
LOCAL U-CONVEXITY

S. DUTTA AND BOR-LUH LIN

Abstract. Lau considered the notion of U - convex spaces (originally called

U -spaces) and showed that both uniform convexity and uniform smoothness

imply U -convexity. Also U -convex spaces are uniformly non-square and hence

super-reflexive. In this paper we introduce local U -convexity. It is shown

that there are two possible localization of U -convexity. We derive our results

quantitatively, that is, by the properties of modulus functions. Relationship to

modulus of (local) uniform convexity is established and its consequences are

discussed.

1. Introduction

Given a Banach space X we denote its unit sphere and unit ball by SX and BX

respectively. The norm on X is said to be locally uniformly convex at x ∈ SX if
given (yn) ⊆ BX such that 1

2‖x + yn‖ → 1 then yn → x in norm. In this case we
refer x as a LUR point. The space is said to be locally uniformly convex if every
x ∈ SX is a LUR point. X is called uniformly convex if the convergence above
is uniform for all x ∈ SX . Quantitatively, for x ∈ SX and t ∈ (0, 2) consider the
following two modulus

δ(x, t) = inf
y∈BX : ‖x−y‖≥t

{1− 1
2
‖x + y‖},

and

δ(t) = inf
x∈SX

δ(x, t).

Then x is a LUR point if and only if δ(x, t) > 0 for all t ∈ (0, 2) and X is
Uniformly convex if and only if δ(t) > 0 for all t ∈ (0, 2).

In [2, 4] the following generalization of uniform convexity was considered: X is
said to be a U -space if for any ε > 0 there exists δ > 0 such that for any x, y ∈ SX

with 1
2‖x + y‖ > 1 − δ, f(y) > 1 − ε for all f ∈ D(x), where D(x) = {f ∈
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SX∗ : f(x) = ‖x‖}. It was shown in [4] that U -spaces are uniformly non-square
hence super-reflexive. Also the notion of U -space is self dual, that is if X is a U -
space so is X∗. In [2] Gao and Lau have shown that U -spaces have uniform normal
structure.

Gao in [1] defined modulus of U -convexity which is the same as US(t) defined
below.

For x ∈ SX , f ∈ SX∗ and 0 < t < 2 we will denote the slice {y ∈ BX : f(y) >

f(x)− t} by S(x, f, t) and its complement in BX by S(x, f, t)c.

The following function may be interpreted as the modulus of local uniform con-
vexity along a given hyperplane.

Definition 1.1. Let X be a Banach space, x ∈ SX and f ∈ SX∗ . For t ∈ (0, 2) we
define,

U(x, f, t) = inf
y∈S(x,f,t)c

{1− 1
2
‖x + y‖}.

Note that U(x, f, t) > 0 for t ∈ (0, 2) implies and is implied by whenever (yn) ∈
BX is such that 1

2‖x + yn‖ → 1 then f(yn) → f(x). To see this, first let us assume
U(x, f, t) > 0 for all t ∈ (0, 2). Let (yn) ⊆ BX be such that 1

2‖x + yn‖ → 1.
Then for all t, (yn) ⊆ S(x, f, t) eventually and hence f(yn) → f(x). Conversely let
U(x, f, t) = 0 for some t ∈ (0, 1). Then we can choose a sequence (yn) ⊆ S(x, f, t)c

such that 1− 1
2‖x + yn‖ → 0. Hence f(yn) does not converge to f(x).

Starting with U(x, f, t) we can define the following three quantities.

Definition 1.2.

Ũ(x, t) = inf
f∈SX∗

U(x, f, t).

US(x, t) = sup
f∈D(x)

U(x, f, t).

UI(x, t) = inf
f∈D(x)

U(x, f, t).

We will show in the next section that for any Banach space X and t ∈ (0, 2) one
has Ũ(x, t) = δ(x, t).

Our main objects of study in this paper is the modulus US(x, t) and UI(x, t) and
their uniform versions, namely,

US(t) = inf
x∈SX

US(x, t); UI(t) = inf
x∈SX

UI(x, t).

