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High-accuracy schemes have been proposed here to solve computational acoustics
and DNS problems. This is made possible for spatial discretization by optimizing
explicit and compact differencing procedures that minimize numerical error in the
spectral plane. While zero-diffusion nine point explicit scheme has been proposed
for the interior, additional high accuracy one-sided stencils have also been developed
for ghost cells near the boundary. A new compact scheme has also been proposed
for non-periodic problems—obtained by using multivariate optimization technique.
Unlike DNS, the magnitude of acoustic solutions are similar to numerical noise
and that rules out dissipation that is otherwise introduced via spatial and tempo-
ral discretizations. Acoustics problems are wave propagation problems and hence
require Dispersion Relation Preservation (DRP) schemes that simultaneously meet
high accuracy requirements and keeping numerical and physical dispersion relation
identical. Emphasis is on high accuracy than high order for both DNS and acous-
tics. While higher order implies higher accuracy for spatial discretization, it is shown
here not to be the same for time discretization. Specifically it is shown that the 2nd
order accurate Adams-Bashforth (AB)—scheme produces unphysical results com-
pared to first order accurate Euler scheme. This occurs, as the AB-scheme introduces
a spurious computational mode in addition to the physical mode that apportions to
itself a significant part of the initial condition that is subsequently heavily damped.
Additionally, AB-scheme has poor DRP property making it a poor method for
DNS and acoustics. These issues are highlighted here with the help of a solution
for (a) Navier–Stokes equation for the temporal instability problem of flow past a
rotating cylinder and (b) the inviscid response of a fluid dynamical system excited
by simultaneous application of acoustic, vortical and entropic pulses in an uniform
flow. The last problem admits analytic solution for small amplitude pulses and can
be used to calibrate different methods for the treatment of non-reflecting boundary
conditions as well.
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1. INTRODUCTION

With powerful computers and newer methods it is now routine to solve
the governing Navier–Stokes equation resolving all the scales for turbulent
flows by DNS at moderate Reynolds numbers. In this context compact
and other higher-order schemes are finding more and more applications.
Similarly, in wave propagation problems one solves hyperbolic partial
differential equations and such solutions are required to be accurate in the
far field and for long time periods. These requirements demand that the
adopted numerical method be highly accurate and dispersion error free.
Lighthill [1] has discussed the problems of computational aero-acoustics
(CAA) with respect to these issues.

The compact schemes, based on Padé approximation, offer high-
accuracy approximations to differential and integral operators using com-
pact implicit stencils. Some of the early works in this field are reported in
[2–4].

For DNS of incompressible flows, it is important to compute flows
with large directional convection of vortical structures. Thus, DNS requires
capturing high amplitude signals without suffering numerical instabilities.
This instability may be caused due to linear instability, error accumu-
lation due to aliasing and/or non-linear instabilities. While using com-
pact schemes, it is thus quite common to add numerical dissipation via
upwinding during discretization [5–7] or filtering [4,8] the solution after
each time step. The basic idea of adding algebraically a dissipation term is
equivalent to providing a negative feedback. Thus, if one uses 2nd deriv-
ative as numerical dissipation then it is strictly added, while for the 4th
derivative term the dissipation term has to be subtracted. Quite often, in
the literature, this has been stated simply as “adding numerical dissipation”.

In contrast, solving acoustics problems involve capturing weak signals
that are hard to distinguish from numerical errors. Thus, one of the major
consideration is that one should not add numerical dissipation that would
remove useful high frequency—high wave number parts of the signal. In
a major work Tam and Webb [9] discussed this and the issue of using
DRP schemes for computational acoustics. Unlike in DNS, acoustic sig-
nal propagation can be treated as a linear phenomenon in the absence of
attendant flow instabilities. If one works in the physical plane, there are no
problems of aliasing error and the main concern in computational acous-
tics is one of accuracy and avoiding spurious reflections from computational
boundaries. High accuracy requirements can be achieved by optimizing the
finite difference approximations of derivatives in the wave number space, as
the truncation error is minimized in [4,6,7,9,10]. In Tam and Webb [9]
this has been done separately for the spatial and temporal derivatives using
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explicit schemes. In the other references this has been performed for spatial
derivatives only using compact schemes. In the present exercise the
optimization process would be extended to non-periodic problems for both
the explicit and a compact scheme.

