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1. Introduction

We work with real Banach spaces. For a Banach space X, we will denote
by B(X), S(X) and BX [x, r] respectively the closed unit ball, the unit sphere
and the closed ball of radius r > 0 with centre at x in X. We will simply
write B[x, r] if there is no confusion about the ambient space. We will identify
x ∈ X with its canonical image in X∗∗. All subspaces we usually consider are
norm closed.

We start with the notion of nicely smooth Banach spaces introduced in
[12].

Definition 1.1. [12] A Banach space X is nicely smooth, if for all x∗∗ ∈
X∗∗, ⋂

x∈X

BX∗∗ [x, ‖x∗∗ − x‖] = {x∗∗}

With this as our motivating concept, we define,

Definition 1.2. A subspace Y of a Banach space X is said to be a very
non-constrained (V N) subspace of X, if for all x ∈ X,

⋂

y∈Y

BX [y, ‖x− y‖] = {x}.
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Naturally, nicely smooth spaces are V N -subspaces of their biduals. Origin
of the terminology will be explained soon.

Godefroy and Saphar [15] has studied nice smoothness in the context of
operator spaces, and obtained the following characterization.

Definition 1.3. We say A ⊆ B(X∗) is a norming set for X if ‖x‖ =
sup{x∗(x) : x∗ ∈ A}. A subspace F of X∗ is called a norming subspace if
B(F ) is a norming set for X.

Theorem 1.4. [15, Lemma 2.4] For a Banach space X, the following are
equivalent :

(a) X is nicely smooth.

(b) For all x∗∗ ∈ X∗∗ \X,

⋂

x∈X

BX [x, ‖x∗∗ − x‖] = ∅

(c) X∗ contains no proper norming subspace.

The proof of (b) ⇒ (a) in [15] depends heavily on the properties of “u.s.c.
hull” of x∗∗ ∈ X∗∗ considered as a function on (B(X∗), w∗). In a personal
conversation, Godefroy asked whether one could give a proof without such to-
pological considerations. That this can be done is a key result (Theorem 2.12)
in this work.

Later, Godefroy and Kalton [14] linked this property to the Ball Generated
Property (BGP) of Banach spaces. Different aspects of nicely smooth spaces
were also investigated in [2, 9, 16, 18].

In course of proving Theorem 1.4 in this general set-up, we also obtain an
extension of [2, Proposition 2.2]. As in [2, Theorem 2.10], we also identify some
necessary and/or sufficient conditions for a subspace to be a V N -subspace
(Theorem 2.20). For this, we characterize functionals with “locally unique”
Hahn-Banach extensions. And here we bring back some of the topological
flavour.

Definition 1.5. [6] A subspace Y of a Banach space X is said to be a
U -subspace if any y∗ ∈ Y ∗ has a unique Hahn-Banach (i.e., norm preserving)
extension in X∗.

X is said to be Hahn-Banach smooth if X is a U -subspace of X∗∗.
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U -subspaces were systematically studied in [24], who referred to them as
“subspaces with Property U”. Godefroy proved in [12] that Hahn-Banach
smooth spaces are nicely smooth. We, however, observe that, in general, a
U -subspace (and even a proper M -ideal) need not be a V N -subspace and
obtain characterizations of V N -subspaces among U -subspaces.

In [15], nicely smooth spaces were studied mainly as a sufficient condition
for the Unique Extension Property (UEP), their main tool in studying geo-
metry of operator spaces. Recall that a Banach space has the UEP if the
only operator T ∈ L(X∗∗) such that ‖T‖ ≤ 1 and T |X = IdX is T = IdX∗∗ .
However, from the point of applications, a more natural generalization of the
UEP is the unique ideal property introduced recently in [22].

Definition 1.6. A subspace Y of a Banach space X has the unique ideal
property in X if there is at most one norm 1 projection P on X∗ with ker(P ) =
Y ⊥.

Recall that Y is said to be an ideal in X if such a projection exists.
Here we observe that a V N -subspace of X has the unique ideal property

in X.

It is clear that a nicely smooth space, since it has the UEP, cannot be
constrained, i.e., 1-complemented, in its bidual. Indeed, more is true.

Definition 1.7. A Banach space X is said to have the finite-infinite in-
tersection property (IPf,∞) if every family of closed balls in X with empty
intersection contains a finite subfamily with empty intersection.

In [2] it was shown that if a Banach space is both nicely smooth and has
IPf,∞ then it is reflexive. The IPf,∞ was studied by Godefroy and Kalton
in [14]. It is well known that dual spaces and their constrained subspaces
have IPf,∞. By w*-compactness of the dual ball and the Principle of Local
Reflexivity, it can be shown (see e.g., [14]) that X has the IPf,∞ if and only
if any family of closed balls centred at points of X that intersects in X∗∗ also
intersects in X. Thus, we define

Definition 1.8. A subspace Y of a Banach space X is said to be an
almost constrained (AC) subspace of X, if any family of closed balls centred
at points of Y that intersects in X also intersects in Y .

It is obvious from the definitions that a proper subspace cannot simulta-
neously be very non-constrained and almost constrained. This explains the
terminology.
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Clearly, any constrained subspace is an AC-subspace. However, it has been
shown recently by the first and third authors [3] that the converse is generally
false, though whether they are equivalent in the case of IPf,∞ remains an
open question.

If one considers hyperplanes, we show that there is a dichotomy between
V N - and AC-subspaces and the notions of an AC-hyperplane and a constrai-
ned hyperplane coincide. We also characterize V N -hyperplanes of some clas-
sical Banach spaces.

We conclude Section 2 with some interesting applications of the existence
of a separable V N -subspace.

In Section 3, we consider various stability results. In particular, we prove
that for a family of Banach spaces and their subspaces, the `p (1 ≤ p ≤ ∞) and
c0 sums of the subspaces are V N -subspaces of the sum of the superspaces if
and only if the same is true of each coordinate. These are natural extensions of
corresponding results in [2]. We also show that for a compact Hausdorff space
K, C(K, Y ), the space of continuous functions from K to Y , is a V N -subspace
of C(K,X) if and only if Y is a V N -subspace of X. Under an assumption
slightly stronger than X being nicely smooth, we show that C(K,X) is a V N -
subspace of WC(K, X), the space of weakly continuous functions. We also
show that some variants of this condition is sufficient for K(X,Y ), the space
of all compact operators from X to Y , to be a V N -subspace of L(X,Y ), the
space of all bounded operators from X to Y .

2. Main Results

Taking cue from [12, Lemma 1], we introduce the following notation.