From Gao’s result in [1] it follows that US(t) > 0 for all t ∈ (0, 2) implies X is an
U -space. The relationship of the modulus of U -convexity to the James’ constant,
J(X) = sup{min{‖x + y‖, ‖x− y‖} x, y ∈ BX} is described in [6].
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It is easy to observe that UI(t) > 0 for all t ∈ (0, 2) if and only if X is a U -space.
We will actually show that for a U -convex space X and t ∈ (0, 2), US(t) = UI(t).
Thus following Gao, we will be refereing X to be a U -convex space if US(t) > 0 for
all t ∈ (0, 2).

However, in their local version, US(x, t) ≥ UI(x, t), t ∈ (0, 2) and in general they
are not same. Thus there are at least two possible localizations of the notion of
U -convexity. We show in section 1 that both US(x, ·) and UI(x, ·) are continuous
functions of t. As function of x, these two modulus satisfy the following relation
(see Proposition 2.15): Let x, x1, x2 ∈ SX such that x = λx1 +(1−λ)x2, λ ∈ (0, 1).
Then US(x, t) ≥ λUI(x1, t) + (1−λ)UI(x2, t). We illustrate how this relation helps
us to determine UI for `p spaces.

As mentioned before, Lau in [4] has shown that the dual of a U -convex space is
also U -convex. In section 1 of this paper we will recover this result quantitatively
by showing UI(t) = U∗

I (t) for all t, where U∗
I (t) denote the corresponding modulus

for X∗. This shows that uniformly smooth spaces are also U -convex and it was
noted in [4]. In the local version, we show that if x ∈ SX is a Fréchet smooth point
then UI(x, t) > 0 for all t ∈ (0, 2). However, if x ∈ SX is just a smooth point then
even US(x, t) need not be positive (Example 2.13).

In Section 2 we define two new quantities d(x, t) and s(x, t) which are, respec-
tively the modulus of denting point and modulus of strongly exposed point. Our
main theorem in Section 2 (Theorem 3.5) establishes the relations between δ(x, t),
UI(x, t) and these two modulus.

Let x ∈ SX and f ∈ D(x). If f is a LUR point then x is Fréchet smooth point
and the converse is not true in general. As a corollary to Theorem 3.5, we show
that f is LUR if and only if x is Fréchet smooth and UI(f, t) > 0 for all t ∈ (0, 2).

Both d(x, t) and s(x, t) have their respective uniform version, namely, d(t) and
s(t). The condition d(t) > 0 for all t ∈ (0, 2) may be interpreted as every point
x ∈ SX is uniformly denting. In this case a standard argument shows that the
dentability index D(X) is finite and thus X has a uniformly convex renormimg (see
[5] for definition and the renorming result) and in particular, X is super-reflexive.
If s(t) > 0 for all t then X is ‘uniformly strongly exposed’, meaning for all x ∈ SX ,
given t there exists f ∈ D(x) such that the slice S(x, f, s(t)) has norm diameter
less than t. In this case we show that X is already uniformly convex and δ(t) is of
the order of square of s(t).

2. The modulus US and UI

US and UI are the main object of studies in this paper. But first we show Ũ(x, t)
defines nothing new but δ(x, t).
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Proposition 2.1. Let X be a Banach space. For all x ∈ SX and t ∈ (0, 2),
Ũ(x, t) = δ(x, t).

Proof. It is easy to see that Ũ(x, t) ≥ δ(x, t). To see the other inequality, let
δ(x, t) < s for some s. By definition of δ(x, t), there exists y ∈ SX , ‖x − y‖ ≥ t

such that 1 − 1
2‖x + y‖ < s. We choose f ∈ SX∗ such that f(x − y) = ‖x − y‖.

Hence f(x− y) ≥ t and Ũ(x, t) < s as well. This shows Ũ(x, t) ≤ δ(x, t). �

Remark 2.2. Proposition 2.1 provides us with another geometric interpretation
of LUR points. Namely, x ∈ SX is a LUR point if and only if x is uniformly LUR
point along all hyperplanes.

Recall that x ∈ SX is called a wLUR point if (yn) ⊆ BX , 1
2‖x+yn‖ → 1 implies

yn
w→ x. If we drop the uniformity assumption in Proposition 2.1, we get wLUR

point.

Proposition 2.3. Let X be a Banach space. Then x ∈ SX is a wLUR point if and
only if for all f ∈ SX∗ and all t ∈ (0, 2), U(x, f, t) > 0.