In many researches, disproportionate amount of attention has been
paid on the accuracy of spatial discretization in comparison to temporal
discretization. In many applications, first order accurate Euler time inte-
gration is used for DNS and computational acoustics. In contrast, in [9]
time integration is performed by an optimized stencil that is O(∆t3) accu-
rate. It is usual to expect that a choice of higher order time integration
schemes will help achieve higher accuracy and allow taking larger time
steps. Explicit higher order time integration schemes are also commonly
in use for reactive flow computations [11] and geophysical fluid dynamics
[12]. For example, in weather predictions using inviscid equations, three
time-level leapfrog marching scheme is used and then the numerical pro-
cedure would bring in two amplification factors. For example, when this
time integration strategy is used for integrating one-dimensional advec-
tion equation, both the amplification factors (G1 and G2) indicate neu-
tral behavior, but with phase error (see [13] for details). In this paper,
the following notations have been used to express the amplification factors.
While G1 and G2 denote the amplification factors for physical and com-
putational modes, subsequently we have used G(2) to indicate the ampli-
fication factor with Euler time integration, where the superscript within
brackets denote the order of spatial discretization.

Weather prediction with leapfrog time marching, decorrelates with
time due to aliasing error, phase error and other effects due to non-
linearity. Haltiner and Williams [13] have shown that one component of
the solution (called the physical mode) corresponding to G1 approaches
exact solution, while the second component of the solution (called the
computational mode) corresponding to G2, approaches zero as ∆x and ∆t
are allowed to approach zero. It is also noted in [13] that the compu-
tational mode alternates in sign with every time step and propagates in
the opposite direction of the exact solution. Thus, the second mode is
a spurious one and would be a source of numerical error. Similarly, the
time integration strategy used in [9] has four modes- out of which three
are spurious numerical modes. It is stated [9] that the adoption of such
schemes may lead to numerical instability due to poor property of any one
of the spurious modes. Fig. 3(b) of [9] clearly shows that ω∆t has to be
chosen less than 0.4 to avoid this instability, negating the advantages of
higher order time integration scheme. In fact, the physical mode also shows
strong attenuation beyond this value of ω∆t , while the other two modes
are severely damped.
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Lilly [14], while examining time advancement schemes for simplified
form of barotropic vorticity equation noted that the second order Adams-
Bashforth (AB) scheme performs the best with respect to efficiency and
accuracy. For a typical time evolution equation,

df

dt
=F(f, t) (1)

the AB-scheme is given by,

f (tn+1)=f (tn)+ ∆t

2
[3F(tn)−F(tn−1)] . (2)

For this scheme, it is noted in [13] that the computational mode is
heavily damped and the physical mode has to be kept from becoming
unstable by keeping ∆t small. It is also stated that -the Adams- Bashforth
scheme is suitable unless the period of integration is lengthy [13]. Despite
this cautionary note, this scheme is finding application in many researches
in the so called DNS that would require solving governing equations for
long time. For example, among innumerable references, it has been used in
finite difference methods of solving Navier-Stokes equation in [15], [16]
for channel flow; in [17] for flow over a wavy wall; in [18] for jet flows;
in [19] for boundary layer instability; in [20] for free surface channel
flow and in [21] for LES. It has even been used for spectral calculations
in [22]. Hence a detailed analysis of this scheme is warranted. However,
none of these references used compact schemes that are proving to be very
useful for DNS. Thus, it is also necessary to analyze AB-time integration
scheme for its suitability for DNS and acoustics when used with com-
pact schemes. We also explore the four-stage Runge–Kutta time integration
scheme (RK4) that is often used for high accuracy computing.

The paper is structured in the following manner. In the next section
we discuss and develop various explicit and implicit schemes for spatial
discretization. In Sec. 3 various time discretization schemes are analyzed
with the help of one- dimensional convection equation. In Sec. 4, two
examples drawn from acoustics and flow instability are shown to highlight
various issues discussed herein.

2. HIGH ACCURACY SCHEMES FOR SPATIAL DERIVATIVES

In compact schemes, on a uniform grid of spacing h=∆x, the first
derivative u′ is obtained from the solution of the following linear algebraic
equation:

[A]u′ = [B]u. (3)
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This is an implicit linear algebraic equation involving the derivatives
and function values at different nodes. If [A] is an identity matrix, then
we have corresponding explicit schemes. For the purpose of analysis, the
above equation is rewritten as,

u′ = [C]u. (4)

This method of evaluation of first derivative can be represented in the
spectral plane [7] by u′(xj )=

∫
ikeqÛ(k)e

ikxj dk, where

ikeq(xj )=
N∑

l=1

Clj e
ik(xl−xj ). (5)

This general method of characterizing any discretization technique in
the spectral plane was introduced in [7] and provides a means for full
domain analysis simultaneously. Such an approach becomes very relevant
to evaluate various boundary closure schemes. Some optimal globally sta-
ble schemes were introduced in [7] with the help of this method. Differ-
ent numerical schemes have different estimates of keq and it is in general a
complex quantity. The imaginary part of keq represents numerical dissipa-
tion when it is negative. A spatial discretization scheme, that has a positive
imaginary part of keq at a point, locally contributes to numerical instabil-
ity as it is equivalent to adding anti-diffusion.

