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Abstract. We show that a separable Banach space with property (M∗) has a

Szlenk index equal to ω0, and a norm with an optimal modulus of asymptotic

uniform smoothness. From this we derive a condition on the Szlenk functions

of the space and its dual which characterizes embeddability into c0 or an `p-

sum of finite dimensional spaces. We also prove that two Lipschitz-isomorphic

Orlicz sequence spaces contain the same `p-spaces.

1. Introduction

Following Kalton [9], we say that a Banach space X has property (M) if whenever
u, v ∈ SX and (xn) ⊆ X is a w-null sequence in X, then

lim sup
n

‖u + xn‖ = lim sup
n

‖v + xn‖.

Property (M) has the following dual version which was studied by Kalton and
Werner in [10].

A Banach space is said to have Property (M∗) if whenever u∗, v∗ ∈ SX∗ and
(x∗n) ⊆ X∗ is a w∗-null sequence then

lim sup
n

‖u∗ + x∗n‖ = lim sup
n

‖v∗ + x∗n‖.

It was shown in [10] that if X is a separable Banach space having Property (M∗),
then X∗ is separable and X has Property (M). Conversely, if X is a separable
Banach space not containing `1 and has Property (M), then X has Property (M∗)
and hence X∗ is separable.

Suppose X is separable Banach space. Let K(X) and L(X) denote, respectively,
the space of compact linear operators and the space of bounded linear operators on
X. By [9, 10], it follows that if K(X) is an M -ideal in L(X) then X has Property
(M∗) and the converse holds true if the metric compact approximation property is
assumed (see [7, Chapter 6] for a detailed exposition of related results). While this
gives a general class of examples of Banach spaces with Property (M), [9] also shows
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that a Banach space with a subsymmetric basis and separable dual has Property
(M) if and only if X is isomorphic to an Orlicz sequence space hF .

The purpose of this article is to study separable Banach spaces with Property
(M) and their asymptotic modulus of uniform smoothness and asymptotic modulus
of uniform convexity. We note that Property (M) is an isometric notion, and we
will denote an M -norm on X by ‖ · ‖M .

We recall that for a Banach space X the modulus of asymptotic uniform smooth-
ness ρX and modulus of asymptotic uniform convexity δX are defined as follows.

Definition 1.1.

(a) For x ∈ SX , t > 0, and Y ⊆ X a closed subspace of finite codimension
denote

ρX(x, t, Y ) = sup
y∈Y,‖y‖≤t

‖x + y‖ − 1

and
ρX(x, t) = inf

Y,dim(X/Y )<∞
ρX(x, t, Y ).

Then define
ρX(t) = sup

x∈SX

ρX(x, t).

X is said to be asymptotically uniformly smooth if lim
t→0

ρX(t)
t

= 0 .

(b) For x ∈ SX , t > 0, and Y ⊆ X a closed subspace of finite codimension
denote

δX(x, t, Y ) = inf
y∈Y,‖y‖≥t

‖x + y‖ − 1

and
δX(x, t) = sup

Y,dim(X/Y )<∞
δX(x, t, Y ).

Then define
δX(t) = inf

x∈SX

δX(x, t).

X is said to be asymptotically uniformly convex if δX(t) > 0 for all t > 0.
(c) We define the modulus of w∗-asymptotic convexity of X by taking w∗-
closed finite codimensional subspaces Y of X∗ in the definition of δX∗ , and
we denote it by δ∗X .

Note that the quantity δ∗X corresponds to a property of X which is read on
the dual space (through the w∗ topology). If X is reflexive then the modulus of
asymptotic uniform convexity of X∗ coincide with the modulus of w∗-asymptotic
convexity of X. It is known (see [4, Proposition 2.8]) that ρX and δ∗X are equivalent
to dual Young functions of each other. We are interested in power type estimates of
these quantities. We say that ρX (respectively δ∗X) has power type p if there exists
a constant K such that ρX(t) ≤ Ktp (respectively δ∗X(t) ≥ Ktp) for all t > 0.
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We now define the Szlenk index and Szlenk power type and explain how they
relate to ρ and δ∗.

Let X be an infinite dimensional separable Banach space and K ⊆ X∗ a weak*-
compact set. The Szlenk derivation on K is given by the following procedure. Let
ε > 0 and set F0(ε) = K. If Fα(ε) is defined, take

Fα+1(ε) = {x∗ ∈ Fα(ε) : for any weak*-neighborhood V of x∗,diam(V ∩Fα(ε)) ≥ ε}.