Proof. Let x ∈ SX . If for some f ∈ SX , t > 0 one has U(x, f, t) = 0 then there
exists (yn) ⊆ BX such that f(x − yn) > t but 1 − 1

2‖x + yn‖ → 0. Hence x is
not a wLUR point. Conversely, if x is not a wLUR point there exists (yn) ⊆ BX

and f ∈ SX such that 1
2‖x + yn‖ → 1 but (passing to a subsequence if necessary)

f(x− yn) > t for some t > 0. Hence we have U(x, f, t) = 0. �

It is easy to see that in `1, if we denote (en) to be the standard unit vector basis,
then US(en, t) = t/2 but UI(en, t) = 0 for all 0 < t ≤ 1. Thus, locally, US and UI

are different. However, we show that US(t) = UI(t) for all t ∈ (0, 2) and UI(t) > 0
(equivalently US(t) > 0) for all t ∈ (0, 2) characterizes U -convex spaces. In the
process of proving it, we also establish some more properties of these moduli, which
are of independent interest.

From the definition of US(x, t) and UI(x, t) we have the following lemma.

Lemma 2.4. Let X be a Banach space. If x ∈ SX is a smooth point then US(x, t) =
UI(x, t) for all t.

The proof of the following lemma, again, is a straightforward consequence of
definition of U -convexity and the remark after [4, Definition 2.2]

Lemma 2.5. X is U -convex space if and only if UI(t) > 0 for all t ∈ (0, 2). Also
if X is a U -convex space, given t, UI(t) is the largest constant > 0 such that for
all x, y ∈ SX , 1

2‖x+ y‖ > 1−UI(t) ⇒ 1
2‖f + g‖ > 1− t for all f ∈ D(x), g ∈ D(y).
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Let us denote by U∗
I the corresponding UI for X∗. The next result shows UI(t) =

U∗
I (t) for all t. In this quantitative version, it is strengthening of the fact that U -

convexity is self dual, that is, X is U -convex if and only if X∗ is U -convex.

Theorem 2.6. Let X be such that UI(t) > 0 for all t ∈ (0, 2). Then for all
t ∈ (0, 2), UI(t) = U∗

I (t).

Proof. The proof essentially follows the same argument as in [4]. Let UI(t) > 0 and
f, g ∈ SX∗besuchthat‖f+g‖

2 > 1−UI(t). Since U -convex spaces are super-reflexive,
there exists z ∈ SX such that ( f+g

2 )(z) = ‖f+g‖
2 . Then f(z) > 1 − 2UI(t) and

g(z) > 1−2UI(t). Now if x ∈ D(f), y ∈ D(y), ‖x+z‖
2 > 1−UI(t),

‖y+z‖
2 > 1−UI(t).

By definition of UI(t), for all h ∈ D(z), h(x) > 1−t, h(y) > 1−t, hence ‖x+y‖
2 > 1−t.

By the second part of Lemma 2.5 we conclude U∗
I (t) ≥ UI(t). By duality we have

U∗
I (t) = UI(t). �

In the next proposition we show continuity of US(x, t) and UI(x, t) with respect
to t.

Proposition 2.7. Let X be a Banach space and x ∈ SX . Then US(x, ·) and UI(x, ·)
are continuous function in t for t ∈ (0, 2).

Proof. Let x ∈ SX and t ∈ (0, 2). We first assume t 6= 1. Let s ∈ (0, 2) be such
that 1− s and 1− t have the same sign.

Assume s > t. Then US(x, s) ≥ US(x, t). For any f ∈ D(x), we have S(x, f, s)c ⊆
S(x, f, t)c and hence it follows that US(x, s) ≥ US(x, t). Given ε > 0, we find
f ∈ D(x) such that Us(x, s) < U(x, f, s) + ε/2. Also we choose y ∈ S(x, f, t)c

such that US(x, t) + ε/2 ≥ 1 − 1
2‖x + y‖. Then f( 1−s

1−t y) ≤ 1 − s and hence
(1−s)
1−t y ∈ S(x, f, s)c. Thus US(x, s) < 1 − 1

2‖x + (1−s)
1−t y‖ + ε/2. From triangle

inequality, it follows that 1 − 1
2‖x + y‖ ≥ 1 − 1

2‖x + (1−s)
1−t y‖ − 1

2 |
s−t
1−t |. Hence we

have US(x, s)− US(x, t) < 1
2 |

s−t
1−t |+ ε.

