -proximinal and U -proximinal subspaces.
See [15] for details.

Example 3.2. (a) M ⊆ X, M finite dimensional. Then M is locally
U -proximinal.

(b) Let X be a locally uniformly convex Banach space. Then every prox-
iminal subspace of X is locally U -proximinal.

(c) Let X be a uniformly convex Banach space. Then every proximinal
subspace is U -proximinal.

Our next class of examples of strongly proximinal subspaces are subspaces with
the 1 1

2 -ball property.

Proposition 3.3. Let X be a Banach space and Y ⊆ X a subspace with 1 1
2 -

ball property. Then Y is strongly proximinal and PY is 2-Lipschitz continuous in
Hausdorff metric.

Proof. The argument for strong proximinality of Y is essentially same as in
the proof of [11, Proposition II.1.1]. For completeness, we present the proof here.

Let x ∈ X, dist(x, Y ) = d. Let ε > 0 be given. Take y ∈ PY (x, ε). We will
produce an element y0 ∈ PY (x) such that ‖y−y0‖ < ε. To do this consider the balls
B(x, d + ε/2) and B(y, ε/2). Applying 1 1

2 -ball property of Y we get y1 ∈ Y such
that ‖x− y1‖ < d + ε/2 and ‖y1 − y‖ < ε/2. Now consider the balls B(x, d + ε/22)
and B(y, ε/22) and find y2 ∈ Y such that ‖x−y2‖ < d+ε/22 and ‖y2−y1‖ < ε/22.

Continuing, we get a a sequence (yn) ∈ Y such that ‖x − yn‖ < d + ε/2n and
‖yn − yn−1‖ < ε/2n. Thus the sequence (yn) is Cauchy and converges to some
y0 ∈ Y . Clearly y0 ∈ PY (x) and ‖y0 − y‖ <

∑∞
n=1 ε/2n = ε.

That PY is 2-Lipschitz continuous in Hausdorff metric follows from the same
line of argument as in [11, Proposition II.1.8 and Theorem II.1.9] (see also Remarks
on 1 1

2 -ball property in page 95 of [11]). �

Remark 3.4. As mentioned in [11, Page 55], the example of c0 in `∞ shows
that the constant 2 is optimal in Proposition 3.3 (recall that c0 is an M -ideal in `∞
and therefore satisfies 1 1

2 -ball property). Also as illustrated in [19], (see also [11,
Page 95]), there exists a Banach space X and closed subspace Y ⊆ X satisfying
1 1

2 -ball property but PY has no Lipschitz selection. Note that PY being 2-Lipschitz
continuous in Hausdorff metric, there always exists a continuous selection.

We now consider function modules. It is a remarkable result by E. Behrends
[1] that every Banach space has a representation as a function module over a choice
of a compact set K. The following theorem describes a general class of stability
result for subspaces with 1 1

2 -ball property.

Theorem 3.5. Let (K, (Xk)k∈K , X) be a function module and (K, (Yk)k∈K , Y )
is a sub-module such that for each k ∈ K for which Xk 6= {0}, Yk has 1 1

2 -ball
property in Xk. Then Y is a strongly proximinal subspace of X and the metric
projection PY is 2-Lipschitz continuous in Hausdorff metric.
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Proof. By Proposition 3.3 it follows that for every k ∈ K whenever Xk 6= {0},
Yk is a strongly proximinal subspace of Xk. Let x ∈ X be such that dist(x, Y ) = 1
and ε > 0 be given. We show that PY (x, ε) ⊆ PY (x) + εBY .

Let y ∈ PY (x, ε). For each k ∈ K, consider the balls B(x(k), 1 + ε
2 ) and

B(y(k), ε
2 ). Since dist(x, Y ) = 1, B(x(k), 1 + ε

2 )∩Y 6= ∅ and thus applying 1 1
2 -ball

property of Yk, there exists y′(k) ∈ Yk such that ‖x(k) − y′(k)‖k < 1 + ε
2 and

‖y(k)− y′(k)‖k < ε
2 . Let yk ∈ Y be such that yk(k) = y′(k). Take,

Vk = {s ∈ K : ‖x(s)− yk(s)‖s < 1 +
ε

2
}.