If α < ω1 is a limit ordinal define Fα(ε) = ∩β<αFβ(ε).

Let F0(ε) = BX∗ . We define Sz(X, ε), the Szlenk index of X at ε to be the least
ordinal α < ω1 such that Fα(ε) = ∅ if such an ordinal exists. Otherwise we put
Sz(X, ε) = ω1. The Szlenk index of X is defined by Sz(X) = supε>0 Sz(X, ε). If
Sz(X, ε) < ω0 for each ε > 0, we have Sz(X) = ω0 and then we say X has minimal
Szlenk index.

It is a classical result of W. Szlenk that Sz(X) < ω1 if and only if X∗ is separable.
By compactness, Sz(X, ε) is always a successor ordinal.

When X has minimal Szlenk index, the Szlenk power type of X is defined as

p(X) = inf{p : sup
ε>0

εpSz(X, ε) < ∞}.

A submultiplicativity argument shows that every space X with minimal Szlenk
index has a finite Szlenk power type (see [4]).

The convex Szlenk index Cz(X, ε) is defined in [4] along the same lines as the
Szlenk index, except that in the derivation each time we take the w∗-closed convex
hull of the sets. It is obvious that Sz(X, ε) ≤ Cz(X, ε). However it can be shown
that for every space X with minimal Szlenk index, the Szlenk power types for Sz

and Cz are equal [4, Corollary 4.6].

Up to the notation, the following result was established in [4].

Theorem 1.2. [4, Theorem 4.7] Let X be a separable Banach space such that
Sz(X) = ω0. There exists an absolute constant C < 19200 such that for any
fixed t ∈ (0 , 1) there is a 2-equivalent norm ‖| · ‖| on X such that δ∗X,‖|·‖|(t) ≥
Cz(X, t/C)−1.

This result yields to a renorming (obtained through a series of dual norms) which
works for every t ∈ (0 , 1].

Theorem 1.3. [4, Theorem 4.8] Let X be a separable Banach space such that
Sz(X) = ω0 and let p(X) be the Szlenk power type of X. Then for any q > p(X),
there exists an equivalent norm ‖| · ‖| on X and a constant C > 0 such that for all
t ∈ (0, 1], δ∗X,‖|·‖|(t) ≥ Ctq.
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In Proposition 2.4 of this paper we show that the homogeneity provided by
property (M∗) implies that the norms with this property have optimal modulus of
asymptotic uniform smoothness and in the dual optimal modulus of w∗-asymptotic
uniform convexity.

It was shown in [5] (see also [8]) that a separable Banach space X embeds
in c0 if and only if ρX(t) = 0 for some t ∈ (0, 1) or equivalently if and only
if δ∗X(t) ≥ ct for some constant c. Note that the later condition implies X has
summable Szelenk index (see [4, Theorem 4.10]). However, the example of the
classical Tsirelson space T shows that summability of the Szlenk power type is not
sufficient for embeddability in c0. Similarly by [8], if X is a separable reflexive space
such that X has renorming with both modulus of asymptotic uniform smoothness
and modulus of asymptotic uniform convexity of power type p for some 1 < p < ∞
then X embeds in `p-sum of finite dimensional spaces and consequently p(X) = p.

As an application of Proposition 2.4 we show that for a separable Banach space
X with Property (M∗) the embeddability in c0 or `p-sum of finite dimensional
Banach spaces is completely characterized by the Szlenk functions of X and X∗.
Namely we show that if X is a separable Banach space with property (M∗) then X

embeds in c0 or `p-sum of finite dimensional Banach spaces if and only if for some
renorming of X the Szlenk power types p(X) and p(X∗) are actually attained and
p(X)−1 + p(X∗)−1 = 1 (where p(X∗) is to interpreted as ∞ when p(X) = 1 and
this is exactly the case where X embeds in c0).

A natural class of examples of separable Banach spaces with Property (M∗) are
Orlicz sequence spaces hF . As a second application of Proposition 2.4 we show
that if two Orlicz sequence spaces hF and hG are Lipschitz isomorphic then they
contain the same `p-spaces.

2. Main Results

We first show that if a Banach space X has Property (M∗), then for all x ∈ SX ,
ρ(x, t) = ρ(t). Similarly for all x∗ ∈ SX∗ , δ∗(x∗, t) = δ∗(t). The following lemma
also gives alternative descriptions of these two quantities which are more useful for
applications. We first introduce the following constants, as in section 2 of [4].

λX(t) is the least constant such that

lim sup ‖x + xn‖ ≤ 1 + λX(t)

whenever ‖x‖ = 1, ‖xn‖ ≤ t, xn → 0 weakly.