The developed methodology in [7] can form the basis of optimization
to develop new high accuracy schemes for non-periodic problems. Essen-
tial ideas for periodic problems or only for the interior stencils of a com-
pact scheme for non-periodic problem have been discussed in [4,6,7,10]
and a brief account is added here for ease of understanding. The following
constrained minimization problem, whose solution would provide a high
accuracy scheme with improved resolution is attempted whereby one min-
imizes

E(., .)=
N∑

l=1

el =
N∑

l=1

∫
|Llh(kh)−Ll(kh)|2U2(k)dk. (6)

Here Ll(kh)= ikh and Llh(kh)=
∑N
j=1Clj (Rlj + iIlj ) are the exact and

numerical differential operators operating on the Laplace transform of the
initial condition of the function. Arguments on the left-hand side of (6)
are the parameters over which the problem is minimized. In optimizing
the stencil, we use U(k)=1, so that we are seeking a conservative estimate
with respect to a white noise or Dirac delta excitation of the system. In
[10] this optimization was performed for periodic one-dimensional wave
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equation with a particular type of band-limited spectra of initial data. The
objective function for the lth node can be expressed as,

el =
∫ km

km

∣
∣
∣
N∑

j=1

CljRjl + i
N∑

j=1

(Clj Ilj −kh)
∣
∣
∣
2
dk. (7)

The above can be further simplified to

el/[π(N −1)]= 2π2

3
+
j=N∑

j �=l

4Clj
j − l (−1)(j−l)+2C2

ll +
j=N∑

j �=l
C2
lj . (8)

This L2- norm for error for the approximation of first derivative is
dependent on the property of C matrix i.e. on A and B matrices in Eq.
(3). The first term in the above equation, is contributed by the exact differ-
ential operator and is always positive. The third and fourth terms are also
positive and cannot reduce the error norm, except the fact that Cll can be
made identically equal to zero. This is the case for explicit central differ-
ence schemes and they can be termed as low error schemes as compared to
equivalent upwind schemes. The off-diagonal terms of C matrix can reduce
error through the second term in (8). As Clj is scaled by (l− j), most of
the contributions would come from the immediate neighboring points of
the diagonal. The contributions coming from j = l ± 1 and j = l ± 2 are
4[Cll−1 −Cll+1] and 2[Cll−2 −Cll+2], respectively. For example, one can esti-
mate the error for 2nd -order and 4th -order central differencing schemes as
equal to ((2π2/3)− (3/2)) and ((2π2/3)− (319/72)) respectively.

Here we intend to develop a high accuracy optimized compact scheme
for non-periodic problems. For this purpose we intend using the following
stencil for the interior point,

αu′
l−1 +u′

l +αu′
l+1 = b

4h
(ul+2 −ul−2)+ a

2h
(ul+1 −ul−1). (9)

For non-periodic problems, one would require special one-sided bou-
ndary stencils as the ones used in [7]. For the first and second points of
the domain they are given by,

u′
1 = 1

2h
(−3u1 +4u2 −u3), (10)

u′
2=

1
h

[(
2γ2

3
−1

3

)

u1−
(

8γ2

3
+1

2

)

u2+(4γ2 +1) u3 −
(

8γ2

3
+1

6

)

u4+2γ2

3
u5

]

(11)



High Accuracy Schemes

Similarly, one can write down the boundary closure schemes for j=N
and j =N−1 using γN−1. γj are the free parameters chosen for j =2 and
j =N−1 independently. Eqs. (9)–(11) would assist one in compiling the C
matrix and thus it is easy to see that E is a function of (α, a, b, γ2, γN−1).
E has to be optimized subject to the compatibility condition: 1+2α=a+
b, that ensures at least second-order accuracy. To search for the optimum,
multivariate evolutionary optimization technique of [23] is used that gave
the following values for a choice of N =30 as,

a=1.546277, b=0.329678, γ2 =−0.025 and γN−1 =0.09.