Definition 2.1. Let Y be a subspace of a normed linear space X. For
x ∈ X and y∗ ∈ Y ∗, put

U(x, y∗) = inf{y∗(y) + ‖x− y‖ : y ∈ Y }
L(x, y∗) = sup{y∗(y)− ‖x− y‖ : y ∈ Y }

For x∗ ∈ X∗, we will write U(x, x∗) for U(x, x∗|Y ).

Remark 2.2. By [12, Lemma 1], U(x, ·) and L(x, ·) are analogs of the
“u.s.c. hull” and “l.s.c. hull” of x ∈ X considered as a “functional” on B(Y ∗).
Observe that, in general, we cannot even consider x ∈ X as a functional on
Y ∗ as the latter may not be identifiable as a subspace of X∗.
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The following result is immediate from the proof of the Hahn-Banach Theo-
rem (see e.g., [29, Section 48]).

Lemma 2.3. Let Y be a subspace of a normed linear space X. Suppose
x0 /∈ Y and y∗ ∈ S(Y ∗). Then L(x0, y

∗) ≤ U(x0, y
∗) and α lies between these

two numbers if and only if there exists a Hahn-Banach extension x∗ of y∗ with
x∗(x0) = α.

Remark 2.4. It is clear that for any x∗ ∈ B(X∗) and x ∈ X, L(x, x∗) ≤
x∗(x) ≤ U(x, x∗) and an y∗ ∈ S(Y ∗) has an unique Hahn-Banach extension
to X if and only if for all x ∈ X, L(x, y∗) = U(x, y∗).

Here is our analogue of [12, Lemma 2]

Lemma 2.5. Let Y be a subspace of a Banach space X. For x1, x2 ∈ X,
the following are equivalent :

(a) x2 ∈
⋂

y∈Y

BX [y, ‖x1 − y‖].

(b) For all y ∈ Y , ‖x2 − y‖ ≤ ‖x1 − y‖.
(c) For all x∗ ∈ B(X∗), U(x2, x

∗) ≤ U(x1, x
∗).

Proof. Equivalence of (a) and (b) is clear.
(b) ⇒ (c) If ‖x2 − y‖ ≤ ‖x1 − y‖, for all y ∈ Y , then for all x∗ ∈ B(X∗),

x∗(y) + ‖x2 − y‖ ≤ x∗(y) + ‖x1 − y‖. And therefore, U(x2, x
∗) ≤ U(x1, x

∗).
(c) ⇒ (b) Suppose ‖x2 − y0‖ > ‖x1 − y0‖ for some y0 ∈ Y . Then there

exists ε > 0 such that ‖x2 − y0‖ − ε ≥ ‖x1 − y0‖. Choose x∗ ∈ B(X∗)
such that ‖x1 − y0‖ ≤ ‖x2 − y0‖ − ε < x∗(x2 − y0) − ε/2. Thus U(x1, x

∗) ≤
x∗(y0) + ‖x1 − y0‖ < x∗(x2)− ε/2 < U(x2, x

∗).

Remark 2.6. Instead of B(X∗), it suffices to consider any norming set
for X.

The next lemma is a key step that allows us to do away with topological
considerations.

Lemma 2.7. Let Y be a subspace of a Banach space X. For x1, x2 ∈ X,
and x∗ ∈ B(X∗), U(x1, x

∗)− U(x2, x
∗) ≤ U(x1 − x2, x

∗).
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Proof. For any x∗ ∈ B(X∗) and y1, y2 ∈ Y ,

U(x1, x
∗) ≤ x∗(y1 + y2) + ‖x1 − y1 − y2‖

= x∗(y1) + x∗(y2) + ‖(x2 − y2) + (x1 − x2 − y1)‖
≤ x∗(y2) + ‖x2 − y2‖+ x∗(y1) + ‖x1 − x2 − y1‖

Since y1, y2 ∈ Y are arbitrary, it follows that

U(x1, x
∗) ≤ U(x2, x

∗) + U(x1 − x2, x
∗)

Analogous to O(X) in [13], we now introduce the ortho-complement of Y
in X.

Definition 2.8. Let Y ⊆ X be a subspace of X. We define the ortho-
complement O(Y,X) of Y in X as

O(Y, X) = {x ∈ X : ‖x− y‖ ≥ ‖y‖ for all y ∈ Y }.

Remark 2.9. Recall that (see e.g., [19]) for x, y ∈ X, one says x is ortho-
gonal to y in the sense of Birkhoff (written x ⊥B y) if ‖x + λy‖ ≥ ‖x‖, for
all λ ∈ R. Thus, O(Y, X) is the collection of x ∈ X such that Y ⊥B x. This
justifies the terminology. We could have formulated most of the results in this
paper in terms of Birkhoff orthogonality also. But we did not do it as this
does not give us any better insight into the phenomenon.

Here is our analogue of [13, Lemma I.1] with some additions.

Lemma 2.10. Let Y be a subspace of a Banach space X. Let x ∈ X.
Then, the following are equivalent :

(a) x ∈ O(Y, X)

(b) ker(x)|Y ⊆ Y ∗ is a norming subspace for Y .

(c) 0 ∈
⋂

y∈Y

BY [y, ‖x− y‖].

(d) For every x∗ ∈ B(X∗), L(x, x∗) ≤ 0 ≤ U(x, x∗).

(e) For every y∗ ∈ B(Y ∗), L(x, y∗) ≤ 0 ≤ U(x, y∗).
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Proof. (a) ⇒ (b) Suppose x ∈ O(Y, X). We need to show ‖y‖ = ‖y|ker(x)‖
for all y ∈ Y . Clearly, ‖y‖ ≥ ‖y|ker(x)‖. Since

ker(x)∗ = X∗∗/ ker(x)⊥ = X∗∗/span{x},

we have
‖y|ker(x)‖ = d(y, span{x}) = inf

λ∈R ‖y − λx‖ ≥ ‖y‖

since x ∈ O(Y,X) and from the definition, it follows that O(Y, X) is closed
under scalar multiplication. Hence ‖y‖ = ‖y|ker(x)‖.

(b) ⇒ (a) Since ker(x)|Y norms Y , ‖y‖ = ‖y|ker(x)‖ = d(y, span{x}) =
infλ∈R ‖y − λx‖ for all y ∈ Y . Hence ‖x− y‖ ≥ infλ∈R ‖y − λx‖ ≥ ‖y‖ for all
y ∈ Y . Thus, x ∈ O(Y, X).

(a) ⇔ (c) and (d)⇒(e) are immediate from definition, while (c) ⇒ (d)
follows from Lemma 2.5.

(e) ⇒ (a) For every y∗ ∈ B(Y ∗), 0 ≤ U(x, y∗) implies for all y∗ ∈ B(Y ∗)
and y ∈ Y ,

0 ≤ y∗(y) + ‖x− y‖ =⇒ y∗(−y) ≤ ‖x− y‖.