If s < t we repeat the above argument with the roles of s and t interchanged.

This shows the continuity of US(x, ·) at t with t 6= 1.

For t = 1 we make little modification to the above argument. Since US(x, 1) ≥
U(x, f, 1) for any f ∈ D(x) as above and given ε > 0 we can choose y ∈ S(x, f, 1)c

such that US(x, 1) + ε/2 > 1− 1
2‖x + y‖. By continuity of the norm we can further

choose y′ ∈ S(x, f, 1)c such that f(y′) ≤ −ε/2 and US(x, 1) + ε > 1 − 1
2‖x + y′‖.

Observe y′ ∈ S(x, f, 1 + ε/2)c and hence if we choose s ≤ 1 + ε/2 then S(x, f, s)c.
The rest of the argument follows.

To show continuity for UI(x, ·) we indicate the modifications necessary in the
above argument for US(x, t). Again let t 6= 1 and s > t be such that 1− s and 1− t

have the same sign. Note that UI(x, s) ≥ UI(x, t). For any f ∈ D(x), UI(x, s) <
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U(x, f, s). Given ε > 0, we choose a f ∈ D(x) such that UI(x, t) + ε
4 ≥ UI(x, f, t).

We can further choose y ∈ S(x, f, t)c such that UI(x, f, t) + ε
4 ≥ 1− 1

2‖x + y‖. The
rest of the argument is same as in the case of US(x, t). �

Our next result shows that to determine US(t) and UI(t) it is enough to consider
a dense set of SX .

Theorem 2.8. Let X be a Banach space and D ⊆ SX a norm dense set. Then

US(t) = inf
x∈D

US(x, t); UI(t) = inf
x∈D

UI(x, t).

Proof. We first show it for US and later indicate the modifications to be done for
UI .

Let us denote infx∈D US(x, t) by U ′(t). Clearly we have U ′(t) ≥ US(t). Now
if U ′(t) > US(t) for some t, then there exists ε > 0 and x ∈ SX \ D such that
U ′(t) > US(x, t) + 3ε. Let (xn) ⊆ D be such that xn → x in norm. Thus we have
US(xn, t) > US(x, t) + 3ε.

For each n we choose fn ∈ D(xn) such that US(xn, t) < U(xn, fn, t) + ε. Thus
we have U(xn, fn, t) > US(x, t) + 2ε for all n.

Let f be a weak*-cluster point of (fn). Then f(x) = 1.

Let s > t. Then US(x, s) ≥ U(x, f, s) and we choose y ∈ S(x, f, s)c such that
US(x, s) + ε > 1 − 1

2‖x + y‖. Then for n large enough we have US(xn, s) + ε >

1 − 1
2‖xn + y‖. Since f is a weak*-cluster point of (fn) and s > t there exists n

such that y ∈ S(xn, fn, t)c as well. Thus 1 − 1
2‖x + y‖ ≥ U(xn, fn, t). Combining

this with the other inequality we have US(x, s) − US(x, t) > ε. But then this is
true for all s > t which contradicts the continuity of US(x, ·) at t. Thus we have
U ′(t) = US(t) for all t.

To prove the result for UI , if infx∈D UI(x, t) > UI(t) for some t then, as before
we can get x ∈ SX \D, xn ∈ D,xn → x in norm such that UI(xn, t) > UI(x, t)+3ε.
This implies for all fn ∈ D(xn), U(xn, fn, t) > UI(x, t) + 3ε. Once again let s > t

and we choose f ∈ D(x) such that UI(x, s) + ε > U(x, f, s). Since xn → x in
norm, a standard argument shows that we have f is a weak*-cluster point of some
(fn), fn ∈ D(xn). The rest of argument is same as before. �

In [1] it was shown that if US(t) > 0 for all t then X is U -convex and by our
Lemma 2.5 it follows that UI(t) > 0 for all t is equivalent to X being U -convex. As
a corollary to the Theorem 2.8, we show that in this case US(t) = UI(t).

Corollary 2.9. Let X be a U -convex space. Then US(t) = UI(t) for all t ∈ (0, 2).