These parameter values and the optimum does not change when N

is increased further. Following the convention in [7], we refer to this as
OUCS4 scheme in the subsequent discussion.

Following the above procedure, one can also develop a high accu-
racy explicit stencils for the first derivative. In [9], a fourth order accu-
rate seven point central stencil was designed for computational acoustics
problem. In the following, we similarly develop a nine point stencil for the
evaluation of first derivative explicitly:

u′
l = a0

2h
(ul+1 −ul−1)+ b0

4h
(ul+2 −ul−2)

+ d0

6h
(ul+3 −ul−3)+ e0

8h
(ul+4 −ul−4). (12)

Equating the successive terms of the Taylor series, the following one
parameter relations are obtained in terms of a0 as: b0 = 12/5 − 2a0; d0 =
(45a0 −64)/35 and e0 = (3−2a0)/7. When the corresponding spectral error
is minimized one obtains the optimum for a0 = 1.66631451979287. For
actual usage of this scheme, one would require boundary stencils for four
layers of points those have to be one-sided. For example, one could obtain
the derivative at l=1 by,

u′
1 = 1

h

9∑

j=1

ajuj , (13)

where all the coefficients are written in terms of a1 by equating coeffi-
cients of the Taylor series on either side as, a2 = −(8a1 + 481/35); a3 =
28a1 + 621/80; a4 = −(56a1 + 2003/15); a5 = 70a1 + 691/4; a6 = −(56a1 +
141); a7 = (28a1 + 2143/30); a8 = −(8a1 + 103/5) and a9 = a1 + 363/140.
Once again optimization provides one with a1 = −2.62538939007719 for
least error. The same procedure is repeated here for the points at l= 2,3
and 4 as well. For brevity, we will call these collectively as the SS-scheme.
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Fig. 1. keq/k for the first derivative at different nodes evaluated using OUCS4 (Figures (a)
and (b)) and SS (Figures (c) and (d)) schemes.

In Fig. 1, the real and imaginary parts of keq/k is shown for OUCS4
and the above explicit schemes for different nodes, using the methodology
of [7]. The real part reveals the superior spectral accuracy of OUCS4 up
to kh= 2.65 as compared to 2.2 for the scheme given in [10] that was
found to have largest spectral resolution among the known schemes for
periodic problems. The imaginary part by itself reveals anti-diffusion for
near boundary points and is not directly suitable for use. To obtain uni-
form attenuation for all wave numbers and no instabilities we introduce
fourth order dissipation to achieve negative feedback stabilization.

Since the solution of Navier–Stokes equation uses Dirichlet bound-
ary conditions in the non-periodic direction the properties of the scheme
for the points at l= 1 and l=N are not relevant. In Fig. 1, the real and
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imaginary parts of keq/k are also plotted for the SS-scheme. The inte-
rior point stencil being symmetric, it is non-dissipative and hence keq/k is
purely real. The boundary stencils are not so and would stabilize or desta-
bilize the discrete equation depending on its sign.

These two optimum schemes will be assessed along with the OUCS3
scheme of [7] and a third-order scheme described in [24].

3. TEMPORAL DISCRETIZATION SCHEMES

Temporal discretization in conjunction with spatial discretization can
be studied only with respect to standard equations. For this purpose, we
consider the propagation problem given by the one-dimensional convec-
tion equation,

∂u

∂t
+ c ∂u

∂x
=0 (14)

for which the initial solution uo(x) travels to the right with the phase
speed c. For the numerical solution of the wave equation, we identify it
as

u(xm, t
n)=unm=

∫
B(k, tn)eikxmdk (15)

such that the initial solution is given by,

uom=
∫
Ao(k)e

ikxmdk. (16)

The following time integration schemes to be used in conjunction
with different spatial schemes are described briefly. First, we define the
various properties of the time integration schemes when used with some
standard differencing schemes for spatial derivatives.