Since this is true for all y∗ ∈ B(Y ∗), ‖y‖ ≤ ‖x − y‖ for all y ∈ Y . That is,
x ∈ O(Y,X).

Remark 2.11. In [3], it has been further shown that for a w*-closed sub-
space F ⊆ X∗, F |Y is a norming subspace for Y if and only if F⊥ = {x ∈ X :
f(x) = 0 for all f ∈ F} ⊆ O(Y,X).

Now we are ready for our main characterization theorem for a V N -subspace.
Compare this with Theorem 1.4 and [2, Proposition 2.2].

We will use the following notation. For y∗ ∈ Y ∗, the set of all Hahn-Banach
extension of y∗ to X is denoted by HB(y∗).

Theorem 2.12. Let Y be a subspace of a Banach space X. Then, the
following are equivalent :

(a) Y is a V N -subspace of X.

(b) For any x ∈ X \ Y , ⋂

y∈Y

BY [y, ‖x− y‖] = ∅.

(c) O(Y, X) = {0}.
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(d) Any A ⊆ B(X∗) such that A|Y is a norming set for Y , separates points
of X.

(e) Any subspace F ⊆ X∗ such that F |Y is a norming subspace for Y ,
separates points of X.

(f) For all nonzero x ∈ X, there exists y∗ ∈ S(Y ∗) such that every x∗ ∈
HB(y∗) takes non-zero value at x.

Proof. Clearly, (a) ⇒ (b)
(b) ⇒ (c) Suppose x ∈ O(Y, X) and x 6= 0. Then, x /∈ Y and by

Lemma 2.10, it follows that 0 ∈ ⋂
y∈Y BY [y, ‖x− y‖], a contradiction.

(c) ⇒ (a) Suppose x1, x2 ∈ X such that

x2 ∈
⋂

y∈Y

BX [y, ‖x1 − y‖].

By Lemma 2.5, for all x∗ ∈ B(X∗), U(x2, x
∗) ≤ U(x1, x

∗). By Lemma 2.7,
0 ≤ U(x1 − x2, x

∗). That is, x1 − x2 ∈ O(Y, X), by Lemma 2.10. By (c),
x1 = x2. Hence Y is a V N -subspace.

(c) ⇒ (d) Let A ⊆ B(X∗) be such that A|Y is a norming set for Y . By
Lemma 2.10, A⊥ ∩X ⊆ O(Y,X). By (c), therefore, A⊥ ∩X = {0}. Thus, A
separates points of X.

(d) ⇔ (e) Since a subspace F is norming if and only if it is the closed
linear span of a norming set, this is clear.

(d) ⇒ (f) Suppose (f) does not hold. Then there exists x 6= 0 ∈ X such
that for every y∗ ∈ S(Y ∗), there exists x∗ ∈ HB(y∗) such that x∗(x) = 0. Let

A = {x∗ ∈ S(X∗) : x∗(x) = 0}

Then A|Y = S(Y ∗) and hence, is a norming set for Y , but A clearly does not
separate x from 0.

(f) ⇒ (c) x ∈ O(Y, X) implies, by Lemma 2.10, that for every y∗ ∈ S(Y ∗),
L(x, y∗) ≤ 0 ≤ U(x, y∗), and by Lemma 2.3, this implies for every y∗ ∈ S(Y ∗),
there exists x∗ ∈ HB(y∗) such that x∗(x) = 0. Hence the result.

The following observations are quite useful in applications.

Proposition 2.13. Let Y ⊆ Z ⊆ X, where Y is a V N -subspace of X.
Then Z is a V N -subspace of X and Y is a V N -subspace of Z. If, moreover,
Z is an AC-subspace of X, then Z = X.
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Proof. We observe that O(Y, Z) ⊆ O(Y, X) and O(Z,X) ⊆ O(Y,X). This
proves the first part. In the second part, observe that Z is both a V N -subspace
and an AC-subspace of X. Thus, Z = X.

Remark 2.14. Compare this with [2, Theorems 2.16 and 2.18].

Corollary 2.15. X is reflexive if and only if there is a subspace M ⊆ X∗

which when considered as a subspace of X∗∗∗ is a V N -subspace.

Proof. If X is reflexive, take M = X∗. Conversely, if there is an M ⊆ X∗ ⊆
X∗∗∗ and M is a V N -subspace of X∗∗∗, then since X∗ is an AC-subspace of
X∗∗∗, we have by the above result that X∗ = X∗∗∗.

Example 2.16. Even though the property under consideration here de-
pends on the norm, it should be emphasized that if a Banach space X contains
two subspaces Y and Z, which are isometrically isomorphic and one of them
is a V N -subspace, the other need not be a V N -subspace.

For example, consider the usual inclusion of c0 ⊆ c ⊆ `∞. The inclusion
of c0 in `∞ is the canonical embedding of c0 in c∗∗0 = `∞. Since c0 is nicely
smooth, in this embedding, it is a V N -subspace of `∞. By the above result,
therefore, c, in its inclusion, is a V N -subspace of `∞. However, it has been
noted in [2] that c is not nicely smooth. That is, in the canonical embedding
of c in c∗∗ = `∞, c is not a V N -subspace. It follows that even c0, as a subspace
of the canonical embedding of c, is not a V N -subspace of `∞. This example
illustrates the need of caution in applying the above proposition.

And here is our analogue of [2, Theorem 2.13].

Proposition 2.17. Let Y be a subspace of X. Then Y is a V N -subspace
of X in every equivalent renorming of X if and only if Y = X.

Proof. The converse being trivial, suppose Y 6= X. Let x ∈ X \ Y and let
F = {x∗ ∈ X∗ : x∗(x) = 0}. Define a new norm on Y by

‖y‖1 = sup{x∗(y) : x∗ ∈ B(F )} for y ∈ Y

It follows from arguments similar to [14, Theorem 8.2] that ‖ · ‖1 is an equi-
valent norm on Y with F |Y as a norming subspace. Now this norm on Y
extends to an equivalent norm on X by [10, Lemma II.8.1]. And clearly, with
this norm, Y is not a V N -subspace of X.
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Inspired by [2, Theorem 2.10], we now try to identify some necessary and
some sufficient conditions for a subspace to be a V N -subspace. As in [2], we
start with a class of functionals with “locally unique” Hahn-Banach exten-
sions. And here we bring back some of the topological flavour.

Let C(x) = {x∗ ∈ B(X∗) : U(x, x∗) = L(x, x∗)}, for x ∈ X, and C =
∩x∈XC(x).