By upper semi-continuity of the map s → ‖(x−yk)‖s, it follows Vk is an open set
containing k. The collection {Vk : k ∈ K} forms an open covering of the compact
set K. Hence we can find {k1, k2, · · · , kn} such that K = ∪n

i=1Vki
. Let {fi}n

i=1 be a
partition of unity subordinate to {Vki}n

i=1. Put y1 =
∑n

i=1 fiyki . Then y1 satisfies
‖x− y1‖ < 1 + ε

2 and ‖y − y1‖ < ε
2 .

Thus y1 ∈ PY (x, ε
2 ). Repeating the argument above with the balls B(x(k), 1 +

ε
22 ) and B(y1(k), ε

22 ), we can find y2 ∈ PY (x, 1 + ε
22 ) such that ‖y1 − y2‖ < ε

22 .
Continuing, we obtain a sequence (yn) ⊆ Y such that yn ∈ PY (x, 1 + ε

2n ) and
‖yn−1 − yn‖ < ε

2n . Thus the sequence (yn) is Cauchy and it has a limit point
y0 ∈ Y . Clearly y0 ∈ PY (x) and ‖y − y0‖ <

∑
n

ε
2n = ε. This shows Y is strongly

proximinal.

To show PY is 2-Lipschitz continuous in Hausdorff metric let x1, x2 ∈ X and
ε > 0. Choose z ∈ PY (x1). We construct a Cauchy sequence (yn) ⊆ Y such
that ‖x2 − yn‖ ≤ dist(x2, Y ) + ε

2n and ‖z − yn‖ < 2‖x1 − x2‖ + ε. Note that for
k ∈ K, ‖x2(k)− z(k)‖ ≤ ‖x1 − x2‖+ dist(x1, Y ) ≤ 2‖x1 − x2‖+ dist(x2, Y ). Thus
we can apply 1 1

2 -ball property of Yk in Xk to the balls B(x2(k),dist(x2, Y ) + ε
2 )

and B(z(k), 2‖x1 − x2‖+ ε
2 ) to get a y′(k) ∈ Yk such that

‖x2 − y′(k)‖k < dist(x2, Y ) +
ε

2
and

‖z(k)− y′(k)‖k < 2‖x1 − x2‖+
ε

2
.

A similar argument as in the first part of the proof shows that there exists y1 ∈ Y
such that ‖x2 − y1‖ < dist(x2, Y ) + ε

2 and ‖z − y‖ < 2‖x1 − x2‖ + ε
2 . Now we

repeat the argument with balls B(x2(k),dist(x2, Y )+ ε
22 ) and B(y1,

ε
22 ). This gives

us y2 ∈ Y such that ‖x2 − y2‖ < dist(x2, Y ) + ε
22 and ‖y1 − y2‖ < ε

22 . Note that
this also implies

‖z − y2‖ ≤ ‖z − y1‖+ ‖y1 − y2‖

≤ 2‖x1 − x2‖+
ε

2
+

ε

22

≤ 2‖x1 − x2‖+ ε.

An induction argument as in the first part of the proof gives us the desired
conclusion. �

For a Banach space X and a compact Hausdorff space K, the space C(K, X)
is a natural function module over K where for each k ∈ K, Xk = X. The following
corollary is immediate from Theorem 3.5.
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Corollary 3.6. Let Y ⊆ X has 1 1
2ball property and K be a compact Hausdorff

space. Then C(K, Y ) is strongly proximinal in C(K, X) and the metric projection
in 2-Lipschitz continuous in Hausdorff metric.

Remark 3.7. It is proved in [2, Theorem 2.7] that even if Y is finite dimen-
sional, C(K, Y ) need not be proximinal in C(K, X). Thus in Corollary 3.6 the
assumption that 1 1

2 -ball property in X cannot be replaced by the assumption that
Y is strongly proximinal in X.

4. Transitivity of strongly proximinal subspaces of finite codimension

In this section we consider transitivity properties of strongly proximinal sub-
spaces of finite codimension. We say, in a Banach space X the relation ‘strongly
proximinal subspace of finite codimension’ is transitive if for any two subspaces
Y, M , both of finite codimension and Y ⊆ M ⊆ Z, the property that Y is strongly
proximinal in M and M is strongly proximinal in X implies that Y is strongly
proximinal in X.

The following definition is from [13].

Definition 4.1. Let f, g ∈ X∗. We say f is strongly orthogonal to g if f
attains its norm on ker g.

A set S ⊆ X∗ is called orthogonally linear if for f, g ∈ S, f strongly orthogonal
to g, we have span{f, g} ⊆ S.