Proof. If X is U -convex then as mentioned in the introduction, X is a super reflexive
space and hence, in particular, an Asplund space. Thus there exists a dense set
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D ⊆ SX consisting of Fréchet smooth points of X. But for x ∈ D we have US(x, t) =
UI(x, t) for all t. The conclusion follows from Theorem 2.8. �

We have mentioned in the introduction that if X is uniformly smooth then X is
U -convex. In the next section we will show (with a quantitative estimate) that if
x ∈ SX is a Fréchet smooth point, then UI(x, t) > 0. But x just being a smooth
point does not give that US(x, t) > 0 for all t. Before we give an example we prove
the following proposition. Recall that if in X we have an equivalent norm such that
X∗∗ is LUR, then X is reflexive. The proposition below shows this is true even if
U∗∗

S (x∗∗, t) > 0 for all t and all x∗∗ ∈ SX∗∗ .

Proposition 2.10. Let X be a Banach space and x∗∗ ∈ SX∗∗ such that
U∗∗

S (x∗∗, t) > 0 for all t < 1. Then x∗∗ attains its norm over X∗. In particu-
lar, if for a Banach space X U∗∗

S (x∗∗, t) > 0 for all t and all x∗∗ ∈ SX∗∗ then X is
reflexive.

Proof. Let U∗∗
S (x∗∗, t) > 0 for all t < 1. We choose a net (xα) ⊆ BX which

weak* converges to x∗∗. By weak*-lower semi-continuity of the norm we have
1
2‖xα + x∗∗‖ → 1. But then by the remark following Definition 1.1, there exists
F ∈ SX∗∗∗ , F (x∗∗) = 1 such that F (xα) → 1. Let f = F |X . And thus f(xα) → 1
and ‖f‖ = 1. But (xα) weak* converges to x∗∗ and hence x∗∗(f) = 1. �

The following example shows that if x is a smooth point US(x, t) need not be
positive for all t.

Example 2.11. In [7] it was shown that the James’ space J , which is quasi-
reflexive, admits a renorming such that J∗∗∗ is strictly convex, that is, in particular
J∗∗ is smooth. Since, J is not reflexive, by Proposition 2.10, there exists x∗∗ ∈ J∗∗

for which US(x∗∗, t) = 0 for some t < 1.

However, if UI(x, t) is large for some t then x is a smooth point.

Proposition 2.12. Suppose x ∈ SX is such that UI(x, t) ≥ 1
2 for some t ∈ (0, 1).

Then x is a smooth point.

Proof. Let x ∈ SX such that UI(x, t) > 1
2 for some t ∈ (0, 1) and f, g ∈ D(x). We

claim for any y ∈ kerf, g(y) < 1− 2UI(x, t). Thus if UI(x, t) ≥ 1
2 then kerf ⊆ kerg

and since f(x) = g(x) = 1 we have f = g. This will show x is a smooth point.

To see the claim, assume on the contrary that g(y) ≥ 1 − 2UI(x, t). Then
1
2‖x + y‖ ≥ 1

2g(x + y) ≥ 1 − UI(x, t). Thus, by definition of UI(x, t), we have
f(y) > 1− t which is a contradiction. �
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Our next result shows relation between US , UI to U∗∗
S , U∗∗

I . For x ∈ SX , by
U∗∗

S (x, t) and U∗∗
I (x, t) we denote the corresponding moduli calculated for x in

X∗∗.

Proposition 2.13. For any Banach space X and x ∈ SX t ∈ (0, 2) we have

US(x, t) ≥ U∗∗
S (x, t) ≥ UI(x, t) ≥ U∗∗

I (x, t).

Proof. The first inequality is easy to see. The second and the third follows from
the fact that any f ∈ SX , can be, canonically identified as f̂ in the third dual of X

and by the weak*-density of BX in BX∗∗ , we have U(x, f, t) = U∗∗(x, f̂ , t). �

It follows from the Proposition 2.13 that if x ∈ SX is a smooth point of X∗∗ (so
called very smooth point) then equality holds throughout.

Question 2.14. (a) Suppose US(x, t) > 0 and US(x, t) = UI(x, t) for all
t ∈ (0, 2). Is x a smooth point?

(b) Suppose US(x, t) > 0 and equality holds in Proposition 2.13. Is x a
smooth point in X∗∗?