We now obtain characterizations of elements of C(x) and C. The first is
an analogue of [2, Proposition 2.7] and a refinement of [4, Proposition 3.2].

Proposition 2.18. Let Y be a subspace of a Banach space X. Let x∗ ∈
B(X∗) and x0 ∈ X \ Y . The following are equivalent :

(a) x∗ ∈ C(x0).

(b) ‖x∗|Y ‖ = 1 and every x∗1 ∈ HB(x∗|Y ) takes the same value at x0.

(c) if x∗(x0) > α (or, x∗(x0) < α) for some α ∈ R, then there exists a
closed ball B in X with centre in Y such that x0 ∈ B and inf x∗(B) > α
(respectively, supx∗(B) < α).

(d) ‖x∗|Y ‖ = 1 and if {x∗α} ⊆ S(X∗) is a net such that x∗α|Y → x∗|Y in the
w*-topology of Y ∗, then limα x∗α(x0) = x∗(x0).

(e) ‖x∗|Y ‖ = 1 and if {x∗n} ⊆ S(X∗) is a sequence such that x∗n|Y → x∗|Y
in the w*-topology of Y ∗, then limx∗n(x0) = x∗(x0).

Proof. (a) ⇔ (b) Let y∗ = x∗|Y and ‖y∗‖ = α. Then α ≤ ‖x∗‖ ≤ 1 and it
suffices to show that α = 1.

Working with some x∗1 ∈ HB(y∗), it follows that

L(x0, x
∗) ≤ sup{y∗(y)− α‖x0 − y‖ : y ∈ Y } ≤

x∗1(x0) ≤ inf{y∗(y) + α‖x0 − y‖ : y ∈ Y } ≤ U(x0, x
∗)

Thus, equality holds everywhere.
Now if α < 1, let 0 < δ < d(x0, Y ) and let 0 < ε < (1 − α)δ. Then

(1− α)‖x0 − y‖ > ε for all y ∈ Y . And therefore, for all y ∈ Y ,

y∗(y)− ‖x0 − y‖+ ε < y∗(y)− α‖x0 − y‖

And therefore, the first inequality must be strict. Contradiction!
The result now follows from Lemma 2.3.
(a) ⇔ (c) The proof is essentially same as the proof of [2, Proposition 2.7

(c) ⇔ (d)]. We omit the details.
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(b) ⇒ (d) Let {x∗α} ⊆ S(X∗) be a net such that limα x∗α(y) = x∗(y) for all
y ∈ Y . It follows that any w*-cluster point of {x∗α} is in HB(x∗|Y ). By (b),
therefore, limx∗α(x0) = x∗(x0).

(d) ⇒ (e) is clear.
(e) ⇒ (b) If x∗1 ∈ HB(x∗|Y ) with x∗(x0) 6= x∗1(x0), then the constant

sequence x∗n = x∗1 clearly satisfies limn x∗n(y) = x∗(y) for all y ∈ Y , but
{x∗n(x0)} cannot converge to x∗(x0).

Proposition 2.19. Let Y be a subspace of a Banach space X. Let x∗ ∈
B(X∗). The following are equivalent :

(a) x∗ ∈ C.

(b) ‖x∗|Y ‖ = 1 and x∗ is the unique Hahn-Banach extension of x∗|Y to X.

(c) if x0 /∈ Y and x∗(x0) > α (respectively, x∗(x0) < α) for some α ∈ R,
then there exists a closed ball B in X with centre in Y such that x0 ∈ B
and inf x∗(B) > α (respectively, supx∗(B) < α).

(d) ‖x∗|Y ‖ = 1 and if {x∗α} ⊆ S(X∗) is a net such that x∗α|Y → x∗|Y in the
w*-topology of Y ∗, then x∗α → x∗ in the w*-topology of X∗.

(e) ‖x∗|Y ‖ = 1 and if {x∗n} ⊆ S(X∗) is a sequence such that x∗n|Y → x∗|Y
in the w*-topology of Y ∗, then x∗n → x∗ in the w*-topology of X∗.

Theorem 2.20. Let Y be a subspace of a Banach space X. Consider the
following statements :

(a) C separates points of X.

(b) Any two distinct points in X are separated by disjoint closed balls with
centres in Y .

(b1) For every x ∈ X, C(x) separates points of X.

(b2) For every nonzero x ∈ X, there is x∗ ∈ C(x) such that x∗(x) 6= 0.

(c) Y is a V N -subspace of X.

Then (a) ⇒ (b) ⇒ (c) and (a) ⇒ (b1) ⇒ (b2) ⇒ (c).

Proof. (a) ⇒ (b) The proof is essentially same as the proof of [2, Theorem
2.10 (a) ⇒ (b)], except that we need to use Proposition 2.18 instead of [2,
Corollary 2.8]. We omit the details.

(b) ⇒ (c) Clear.
(a) ⇒ (b1) ⇒ (b2) follows from definitions.
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(b2)⇒ (c) By (b2), for every nonzero x ∈ X, there is a x∗ ∈ C(x) such that
x∗(x) 6= 0. By Proposition 2.18, y∗ = x∗|Y ∈ S(Y ∗) and every x∗1 ∈ HB(y∗) to
X takes the same value at x. The result now follows from Theorem 2.12(f).

Remark 2.21. If C|Y is a norming set for Y , then all the conditions are
clearly equivalent. Notice that C|Y = {y∗ ∈ S(Y ∗) : HB(y∗) is singleton}.
Thus, this condition is satisfied if Y is an U -subspace of X.

It is clear from Proposition 2.19 that the class C is the analogue of w*-
weak points of continuity if Y = Z and X = Z∗∗. In this case, the above
condition is satisfied if Z is an Asplund space. Thus we get back much of [2,
Theorem 2.10].

As mentioned in the introduction, Hahn-Banach smooth spaces are nicely
smooth. We now give an elementary example to show that, in contrast, a
U -subspace need not be a V N -subspace.

Example 2.22. Let X = R2 with the Euclidean norm and Y = {(r, 0) :
r ∈ R}. It is easy to see that Y is a U -subspace of X. But Y is also a
constrained subspace, and therefore, not a V N -subspace of X.

Example 2.23. Recall that a subspace Y of X is called an L-summand
(M -summand) if there exists a projection P on X with range Y such that for
all x ∈ X, ‖x‖ = ‖Px‖ + ‖x − Px‖ (resp. ‖x‖ = max{‖Px‖, ‖x − Px‖}). A
subspace Y of X is called an M -ideal if Y ⊥ is an L-summand in X∗. Y is
called a proper M -ideal in X if it is an M -ideal but not an M -summand in
X. The book [17] is a standard reference for M -ideals and related topics. It
is known that proper M -ideals are not constrained.