3.1. Euler Time Integration Scheme

For Euler time integration and second order central differencing for
the spatial derivative, if we define the CFL number by Nc = c∆t

∆x
= ω∆t

k∆x
,

then the amplification factor G(2)(k)= B(k,tn+1)
B(k,tn)

is,

G(2)(k)= (1+N2
c sin2 k∆x)1/2e−iβ2 ,
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where tanβ2 =Nc sin k∆x. The general solution at any arbitrary time is,

unm =
∫
A0(k)[G

(2)(k)]neikxmdk

=
∫
A0(k)[1+N2

c sin2 k∆x]
n
2 ei(kxm−nβ2)dk. (17)

Thus, β2 gives a measure of the phase speed of the numerical scheme that
is given by cN = β2

k∆t
while the scaled phase speed is cN

c
= β2
ω∆t

.
If we replace the second order spatial discretization scheme by fourth-

order central scheme, as given by
(
∂u

∂x

)

m

= 1
12∆x

[−um+2 +8um+1 −8m−1 +um−2]

then one obtains the following amplification factor G(4)(k)= 1 − i Nc3 [4 −
cos k∆x] sin k∆x and the general solution at any arbitrary time is

unm=
∫
A0(k)[1+ N2

c

9
(4− cos k∆x)2 sin2 k∆x]

n
2 ei(kxm−nβ4)dk, (18)

where tanβ4 = Nc
3 [4− cos(k∆x)] sin(k∆x).

It is well known that the above schemes do not produce stable results.
This is often rectified by resorting to upwinding, as discussed in [24]. In
particular, a third-order upwind scheme is considered here, that calculates
the first derivative from the following stencil for Eq. (14):

∂u

∂x
= 1

6∆x
[unm+2 −2unm+1 +9unm−10unm−1 +2unm−2]. (19)

Corresponding amplification factor is given by,

G(3)(k)=1− i Nc
6
(L2 + iL1),

where L2 = 2[4 − cos(k∆x)] sin(k∆x) and L1 =−24 sin4( k∆x2 ). This can be
rewritten as

G(3)(k)=
[(

1+ Nc

6
L1

)2

+ N2
c L

2
2

36

] 1
2

e−iβ3 (20)

with which one can obtain the expression for numerical phase speed from
tan(β3)= ( NcL2

6+NcL1
). The general solution at arbitrary time is given by,

unm=
∫
A0(k)

[(

1+ Nc

6
L1

)2

+ N2
c L

2
2

36

] n
2

ei(kxm−nβ3)dk (21)
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In Fig. 2 the amplification factor for some of these spatial discretization
schemes are shown, with Euler time integration scheme. It is evident that
the central schemes, including the SS scheme, are unstable for any time
steps chosen. The 3rd order scheme allows taking a very small ∆t for sta-
bility at small k’s. It allows larger ∆t for larger values of k∆x. The third
order scheme performs the best among these schemes. The SS stencil for
the second point is asymmetric and it shows a range of k∆x where the
scheme is selectively stable.

In Fig. 3 the contours of the numerical phase speed are plotted. One
can note regions where the numerical phase speed is within 5% toler-
ance of the exact value. From operational considerations, the contiguous
region near the origin is the useful range. The OUCS4 scheme has the best
behavior by this yardstick.

For DRP property, the relevant quantity is the group velocity of the
schemes that can be evaluated from the numerical dispersion relation,
ωeq =cNk, from which the scaled numerical group velocity is evaluated as,

VgN

c
= cN

c
+ k2

ω

dcN

dk
=− 1

Nch

dβi

dk
.

The right-hand side of the above can be estimated for any combi-
nation of spatial and temporal discretization schemes. In Fig. 4, results
are graphically displayed in the (k∆x−ω∆t)-plane as contour plots. It is
seen that among all schemes considered here, OUCS4 scheme performs the
best, followed by the SS and the third order upwind scheme.

3.2. Adams-Bashforth Time Integration Scheme

Application of AB-scheme for time integration of Eq. (14) along with
2nd order central differencing yields the following discrete equation,

un+1
m−unm
∆t

=− c
2

[

3
unm+1 −unm−1

2∆x
− um+1

n−1 −um−1
n−1

2∆x

]

for which the amplification factors are the roots of the quadratic equation,

(G−1)+ i Nc
2

(

3− 1
G

)

L=0, (22)

where L= sin(k∆x). If the roots are indicated by λ1 and λ2 then

λ1 =Feiη, (23a)

λ2 =HeiΓ , (23b)
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Fig. 2. Amplification factor for solving 1D wave equation with Euler time integration
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scheme for spatial discretization.
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schemes indicated in Fig. 2.
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where,

F(k)=
[

C2 +D2 +2CD cos(
ξ

2
− β

2
)

]1/2

, (24a)

H(k)=
[

C2 +D2 −2CD cos(
ξ

2
− β

2
)

]1/2

, (24b)

C= 1
2

[

1+ 9
4
(NcL)

2
]1/2

, (24c)

D= 1
2

[

1+ 81
16
(NcL)