θX(t) is the greatest constant such that

lim inf ‖x∗ + x∗n‖ ≥ 1 + θX(t)
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whenever ‖x∗‖ = 1, ‖x∗n‖ ≥ t, x∗n → 0 weak*.

Lemma 2.1. Let X be a separable Banach space with Property (M∗) and ‖ · ‖M be
a norm with Property (M). Then for all x ∈ SX,‖·‖M

we have ρ‖·‖M
(x, t) = λ‖·‖M

(t)
and for all x∗ ∈ SX∗,‖·‖M

, δ∗‖·‖M
(x∗, t) = θ‖·‖M

(t).

Proof. We prove it for ρ. The proof for δ∗ is similar.

We first show that λ(t) ≥ ρ(x, t) for all x ∈ SX in any given norm.

Choose and fix x ∈ SX . Since X∗ is separable there exists an increasing sequence
(Fn) of finite dimensional subspaces of X∗ such that X∗ = ∪nFn. Fix (Zn) in X,
finite codimensional such that,

ρ(x, t) = lim
n

sup
y∈Zn,‖y‖≤t

‖x + y‖ − 1

Since ρ(x, t) is infimum over all finite codimensional subspaces, we have

ρ(x, t) = lim
n

sup
y∈Zn∩(Fn)⊥,‖y‖≤t

‖x + y‖ − 1

Fix yn ∈ Zn ∩ (Fn)⊥, ‖yn‖ ≤ t such that

‖x + yn‖+ 1/n ≥ sup
y∈Zn∩(Fn)⊥,‖y‖≤t

‖x + y‖

Note that yn
w→ 0. Taking lim sup we have λ(t) ≥ ρX(x, t).

To show the reverse inequality let ε > 0 be given and xn
w→ 0 and ‖xn‖M ≤ t.

For any Y ⊆ X with codimension of Y finite, there exists n0 such that whenever
n > n0, we have yn ∈ Y satisfying ‖xn − yn‖M < ε. Note that this also implies
‖yn‖M ≤ t + ε. Now for n > n0, ‖x + xn‖ ≤ ‖x + yn‖ + ε. Taking infimum over
all Y of finite codimension we have lim sup ‖x + xn‖M ≤ ρ‖·‖M

(x, t + ε) + ε + 1.
But by Property (M), the left hand side is same for all x ∈ SX,‖·‖M

. Hence
λ‖·‖M

(t) ≤ ρ‖·‖M
(x, t + ε) + ε. Since ε is arbitrary and ρ(x, ·) is a continuous

function in t, it follows that λ‖·‖M
(t) ≤ ρ‖·‖M

(x, t). �

As an immediate application we obtain that if X is a separable Banach space
with Property (M∗), then Sz(X) = ω0.

Proposition 2.2. Let X be a separable Banach space with Property (M∗). Then X

is asymptotically uniformly smooth in ‖ · ‖M -norm and consequently Sz(X) = ω0.

Proof. Since X∗ is separable X is an Asplund space. Choosing for Y the kernel
of the derivative, it is easy to observe that if x0 ∈ SX is a Frechet smooth point
of the norm then ρ(x0,t)

t →
t→0

0. But in ‖ · ‖M -norm ρ‖·‖M
(t) = ρ‖·‖M

(x, t) for any

x ∈ SX . Thus X is asymptotically uniformly smooth and by [4] it follows that
Sz(X) = ω0. �
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We now proceed to show that ρ‖·‖M
is essentially optimal among all equivalent

norms.

Proposition 2.3. Let X be a separable Banach space with Property (M∗) and ‖ · ‖
an equivalent norm on X. Let d be the Banach-Mazur distance between the two
norms. Then for any t > 0, we have

ρ‖·‖M
(t) ≤ ρ‖·‖(dt) and δ∗‖·‖M

(t) ≥ δ∗‖·‖(t/d) .

Proof. Let ε > 0 be given. Up to an isometric change of norms, we may assume the
inequalities ‖ · ‖M ≤ ‖ · ‖ ≤ (d+ ε)‖ · ‖M hold and the existence of x in X satisfying
‖x‖M = 1 and ‖x‖ ≤ 1 + ε . Lemma 2.1 and the inequality

‖x + xn‖M − 1 ≤ ‖x‖ (‖x′ + x′n‖ − 1) + ‖x‖ − 1

with x′ =
x

‖x‖
and x′n =

xn

‖x‖
, shows that whenever (xn) is a weak-null sequence

satisfying ‖xn‖M ≤ t , we have

lim sup ‖x + xn‖M − 1 ≤ (1 + ε) ρ‖.‖((d + ε) t) + ε.