A Banach space X is called M -embedded if it is a proper M -ideal in X∗∗.
In [28], it is proved that if X is an M -embedded space, then it a proper M -ideal
in every even dual. Also an M -ideal is an U -subspace (see [17]). However, by
Corollary 2.15, such an X cannot be a V N -subspace of X(4). Thus, we get
another example of a U -subspace which is not a V N -subspace.

In fact, this example shows that even a proper M -ideal need not be a
V N -subspace. However, an M -embedded space, being Hahn-Banach smooth,
is always nicely smooth.

Let us now try to understand why such examples work.
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Definition 2.24. A subspace Y of X is said to be a (∗)-subspace of X if
the set

A = {x∗ ∈ S(X∗) : ‖x∗|Y ‖ = 1} = HB(S(Y ∗))

separates points of X.

Here are some natural examples of (∗)-subspaces.

(a) X is a (∗)-subspace of X∗∗.

(b) If Y ⊆ Z ⊆ X and Y is a (∗)-subspace of X, then Z is a (∗)-subspace
of X and Y is a (∗)-subspace of Z.

(c) For any two Banach spaces X and Y , K(X,Y ) is a (∗)-subspace of
L(X, Y ).

(d) If Y is a (∗)-subspace of Z, then for any Banach space X, X ⊗π Y is
a (∗)-subspace of X ⊗π Z. In particular, X ⊗π Y is a (∗)-subspace of
X ⊗π Y ∗∗.

(e) C(K,X) is a (∗)-subspace of WC(K, X).

(f) More generally, if Y is an ideal in X and satisfies the conditions of [27,
Lemma 1(i)], then Y is a (∗)-subspace of X. See [27] for details.

Proposition 2.25. Let Y be a subspace of a Banach space X.

(a) If Y is a V N -subspace, Y is a (∗)-subspace.

(b) If Y is a (∗)-subspace as well as a U -subspace of X, then Y is a V N -
subspace.

Proof. By Theorem 2.12(d), if Y is a V N -subspace, A separates points
of X.

And if Y is a U -subspace, A ⊆ C and therefore, if Y is (∗)-subspace, C
separates points of X.

As mentioned in the introduction, it was shown in [15, Proposition 2.5]
that nicely smooth spaces have the UEP. Here we show that

Proposition 2.26. Let Y be a V N -subspace of X. Then

(a) the only operator T ∈ L(X) such that ‖T‖ ≤ 1 and T |Y = IdY is
T = IdX .

(b) Y has the unique ideal property in X.
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Proof. (a) This is essentially the same proof as [15, Proposition 2.5].
(b) Let Pi, i = 1, 2 be norm 1 projections on X∗ with ker(Pi) = Y ⊥. It is

enough to show that for all x ∈ B(X), P ∗
1 (x) = P ∗

2 (x).
We make the following observations :

(i) Let σi = σ(X, PiX
∗), i = 1, 2 be the topologies induced on X by PiX

∗.
Since Y is a V N -subspace of X and PiX

∗ are norming for Y , we have
(B(X), σi) are Hausdorff spaces. Also B(Y ) is σi-dense in B(X) (see
[17], Remark 1.13).

(ii) P ∗
i |Y = Id|Y .

(iii) P ∗
1 = P ∗

2 P ∗
1 .

(iv) On B(P ∗
1 X∗∗), we can consider the two topologies τ1 and τ2 induced

by P1X
∗ and P2X

∗ respectively. It is easy to note that these two are
compact Hausdorff topologies on B(P ∗

1 X∗∗) and from (c), the identity
map is τ1-τ2 continuous. Thus these two topologies are identical.

(v) τi|Y = σi|Y , i = 1, 2.

Now, given x ∈ B(X), take a net {yα} ⊆ B(Y ) such that yα
σ1−→ x.

Since σ1 is Hausdorff, x is the unique σ1-cluster point of {yα}. Therefore,
yα

σ2−→ x also. Thus for all x∗ ∈ X∗, (P ∗
1 yα)(x∗) = x∗(yα) −→ (P ∗

1 x)(x∗) and
(P ∗

2 yα)(x∗) = x∗(yα) −→ (P ∗
2 x)(x∗). Thus P ∗

1 x = P ∗
2 x as desired.

Remark 2.27. In case of X in X∗∗, as noted in [22], (a) ⇔ (b). We do
not know if (a) ⇒ (b). However, (b), in general, does not imply (a). See
Remark 2.29 below.

Recall that a hyperplane H in a Banach space X is a subspace such that
H = ker(x∗) for some x∗ ∈ S(X∗). By Proposition 2.13, any hyperplane
containing a V N -subspace is itself a V N -subspace. Indeed, a V N -subspace is
the intersection of all V N -hyperplanes containing it. So, when is a hyperplane
a V N -subspace?

Proposition 2.28. For a hyperplane H in a Banach space X, the follo-
wing are equivalent :

(a) H is a V N -subspace of X.

(b) H is not an AC-subspace of X.

(c) the only operator T ∈ L(X) such that ‖T‖ ≤ 1 and T |H = IdH is
T = IdX .
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(d) H is not constrained in X.

Proof. Clearly, (a) ⇒ (b) ⇒ (d) and (a) ⇒ (c) ⇒ (d).
(d) ⇒ (a) Let x∗ ∈ S(X∗) be such that H = ker(x∗). Suppose H is not a

V N -subspace in X. Then there is a x0 ∈ O(H,X), x0 6= 0. Since O(H,X) is
closed under scalar multiplication, we may assume x∗(x0) = 1.

Clearly, P : X → X defined by P (x) = x − x∗(x)x0 is a bounded linear
projection onto H. It suffices to show that ‖P (x)‖ ≤ ‖x‖ for all x ∈ X.

Let x ∈ X. Since O(H, X) is closed under scalar multiplication, x∗(x)x0 ∈
O(H, X) and therefore, ‖x‖ = ‖x∗(x)x0 + P (x)‖ ≥ ‖P (x)‖.

Remark 2.29. Observe that even in this case, we cannot replace (c) above
by “H has the unique ideal property in X”.

For example, let K be a compact Hausdorff space and X = C(K). Let
k0 ∈ K be an isolated point and let H = {f ∈ C(K) : f(k0) = 0}. Then H
is an M -summand in X and therefore, is not a V N -subspace. However, H is
an M -ideal and hence a U -subspace of X. It follows that H has the unique
ideal property in X.

However, such a situation cannot occur for X in X∗∗ and we obtain

Corollary 2.30. Let X be a Banach space such that dim(X∗∗/X) = 1.
Then the following are equivalent :

(a) X is not nicely smooth.

(b) X has the IPf,∞.