The next result is often helpful in calculation of US or UI .

Proposition 2.15. Let X be a Banach space. Let x, x1, x2 ∈ SX be such that
x = λx1+(1−λ)x2 for some λ ∈ (0, 1). Then US(x, t) ≥ λUI(x1, t)+(1−λ)UI(x2, t).
In particular if x is a smooth point then we can replace US(x, t) by UI(x, t).

Proof. Let x = λx1 + (1 − λ)x2 for some λ ∈ (0, 1) and x, x1, x2 ∈ SX . We first
observe that if f ∈ D(x) then f ∈ D(x1), andf ∈ D(x2). Also for any y ∈ BX , we
have 1

2‖x + y‖ ≤ λ 1
2‖x1 + y‖+ (1− λ) 1

2‖x2 + y‖. Hence for any f ∈ D(x) we have,
U(x, f, t) ≥ λ(1− 1

2‖x1+y‖)+(1−λ)(1− 1
2‖x+y‖) ≥ λUI(x1, t)+(1−λ)UI(x2, t). �

We illustrate the use of Proposition 2.15 to calculate UI(t) for `p-spaces, 1 <

p < ∞.

Note that every point S`p
, 1 < p < ∞ is smooth point and hence we have

US(x, t) = UI(x, t) for all t and all x ∈ S`p
.

Let (en) be unit vector basis of `p. It is easy to see that for all n, UI(en, t) (which
is equal to US(en, t)) satisfies UI(en, t) ≥ 1 − [(1 − t

2 )p + 1 − ( 1
2 −

t
2 )p]

1
p . Now by

Theorem 2.8 to calculate UI(t) for `p, it is enough to calculate infx∈D UI(x, t) for
a dense set D ⊆ S`p

. We consider D to be set of finitely supported points in S`p
.

Let x = (x1, x2, · · ·xn, 0, 0, · · · ) ∈ S`p . Let ‖x‖1 denote the `1 norm of x. We
write x = ‖x‖1

∑n
i=1

|xi|
‖x‖1 sgnxiei. Thus by Proposition 2.15 we have UI(x, t) ≥

‖x‖1 |xi|
‖x‖1 UI(ei, t) = ‖x‖1UI(ei, t) and since ‖x‖1 ≥ ‖x‖p = 1 we have UI(x, t) ≥

UI(ei, t) ≥ 1− [(1− t
2 )p + 1− ( 1

2 −
t
2 )p]

1
p .
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However, by Proposition 2.6 we have U∗
I (t) = UI(t) and the same calculation as

above shows that U∗
I (t) ≥ 1− [(1− t

2 )q + 1− ( 1
2 −

t
2 )q]

1
q , where 1

p + 1
q = 1. Hence

we have for `p spaces,

UI(t) ≥ max{1− [(1− t

2
)p + 1− (

1
2
− t

2
)p]

1
p , 1− [(1− t

2
)q + 1− (

1
2
− t

2
)q]

1
q }.

3. Relation to δ(x, t)

In this section we establish relationship with UI and US to modulus of convexity
δ. We prove all our results locally, but also indicate that interesting conclusions
can be drawn from uniformizations of the local results.

We introduce the following quantity which is crucial for our results in this section.

Let x ∈ SX , f ∈ SX∗ , t ∈ (0, 2). Define

s(x, f, t) = inf
y∈kerf : ‖y‖≥t/4

‖x + y‖ − 1.

Lemma 3.1. Let x ∈ SX and f ∈ SX∗ be such that f(x) > 0. If s(x, f, t) > 0 then
diamS(x, f, f(x)s(x, f, t)) < t.

Proof. We first note that s(x, f, t) ≤ t/4. Let z ∈ BX be such that f(z) > f(x)(1−
s(x, f, t)). We put y = z − f(z)

f(x)x. Then y ∈ kerf and

‖x + y‖ − 1 ≤ ‖z + x− f(z)
f(x)

x‖ − 1 ≤ |1− f(z)
f(x)

| < s(x, f, t).

Hence, ‖y‖ < t/4. But then ‖z − x‖ < t/4 + |1 − f(z)
f(x) | < t/4 + s(x, f, t) <

t/4 + t/4 < t/2. Thus we have diamS(x, f, f(x)s(x, f, t)) < t. �

We now define the following to moduli.