Proposition 4.2. Suppose in a Banach space X the set of QP -points is same
as the set of SSD-points of X∗. If the relation ‘strongly proximinal subspace of
finite codimension’ is transitive in X then the set of QP -points of X∗ is orthogonally
linear.

Proof. Let f, g ∈ X∗ be QP -points of X∗ such that f is strongly orthogonal
to g. Take M = ker g and Y = ker g ∩ ker f . Then M is a strongly proximinal
subspace of X and since f attains its norm on M and its a QP -point X, f |M is a
QP -point of M as well. Thus Y is also strongly proximinal in M . By transitivity of
strong proximinality, Y is strongly proximinal in X. By Proposition 1.3 it follows
that Y ⊥ ⊆ { SSD points of X∗}. Since by our assumption, SSD and QP -points
coincide and span{f, g} ⊆ Y ⊥ we have the set of QP -points of X∗ is orthogonally
linear. �

In the following we give an example that on `∞, the set of QP -points is not
orthogonally linear. By Theorem 2.1 it follows that in `∞ SSD and QP -points
coincide. Thus by Proposition 4.2 the transitivity of strong proximinality will fail
in `1.

Example 4.3. Let f = (0, 1, 1, 1, · · · ) and g = (1,− 1
2 ,− 1

3 ,− 1
4 , · · · ) ∈ S`∞ . It

is easy to verify that f and g are QP -points of `∞. Also g attains its norm on ker f .
But f + g = (1, 1− 1

2 , 1− 1
3 , 1− 1

4 , · · · ) is clearly not a QP -point of `∞.

We now consider transitivity of proximinal and strongly proximinal subspaces
of finite codimension in C(K). It was shown in [4] that strong proximinality is
transitive for finite codimensional subspaces in C(K). We first give an example
to show that this is not true for proximinal subspaces. We will need the following
result by Garkavi which characterizes finite codimensional proximinal subspaces in
C(K). For µ ∈ C(K)∗, we denote by S(µ) the support of the measure µ.



STRONG PROXIMINAL SUBSPACES 9

Theorem 4.4. [6] Let Y be a closed subspace of finite codimension in C(K).
Then Y is proximinal if and only if the annihilator space Y ⊥ satisfies the following
three conditions :

(a) S(µ+) ∩ S(µ−) = ∅ for each µ ∈ Y ⊥ \ {0},
(b) µ is absolutely continuous with respect to ν on S(ν) for every pair µ, ν
in Y ⊥ \ {0},

(c) S(ν) \ S(µ) is closed for each pair µ, ν in Y ⊥ \ {0}.

Let NA(X) denote the set of norm attaining functionals on X. It is well
known that (see [7]) if Y is a proximinal subspace of finite codimension in X, then
Y ⊥ ⊆ NA(X).

Example 4.5. There exist Y, M subspaces of finite codimension in C(K) such
that Y is a proximinal in M and M is proximinal in X but Y is not proximinal in
C(K).

Select a sequence (kn) in K with kn 6= km for n 6= m, such that kn → k0.
Let k′ be a point different from the kn’s and k0. Consider µ =

∑∞
n=1

1
2n δkn

and
ν = 1

2 (δk0 − δk′) in C(K)∗. Take M = ker µ in C(K) and Y = ker ν|M . We have
µ ∈ NA(C(K)) and ν ∈ NA(M) with ‖µ‖ = ‖ν‖ = 1. Thus M is proximinal in
C(K) and Y is proximinal in M . But ν is not absolutely continuous with respect
to µ on S(µ). So by Theorem 4.4, Y is not proximinal in C(K).

The following example show that we cannot mix proximinality and strong prox-
iminality to obtain transitivity.

Example 4.6. There exist Y, M subspaces of finite codimension in C(K) such
that Y is a strongly proximinal in M and M is proximinal in X but Y is not
proximinal in C(K).

In Example 4.5 S(ν) is a finite set. By [4] it follows that ν is a QP -point of
C(K)∗. Since ν|M attains its norm over M . Hence ν|M is a QP -point M∗ as well.
So Y is strongly proximinal in M but Y is not proximinal in C(K).

Acknowledgements. We would like to thank the referee for pointing out
necessary corrections in the previous version of this paper. His suggestions also
improved the presentation of the materials contained in the paper.
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