(c) X is constrained in X∗∗.

(d) X fails the UEP.

We now characterize V N -hyperplanes in some classical Banach spaces.

Proposition 2.31. For a Banach space X, the following are equivalent :

(a) X is a Hilbert space.

(b) No proper subspace of X is a V N -subspace.

(c) No hyperplane in X is a V N -subspace.
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Proof. In a Hilbert space, every subspace is constrained, hence no proper
subspace is a V N -subspace. Thus (a) ⇒ (b) ⇒ (c).

(c) ⇒ (a) If no hyperplane is a V N -subspace, by Proposition 2.28, every
hyperplane is constrained. It is well known (see for example [1, Corollary 2.2])
that this implies X is a Hilbert space.

At the other end of the spectrum are spaces in which all hyperplanes are
V N -subspaces. Examples of such spaces are available even among reflexive
spaces. Let us recall the following result.

Theorem 2.32. [7, Proposition VI.3.1] Let 1 < p < ∞, p 6= 2 and
1/p + 1/q = 1. Let f ∈ Lq(Ω,Σ, µ), f 6= 0. Then the hyperplane ker(f)
is constrained in Lp(Ω, Σ, µ) if and only if f is of the form f = αχA + βχB,
where A and B are atoms of µ and α, β ∈ R.

Thus for µ nonatomic, the spaces Lp(µ), 1 < p < ∞, p 6= 2, provide
examples of reflexive spaces in which all hyperplanes are V N -subspaces. Since
there are constrained subspaces in these spaces, this also shows that intersec-
tion of V N -subspaces need not be a V N -subspace.

Even for L1(µ) with µ nonatomic, it is known that, there is no constrained
hyperplane. Thus again, all hyperplanes in L1(µ) are V N -subspaces. Ac-
tually, in this case, no subspace of finite co-dimension is constrained (see [17],
Corollary IV.1.15). Are these all V N -subspaces?

Coming to the sequence spaces, Theorem 2.32 also shows that for 1 < p <
∞, p 6= 2 and 1/p + 1/q = 1, for φ ∈ `q, the hyperplane ker(φ) is constrained
in `p if and only if at most 2 coordinates of φ are nonzero.

The same statement is also true for `1. This was proved by [8, Theorem
3]. But their argument is quite involved. Here is a simple proof.

Proof. Suppose φ = (s1, s2, 0, 0, . . .) ∈ `∞ and H = ker(φ). Let

z =
1

|s1|+ |s2|(sgn(s1), sgn(s2), 0, 0, . . .) ∈ `1.

Then φ(z) = 1 and it is not difficult to verify that the projection defined by
P (x) = x− φ(x)z is of norm 1.

Conversely, suppose φ = (s1, s2, s3, . . .) ∈ `∞ has at least three nonzero
coordinates and H = ker(φ). Without loss of generality, assume s1, s2, s3

are nonzero. We will show that H cannot be an AC-subspace. Since x0 =
(1/s1, 1/s2, 1/s3, 0, 0, . . .) /∈ H, if H were an AC-subspace, we would have
an y0 ∈ ∩y∈HBH [y, ‖x0 − y‖]. Let y0 = (y1, y2, y3, . . .). Note that z0 =
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x0−y0 ∈ O(H,X). Now if we put y = (1/s1, 1/s2,−2/s3, 0, 0, . . .)−y0, then
y ∈ H. And therefore, ‖z0 − y‖ ≥ ‖y‖. That is,

∣∣∣∣
3
s3

∣∣∣∣ ≥
∣∣∣∣
1
s1
− y1

∣∣∣∣ +
∣∣∣∣
1
s2
− y2

∣∣∣∣ +
∣∣∣∣
2
s3

+ y3

∣∣∣∣ +
∞∑

i=4

|yi|.

And hence, ∣∣∣∣
1
s3
− y3

∣∣∣∣ ≥
∣∣∣∣
1
s1
− y1

∣∣∣∣ +
∣∣∣∣
1
s2
− y2

∣∣∣∣ +
∞∑

i=4

|yi|.

Similarly taking y = (1/s1,−2/s2, 1/s3, 0, 0, . . .)− y0, we get

∣∣∣∣
1
s2
− y2

∣∣∣∣ ≥
∣∣∣∣
1
s1
− y1

∣∣∣∣ +
∣∣∣∣
1
s3
− y3

∣∣∣∣ +
∞∑

i=4

|yi|,

and taking y = (−2/s1, 1/s2, 1/s3, 0, 0, . . .)− y0, we get

∣∣∣∣
1
s1
− y1

∣∣∣∣ ≥
∣∣∣∣
1
s2
− y2

∣∣∣∣ +
∣∣∣∣
1
s3
− y3

∣∣∣∣ +
∞∑

i=4

|yi|.

This is surely not possible.

Coming to c0, it is shown in [8, Theorem 1] that for φ = (s1, s2, s3, . . .) ∈ `1

with ‖φ‖ = 1, the hyperplane ker(φ) is constrained in c0 if and only if |sn| ≥
1/2 for some n. Thus, whenever |sn| < 1/2 for all n, the hyperplane ker(φ) is
a V N -subspace.

It follows from the results of [5] that for φ ∈ `∗∞ with ‖φ‖ = 1, if we write
φ = φ1 +φ2, where φ1 = (s1, s2, s3, . . .) ∈ `1 and φ2 ∈ c⊥0 , then the hyperplane
ker(φ) is a V N -subspace of `∞ if and only if |sn| < 1/2 for all n.

For X = C(K), the hyperplane H = {f ∈ C(K) : f(k) = 0} is an M -ideal
for any k ∈ K and is constrained only when k is an isolated point of K. Thus
for every other k, we get a V N -subspace.

Remark 2.33. It would be interesting to characterize all x∗ ∈ S(X∗) such
that ker(x∗) is a V N -subspace of X. This clearly is same as characterizing all
x∗ ∈ S(X∗) such that ker(x∗) is constrained.

If X is an M -embedded space, then any constrained subspace of X∗ is w*-
closed. Therefore, for any x∗∗ ∈ X∗∗ \X, ker(x∗∗) is a V N -subspace of X∗.
But as the `1 example above shows, this does not exhaust all the possibilities.
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Example 2.34. Observe that a 1-dimensional subspace is always constrai-
ned, and therefore, cannot be a V N -subspace. Can a space have a finite di-
mensional V N -subspace? It is easy to see that in a polyhedral Banach space,
for example c0, finite dimensional subspaces, since they have only finitely
many extreme points, cannot be V N -subspaces. But in c we can exhibit a
two-dimensional V N -subspace.