Definition 3.2. Let x ∈ SX . For t ∈ (0, 2) define

d(x, t) = sup
f∈SX∗

s(x, f, t)

s(x, t) = sup
f∈D(x)

s(x, f, t),

and their uniform versions,

d(t) = inf
x∈SX

d(x, t); s(t) = inf
x∈SX

s(x, t).

The following Proposition shows d(x, t) > 0 (respectively s(x, t) > 0 for all
t ∈ (0, 2)) characterizes denting points (respectively strongly exposed points) of
BX .

Proposition 3.3. (a) x ∈ SX is denting point of BX if and only if d(x, t) >

0 for all t ∈ (0, 2).
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(b) x ∈ SX is strongly exposed point of BX if and only if s(x, t) > 0 for all
t ∈ (0, 2). Furthermore, if s(x, t) > 0 then there exists f ∈ D(x) such that
diam{y ∈ BX : f(y) > 1− s(x, t)} < t.

Proof. The proof of (a) and the first part of (b) follow directly from Lemma 3.1.

To show the second part let s(x, t) > 0. We choose a sequence (rn), rn ∈
(0, 1), rn ↑ 1 and fn ∈ D(x) such that s(x, fn, t) > rns(x, t). Let f be a weak*-
cluster point of (fn). Then f ∈ D(x) as well. Let y ∈ {y ∈ BX : f(y) > 1−s(x, t)}.
Then we can choose some n large such that fn(y) > 1−rns(x, t) and hence fn(y) >

1− s(x, fn, t). Applying Lemma 3.1 we have the desired conclusion. �

Remark 3.4. (a) Starting with s(x, f, t) one could also consider d̃(x, t) =
inff∈SX∗ s(x, f, t) and s̃(x, t) = inff∈D(x) s(x, f, t). While it is easy to check
that d̃(x, t) ≤ −t/4, but if s̃(x, t) > 0 for all t ∈ (0, 2) then we have every
f ∈ D(x) is an Fréchet smooth. However, the condition s̃(x, t) > 0 for all
t ∈ (0, 2) is apparently stronger than every f ∈ D(x) is Fréchet smooth and
we do not know if it already implies x is a LUR point.

(b) For f ∈ SX∗ we can weak* version of the moduli d and s, namely,
we take d∗(f, t) = supx∈SX

s(f, x, t) and if f attains its norm over X,
s∗(f, t) = supx∈SX :f(x)=1 s(f, x, t). Again by Lemma 3.1 it follows that f

is a weak*-denting (respectively weak*-strongly exposed) point of BX∗ if
and only if d∗(f, t) > 0 (respectively s∗(f, t) > 0) for all t ∈ (0, 2). The
corresponding estimate on diameter of the slices from Proposition 3.3 are
also true.

(c) It is easy to see that s(x, t) ≥ 2δ(x, t) for all x ∈ SX and t ∈ (0, 2).

We now state the main Theorem of this section.

Theorem 3.5. Let X be a Banach space and x ∈ SX . Then for all t ∈ (0, 2),

(a) There exists f0 ∈ SX∗ such that for all f ∈ SX∗ , U(x, f, t) ≥ δ(x, t) ≥
U(x, f0, f0(x)d(x, t)).

(b) UI(x, t) ≥ δ(x, t) ≥ UI(x, s(x, t)).

Proof. The proof for (a) and (b) are similar. We prove it here for (b).

Fix t. That UI(x, t) ≥ δ(x, t) follows from definition.

For any f ∈ D(x), we have

{y ∈ BX : ‖x + y

2
‖ > 1− UI(x, s(x, t))} ⊆ {y ∈ BX : f(y) > 1− s(x, t)}.

If s(x, t) > 0, there exists f ∈ D(x) such that diam{y ∈ BX : f(y) > 1 −
s(x, t)} < t. Hence if ‖x − y‖ ≥ t then ‖x+y

2 ‖ ≤ 1 − UI(x, s(x, t)). Thus δ(x, t) ≥
UI(x, s(x, t)). �
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Recall from Proposition 2.3 that x ∈ SX is a wLUR point if and only if for all
f ∈ SX∗ and all t ∈ (0, 2), U(x, f, t) > 0. Thus Theorem 3.5(a) says that x ∈ SX

is a LUR point if and only if it is wLUR point and denting point of BX . Since
wLUR point are already extreme point and by [3], a denting point is precisely point
which is point of continuity for weak-norm topology and extreme point, we actually
recover the that x is LUR point if and only if x is wLUR and is a point of continuity
for weak-norm topology in BX .