Using Property (M) and Lemma 2.1, this yields

ρ‖·‖M
(t) ≤ (1 + ε) ρ‖.‖((d + ε) t) + ε.

which proves the result.

The proof for δ∗ is similar. �

We now relate Property (M) with the quantitative behavior of the Szlenk index.
We refer to [4, Proposition 2.8] for the definition and use of Young duality in this
context. If Sz(X) = ω0, we denote by ρ0(t) the dual Young function to the function
Cz(X, t/C)−1. We note that if p > p(X) and p−1 + q−1 = 1, then the function
t−qρ0(t) is bounded.

Proposition 2.4. Let X be a separable Banach space with Property (M∗) and let
‖ · ‖M be a norm with Property (M). There exist constants K, K ′ > 0 such that
ρ‖·‖M

(t) ≤ Kρ0(K ′t). Similarly there exist constant C > 0 such that δ∗‖·‖M
(t) ≥

Cz(X, t/C ′).

Proof. By Theorem 1.2 and [4, Proposition 2.8], there exist constants K and L

such that given t ∈ (0 , 1), there exists a 2-equivalent norm ‖ · ‖t on X such that
ρ‖·‖t

(t) ≤ Kρ0(Lt). By Proposition 2.3, we have ρ‖·‖M
(t) ≤ ρ‖·‖t

(2t) ≤ Kρ0(2Lt).
It suffices now to take K ′ = 2L. �

In the following theorem we show that for a separable Banach space X with
Property (M∗) the embeddability in c0 or `p-sum of finite dimensional Banach
spaces is completely characterized by the Szlenk functions of X and X∗.
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Theorem 2.5. (a) Let X be a Banach space with Property (M∗). Then the
following assertions are equivalent:
(i) X has a summable Szlenk index.
(ii) X is isomorphic to a subspace of c0.

(b) Let X be a separable reflexive Banach space with property (M). Then
the following assertions are equivalent:
(i) There exists a constant K > 0 and 1 < p < ∞ such that Sz(X, ε) ≤

Kε−p∗ and Sz(X∗, ε) ≤ Kε−p for all 0 < ε ≤ 1, where p−1 +(p∗)−1 =
1.

(ii) X is isomorphic to a subspace of an `p-sum of finite dimensional spaces
where p = p(X∗).

Proof. (a) By [4, Theorem 4.10], we have Cz(X, t)−1 ≥ Kt for some constant K.
It follows from Proposition 2.4 that in ‖ · ‖M -norm ρ‖·‖M

(t) = 0 for t > 0 small
enough. By [5] X is isomorphic to a subspace of c0.

(b) Now Proposition 2.4 shows that X has an equivalent norm whose modulus
of asymptotic uniform smoothness has power type p, and by duality an equivalent
norm whose modulus of asymptotic uniform convexity also has power type p. It
now follows from [8, Proposition 2.11] that X is isomorphic to a subspace of an
`p-sum of finite dimensional spaces (see also [12, Theorem 4.1]). �

Remark 2.6. (a) Note that in any norm δ(t) ≤ ρ(t). It follows from this
inequality that if X is a reflexive Banach space such that X and X∗ have
minimal Szlenk index, then p(X)−1 + p(X∗)−1 ≤ 1. The space X with
Property (M) is isomorphic to an `p-sum of finite dimensional spaces if
and only if the Szlenk power types are actually attained and p(X)−1 +
p(X∗)−1 = 1.

(b) It was shown in [4, Theorem 4.9 and Theorem 4.10] that if X has sum-
mable Szlenk index or both X and X∗ have minimal Szlenk indices then the
functions Cz(X, t) and Sz(X, t) are equivalent. If X is separable reflexive
and has Property (M) then its dual space shares these properties and thus
it follows by Proposition 2.2 that X and X∗ have minimal Szlenk index.
Hence there is L > 0 such that Cz(X, ε) ≤ Sz(X, ε/L) for all ε ∈ (0 , 1].
Similarly for X∗, Cz(X∗, t) and Sz(X∗, t) are equivalent.

Our next application is to show that if two Orlicz sequence spaces hF and hG

are Lipschitz isomorphic then they contain the same `p-spaces.