Consider the subspace Y ⊆ c spanned by x = (sin 1/n) and y = (cos 1/n).
Taking vectors of the form sin 1/k · x + cos 1/k · y, one can see that any
norming subspace for Y in `1 contains all the unit vectors en. Hence Y is a
V N -subspace.

We now discuss some consequences of the existence of a separable V N -
subspace.

Theorem 2.35. Let X be a Banach space with a separable V N -subspa-
ce Y . Then,

(a) there is a countable set {ξ∗n} ⊆ S(X∗) which separates points of X.

(b) Weakly compact subsets of X are metrizable.

(c) Let K be a compact Hausdorff space. Then every f ∈ WC(K,X) is
Baire class-1, i.e., there exists a sequence {fn} ⊆ C(K, X) such that
fn → f pointwise.

Proof. (a) Consider the duality map D : S(Y ) → S(Y ∗) given by D(y) =
{y∗ ∈ S(Y ∗) : y∗(y) = 1}. Let {yn} be a dense subset of S(Y ). Let y∗n
be a selection of D(yn). Then {y∗n} is norming for Y . For each y∗n, choose
x∗n ∈ HB(y∗n). Then sp{x∗n} is a subspace of X∗ which is norming for Y .

Since Y is a V N -subspace of X, sp{x∗n} separates points of X. Now
sp{x∗n} being norm separable, there is a norm dense set {ξ∗n} ⊆ sp{x∗n} which
separates points of X.

(b) Let K be a weakly compact subset of X. Since {ξ∗n} separates points
of K and are weakly continuous, we have the result.

(c) Let W = f(K). W is a weakly compact subset of X. Hence by (a), it
is weakly metrizable. It follows that W is weakly separable and so, it is norm
separable. Now follow the arguments of [26].

The following result is also immediate.

Proposition 2.36. Suppose Y is a separable subspace of a Banach space
X such that Y is a V N -subspace of X∗∗. Then B(X∗∗) is w*-metrizable.



very non-constrained subspaces of banach spaces 179

Remark 2.37. If a Banach space X satisfies the hypothesis of Proposi-
tion 2.36, then (X,w) is σ-fragmentable (see [21] for details).

Theorem 2.38. Let X be a WCG Banach space with a separable V N -
subspace. Then X itself is separable.

Proof. It is well known that any separable subspace of a WCG space is
actually contained in a separable constrained subspace (see, e.g., [10, page
238]). Hence the result follows from Proposition 2.13.

3. Stability Results

Theorem 3.1. Let Γ be an index set. For all α ∈ Γ, let Yα be a subspace
of Xα. Then the following are equivalent :

(a) For all α ∈ Γ, Yα is a V N -subspace of Xα.

(b) For some 1 ≤ p ≤ ∞, ⊕`pYα is a V N -subspace of ⊕`pXα.

(c) For all 1 ≤ p ≤ ∞, ⊕`pYα is a V N -subspace of ⊕`pXα.

(d) ⊕c0Yα is a V N -subspace of ⊕`∞Xα.

(e) ⊕c0Yα is a V N -subspace of ⊕c0Xα.

Proof. (c) ⇒ (b) is trivial.
(b) or (e) ⇒ (a) Let X = ⊕Xα and Y = ⊕Yα, where the sum is any of c0-

or `p- (1 ≤ p ≤ ∞) sum. Similar to [2, Theorem 3.1], it is immediate that if
for every α ∈ Γ, xα ∈ O(Yα, Xα), then x ∈ O(Y, X). Hence O(Y, X) = {0}
implies O(Yα, Xα) = {0} for all α ∈ Γ.

(a) ⇒ (c) for 1 ≤ p < ∞. This also is similar to [2, Theorem 3.1]. We
omit the details.

(d) ⇒ (e) and (c) for p = ∞. This follows from Proposition 2.13.
(a) ⇒ (d) This follows from an argument similar to [2, Theorem 3.3]. We

again omit the details.

Remark 3.2. Since (⊕`pXα)∗∗ = ⊕`pX
∗∗
α for 1 < p < ∞ and (⊕c0Xα)∗∗ =

⊕`∞X∗∗
α , [2, Theorem 3.1 and 3.3] are immediate corollaries.

It also follows that for any family {Xα} of Banach spaces, ⊕c0Xα is a
V N -subspace of ⊕`∞Xα.

We now consider C(K,Y ) in C(K, X) where Y is a subspace of X.
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Lemma 3.3. Let K be compact Hausdorff space. Let Y be a subspace of
X. Consider y∗ ⊗ δ(k) ∈ S(C(K,Y )∗) where y∗ ∈ S(Y ∗) and for k ∈ K, δ(k)
denotes the Dirac measure at k. Then HB(y∗ ⊗ δ(k)) = HB(y∗)⊗ δ(k).

Proof. Let G = y∗ ⊗ δ(k). Then G ∈ S(C(K,Y )∗). Let F ∈ HB(G), then
‖F‖ = ‖G‖ = 1 and considering the total variation of F , it is not difficult to
see that F is also a point mass at k. That is,

F = x∗ ⊗ δ(k),

where x∗ ∈ HB(y∗).

Theorem 3.4. Let K be a compact Hausdorff space. Let Y be a subspace
of X. C(K, Y ) is a V N -subspace of C(K, X) if and only if Y is a V N -subspace
of X.

Proof. Observe that if x ∈ O(Y, X), then the constant function x ∈
O(C(K, Y ), C(K, X)). Hence if C(K, Y ) is a V N -subspace of C(K, X), then
Y is a V N -subspace of X.

Conversely, let Y be a V N -subspace of X. By Theorem 2.12, it suffices
to show that for all nonzero f ∈ C(K,X), there exists G ∈ S(C(K, Y )∗) such
that every F ∈ HB(G) takes non-zero value at f .

Let f 6= 0 ∈ C(K, X). Choose k0 ∈ K such that f(k0) 6= 0. Since Y is a
V N -subspace of X, by Theorem 2.12, there exists y∗ ∈ S(Y ∗) such that every
x∗ ∈ HB(y∗) takes nonzero value at f(k0). Define G by

G = y∗ ⊗ δ(k0)

Let F ∈ HB(G). Then by the above lemma,

F = x∗ ⊗ δ(k0),

where x∗ ∈ HB(y∗). Hence F (f) = x∗(f(k0)) 6= 0.

Remark 3.5. Compare this result with the result of [2] that C(K, X) is
nicely smooth if and only if X is nicely smooth and K is finite.

We now state a lemma whose first part is [22, Lemma 3.1] and the second
part can be obtained essentially along the same line.
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Lemma 3.6. Suppose Y is a subspace of Z.