Combining with Proposition 3.3(b), Theorem 3.5(b) says x ∈ SX is a LUR point
if and only if x is a strongly exposed point in BX and UI(x, t) > 0 for all t ∈ (0, 2).
For the rest of this section we will be concerned with the implications of this result.

From Remark 3.4(a) and Theorem 3.5(b) it follows that for f ∈ SX∗ is norm
attaining functional then δ(f, t) > U∗

I (f, s∗(f, t)).

If f ∈ SX∗andx ∈ SX are such that f(x) = 1 and f is a LUR point then x is
a Fréchet smooth point. There is no characterization known so far how to get the
converse and Theorem 3.5(b) provides us with one such. Note that if x ∈ SX is
Fréchet smooth point then f ∈ D(x) is weak*-strongly exposed.

Corollary 3.6. For a Banach space X let x ∈ SX and f ∈ D(x). Then the
following are equivalent.

(a) f is a LUR point of BX∗ .
(b) x is Fréchet smooth and UI(f, t) > 0 for all t ∈ (0, 2).

As mentioned before Uniformly smooth spaces are U -convex. We now show that
the local version of this is also true.

Proposition 3.7. Let X be a Banach space and x ∈ SX a Fréchet smooth point
and f ∈ D(x). Then UI(x, t) ≥ 1

2s∗(f, 4t/5).

Proof. Let y ∈ BX be such that 1
2‖x + y‖ > 1− 1

2s∗(f, t). We choose g ∈ D(x+y
2 ).

Then g(x) > 1 − s∗(f, t), g(y) > 1 − s∗(f, t). By Proposition 3.3(b) we have
‖f − g‖ < t. Hence f(y) > −t + 1 − s∗(f, t) ≥ 1 − 5t/4. Thus we conclude
UI(x, 5t/4) ≥ 1

2s∗(f, t) or equivalently, UI(x, t) ≥ 1
2s∗(f, 4t/5). �

For the rest of the section we give an application of the uniform version of the
inequality in Theorem 3.5(b).

First suppose d(t) > 0 for t ∈ (0, 2). Then it implies that all x ∈ SX is uniformly
denting points. Given t one can define the quantity D(X, t) which is the dentability
index of X at t. We do not define it here and the interested reader can find the
details in [5]. A standard argument shows that if d(t) > 0 then D(X, t) is finite and
hence if d(t) > 0 for all t ∈ (0, 2), we have dentability index of X is finite and in
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this case X is super reflexive. Recall that any super reflexive space has a uniformly
convex renormimg.

If s(t) > 0 for all t then X is ‘uniformly strongly exposed’, meaning for all
x ∈ SX , given t there exists f ∈ D(x) such that the slice S(x, f, s(t)) has norm
diameter less than t. This will give X is a super-reflexive space since d(t) ≥ s(t) for
all t. However we show s(t) > 0 for all t implies δ(t) > 0 and hence X is Uniformly
convex and we also show that δ(t) is of the order of square of s(t).

Theorem 3.8. Let X be such that s(t) > 0 for all t ∈ (0, 2). Then δ(t) ≥
1
2s(s(4t/5)). In particular X a uniformly convex.

Proof. If s(t) > 0 for all t ∈ (0, 2) then X is super reflexive and hence there exists a
dense set D ⊆ SX∗ such that every f ∈ D is a Fréchet smooth point. Let f ∈ D and
choose x ∈ D(f). Since s(x, t) > s(t) > 0, we have x is a strongly exposed point
of BX . By Proposition 3.7 we have U∗

I (f, t) ≥ 1
2s(4t/5). Thus inff∈D U∗

I (f, t) ≥
1
2s(4t/5). Since D is dense in SX∗ , by Theorem 2.8 we have U∗

I (t) > 0 for all
t. But by Theorem 2.6 UI(t) = U∗

I (t) and thus applying Theorem 3.5(b), we get
δ(t) ≥ 1

2s(s(4t/5)). �
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