Recall [11] that an Orlicz function F is a continuous non-decreasing and convex
function defined on R+ such that F (0) = 0 . We will only consider non-degenerate
Orlicz functions, that is Orlicz functions which vanish only at 0.
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To any Orlicz function F is associated the Banach space `F of all sequences of
scalars (an) such that

∑+∞
i=1 F (|ai|/r) is finite for some r > 0 equipped with the

Luxemburg norm

‖a‖ = inf

{
r > 0 ;

+∞∑
i=1

F

(
|ai|
r

)
≤ 1

}
.

The subspace hF consisting of those sequences (an) ∈ `F for which∑+∞
i=1 F (|ai|/r) is finite for every r > 0 is the closed subspace of `F generated

by the unit vectors. In general these two spaces are different but if `F is separable
they coincide. By the Luxemburg norm on hF we mean the standard norm given
by F as above.

Associated to an Orlicz function F are the following two quantities.

αF = sup

{
q ; sup

0<λ, t≤1

F (λt)
tqF (λ)

< ∞

}
and

βF = inf
{

q ; inf
0<λ, t≤1

F (λt)
tqF (λ)

> 0
}

.

It is easily checked that we always have 1 ≤ αF ≤ βF ≤ ∞. It is a classical result
(see [11, Theorem I. 4.a.9]) that the space `p or c0 if p = ∞ is isomorphic to a
subspace of hF if and only if p ∈ [αF , βF ]. Also, βF < ∞ if and only `F = hF and
in this case the sequence of unit vectors of `F is a boundedly complete basis and `F

is isomorphic to a separable dual space. Thus βF < ∞ if and only if hF has Radon
Nikodym Property (RNP for short). Also αF > 1 if and only if hF has separable
dual.

We now show that the value αF determines almost exactly the best modulus of
asymptotic uniform smoothness of equivalent norms on hF .

Theorem 2.7. Let F be an Orlicz function. Then for any p < αF the Luxemburg
norm on hF has modulus of asymptotic uniform smoothness of power type p. If
q > αF , no equivalent norm on hF has a modulus of asymptotic uniform smoothness
of power type q.

Proof. It was established in [6, Theorem 1] that for all p < αF , the Luxemburg
norm of hF has a modulus of asymptotic uniform smoothness of power type p. The
space hF contains a copy of `αF

, and thus the power type of asymptotic uniform
smoothness of any of its renormings is at most equal to the power type of asymptotic
uniform smoothness of the restriction of the norm to the corresponding copy. Since
`p has Property (M) for its natural norm, the power type of asymptotic uniform
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smoothness of any of its equivalent norms is bounded above by p by Proposition 2.4,
and the result follows. �

Note that unless hF = `p the Luxemburg norm on hF does not satisfy Property
(M) (there is however an equivalent norm on hF which does by [9]). Also, the
result of [6] combined with [4] yields p(hF ) = αF

∗.

We are now ready to prove that the quantities αF and βF are Lipschitz invariants.

Theorem 2.8. Let F and G be two Orlicz functions such that hF and hG are Lip-
schitz isomorphic. Then αF = αG and βF = βG. Hence two Lipschitz isomorphic
Orlicz sequence spaces contain the same `p-spaces.

Proof. We consider the following two cases.

Case 1: Suppose βF < ∞. Then hF has RNP and since RNP is a Lipschitz
invariant property, hG also has RNP and therefore βG < ∞. It is by now a clas-
sical result (see [1, Corollary 7.7]) that in this case hF and hG embed into each
other isomorphically as complemented subspaces. Using the subsymmetry of their
canonical bases, these spaces are easily seen to be isomorphic to their squares. By
the Pelczynski decomposition scheme it follows that hF ' hG, and thus of course
they contain the same `p spaces.

Case 2: Suppose βF = ∞. By the above one has βG = ∞ and all that remains
to be proved is αF = αG. If not, then for instance αF > αG. Pick any p with αF >

p > αG. By Theorem 2.7, the Luxemburg norm on hF has a modulus of asymptotic
uniform smoothness of power type p. It now follows from [4, Theorem 5.4] that
hG has an equivalent norm with a modulus of asymptotic uniform smoothness of
power type p (see also [3, Proposition 42, page 67]). But hG contains an isomorphic
copy of `αG

and since `αG
has Property (M) for its natural norm, the power type

of asymptotic uniform smoothness of any of its equivalent norms is bounded above
by αG by Proposition 2.3. This contradiction concludes the proof. �

We recall that it is not known whether two separable Lipschitz isomorphic
Banach spaces are necessarily linearly isomorphic.

Acknowledgements. We thank Gilles Godefroy for helpful discussions and com-
ments.
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