(a) Consider X ⊗ Y as a subspace of L(X∗, Z). Let x∗ be a w*-denting
point of B(X∗). Then, for any y∗ ∈ S(Y ∗),

HB(x∗ ⊗ y∗) = x∗ ⊗HB(y∗).

(b) Consider K(X,Y ) as a subspace of K(X, Z). Let x be a denting point
of B(X). Then,

HB(x⊗ y∗) = x⊗HB(y∗).

Remark 3.7. Note that δ(k) is a w*-denting point of B(C(K)∗) if and
only if k is an isolated point of K. As we have seen in Lemma 3.3 above, even
without any such assumption, we have HB(y∗ ⊗ δ(k)) = HB(y∗)⊗ δ(k).

Theorem 3.8. Let X and Z be Banach spaces and Y is a subspace of Z.
If X⊗ε Y is a V N -subspace of L(X∗, Z), then Y is a V N -subspace of Z. And
if w*-denting points of B(X∗) separate points of X∗∗, then the converse also
holds.

In particular, if X satisfies this condition, then C(K, X) is a V N -subspace
of L(X∗, C(K)), and hence, also of WC(K, X).

Proof. Suppose X ⊗ε Y is a V N -subspace of L(X∗, Z). Then by Proposi-
tion 2.13, X ⊗ε Y is a V N -subspace of X ⊗ε Z. We show that in that case, Y
is a V N -subspace of Z.

Let F ⊆ Z∗ be a subspace such that F |Y norms Y . By definition of the
injective norm, B(X∗) ⊗ B(Y ∗) is a norming set for X ⊗ε Y . It follows that
B(X∗)⊗B(F ) is a norming set for X⊗εY . If F does not separate points of Z,
there is a z ∈ Z such that z∗(z) = 0, for all z∗ ∈ F . Take any x ∈ X, x 6= 0.
Observe that for any x∗ ∈ X∗, x∗⊗ z∗(x⊗ z) = 0. Hence B(X∗)⊗B(F ) does
not separate points of X ⊗ Z. This contradicts the assumption that X ⊗ε Y
is a V N -subspace of X ⊗ε Z.

Now, suppose w*-denting points of B(X∗) separates points of X∗∗ and Y
is a V N -subspace of Z.

As before, by Theorem 2.12, it suffices to show that for all nonzero T ∈
L(X∗, Z), there exists φ ∈ S((X ⊗ Y )∗) such that every Φ ∈ HB(φ) takes
nonzero value at T .

Let T ∈ L(X∗, Z), T 6= 0. Passing to T ∗, get a w*-denting point x∗ of
B(X∗) such that Tx∗ 6= 0. Then, since Y is a V N -subspace of Z, there is
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y∗ ∈ S(Y ∗) such that if z∗ ∈ HB(y∗), we have z∗(Tx∗) 6= 0. By Lemma 3.6,
HB(x∗ ⊗ y∗) = x∗ ⊗HB(y∗) and therefore, φ = x∗ ⊗ y∗ works.

Since C(K, X) = C(K) ⊗ε X, it follows from the first part that C(K, X)
is a V N -subspace of L(X∗, C(K)).

For the other assertion, we embed WC(K,X) in L(X∗, C(K)). For f ∈
WC(K,X) define Tf ∈ L(X∗, C(K)) by (Tfx∗)(k) = x∗(f(k)). Then we have
C(K, X) ⊆ WC(K, X) ⊆ L(X∗, C(K)). Hence by Proposition 2.13, we have
the result.

Remark 3.9. If C(K,X) is a VN-subspace of L(X∗, C(K)), then C(K, X)
is a VN-subspace of K(X∗, C(K)) = C(K,X∗∗). It follows, from Theorem 3.8,
that X is nicely smooth. Thus, we get a sufficient condition for nice smooth-
ness. On the other hand, if X is Asplund (or, separable) as well as nicely
smooth, then w*-denting points of B(X∗) separate points of X∗∗, and there-
fore, C(K, X) is a VN-subspace of L(X∗, C(K)).

It is known that C(K, X) = WC(K, X) for any K if and only if X has
the Schur property [25]. And that when K is infinite and X fails the Schur
property, C(K, X) is not constrained in WC(K,X) [11]. Will C(K, X) be a
V N -subspace of WC(K, X) in such case?

Conditions under which C(K, X) is an M -ideal in WC(K,X) are discus-
sed in [25]. Since C(K,X) is a (∗)-subspace of WC(K, X), and M -ideals
are U -subspaces, by Proposition 2.25, it follows that such C(K,X) will be
a V N -subspace of WC(K, X). We do not know the relations between these
conditions and ours.

A Banach space X with the Mazur Intersection Property (MIP) satisfies
the hypothesis of Theorem 3.8. By [20, Corollary 2.8], any Banach space
embeds isometrically into a Banach space with the MIP. Now, since the Schur
property is hereditary, starting with any Banach space Z failing the Schur
property, we can produce a Banach space X with the MIP and failing the
Schur property. This will produce examples when C(K, X) is a proper V N -
subspace of WC(K, X).

Proposition 3.10. Suppose denting points of B(X) separate points of
X∗. Let Y be a V N -subspace of Z. Then K(X, Y ) is a V N -subspace of
K(X, Z).

Proof. This follows from Lemma 3.6 (b) along the same line as in Theo-
rem 3.8.
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Finally, we consider K(X, Y ) in L(X, Y ). There are discussions in the
literature (see e.g. [17]) on the situation when K(X, Y ) is an M -ideal in
L(X,Y ). Since K(X,Y ) is a (∗)-subspace, by Proposition 2.25 again, it follows
that each such K(X,Y ) is a V N -subspaces of L(X, Y ). Here are some more
situations when K(X, Y ) is a V N -subspace of L(X, Y ).

Theorem 3.11. Suppose

(a) X is any Banach space and Y is such that w*-denting points of B(Y ∗)
separate points of Y ∗∗, or

(b) Y is any Banach space and X is such that denting points of B(X)
separate points of X∗,

then K(X, Y ) is a V N -subspace of L(X, Y ).

Proof. Let S = A ⊗ B, where in (a), A denotes the extreme points of
B(X∗∗) and B denotes the set of w*-denting points of B(Y ∗); and in (b), A
denotes the set of denting points of B(X) and B denotes the set of extreme
points of B(Y ∗). By [23, Theorem 3.7] (this also follows from Lemma 3.6), in
both cases, S ⊆ C as in Theorem 2.20. And by the assumptions on X and Y ,
in both cases, S separates points of L(X, Y ).

Remark 3.12. The assumption “(w*-)denting points separating points” in
the above discussion allows us to make use the special form of Hahn-Banach
extensions on tensor product spaces as in Lemma 3.6. It would be interesting
to know if the results are true even without this assumption.
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