4 − 7
2
(NcL)

2
]1/4

, (24d)

tan(β)=− NcL

1− 9
4 (NcL)

2
, (24e)

tan
(
ξ

2

)

=−3
2
(NcL), (24f)

tan(η)= C sin( ξ2 )+D sin(β2 )

C cos( ξ2 )+D cos(β2 )
, (24g)

tan(Γ )= C sin( ξ2 )−D sin(β2 )

C cos( ξ2 )−D cos(β2 )
. (24h)

And the general solution is,

um
n=

∫
M(k)[F ]nei(kxm+nη)dk+

∫
N(k)[H ]nei(kxm+nΓ )dk. (25)

In Eq. (25) the first part of the solution is the physical mode and the sec-
ond part is the computational mode. Ideally one expects the computational
mode to contribute by negligible amount. In the above expression F and
H constitute the time dependent part. The multiplicative constants M and
N in Eq. (25) can be evaluated from the conditions at t=0 (given by Eq.
(16) ) and at t =∆t (obtained from Eq. (17) for n=1 ). Substitution and
simplification yields,

M(k)=A0
1− iNcL−HeiΓ
Feiη−HeiΓ , (26a)

N(k)=A0
−1+ iNcL+Feiη
Feiη−HeiΓ . (26b)
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As M + N = A0, it implies that M and N distributes the initial condi-
tion between the physical and computational modes. The overall perfor-
mance portrait of this time integration scheme is shown in Fig. 5, where
F , H , M and N are plotted for the CD2 spatial discretization scheme for
Eq. (14). From Fig. 5(a) and (b), the reason for the nomenclature of the
physical and computational modes is apparent. As the computational mode
is severely attenuated, it is noted in the literature that this mode does not
contribute after few time steps. While this is true, Fig. 5(c) and (d) indi-
cate another important aspect that has been overlooked earlier. The phys-
ical mode carries all the information of the initial condition (where it is
equal to one) only along two lines and everywhere else it is either over-
or under-estimated. Wherever it is under-estimated, for small k and large
ω combinations, there the computational mode carries significant propor-
tion of the initial condition that is lost after a few time-steps only due to
large attenuation of the computational mode. Thus, for true unsteady prob-
lems where high frequency events are important, the AB-scheme will sup-
press these events. This is usually the case for all DNS and it is important
to note that in [15] simulation of channel flow was performed using this
combination of spatial and temporal discretization.

If one replaces CD2 by the CD4 scheme, one obtains amplification
factors from Eq. (22) with L= 1

3 [4 − cos(k∆x)] sin k∆x. The other quan-
tities for the CD4 scheme are as given in Eqs. (23)–(26) with the changed
value of L.

In Fig. 6(a) and (b) the time dependent parts of the physical and
computational modes, F and H - contours are plotted in the (k∆x−ω∆t)-
plane. In Fig. 6(c) and (d) the contours of spectral weights of the initial
condition, M and N , are shown. The results and the associated problems
are qualitatively similar to that for CD2 scheme and this combination also
cannot be used for DNS.

When the third-order upwind scheme (Eq. (19)) is used for spatial dis-
cretization along with AB-scheme, the amplification factors are obtained
as roots of the following quadratic equation:

G−1+ i Nc
2
(3− 1

G
(L2 + iL1))=0. (27)

And these roots are

λ1 =F ′eiη
′
, (28a)

λ2 =H ′eiΓ
′
, (28b)
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Fig. 5. Amplification factor for solving 1D wave equation with AB time- integration and
CD2 spatial discretization schemes. Time dependent functions: (a) F for physical; (b) H for
computational modes. Spectral weights of initial condition: (c) M for physical and (d) N for
computational modes.

where,

L1 =−24 sin4( k∆x2 ), (29a)

L2 =2[4− cos(k∆x)] sin(k∆x), (29b)

F ′(k)=
[
C′2 +D′2 +2C′D′ cos( ξ

′
2 − β

′
2 )

]1/2
, (29c)

H ′(k)=
[
C′2 +D′2 −2C′D′ cos( ξ

′
2 − β

′
2 )

]1/2
, (29d)
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Fig. 6. Amplification factor for solving 1D wave equation with AB time- integration and
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C′ = 1
2

[
1+ 1

16Nc
2(L1

2 +L2
2)+ NcL1

2

]1/2
, (29e)

D′ = 1
2

[
1+ NcL1

3 + 1
72Nc

2(11L1
2 −7L2

2)+ 1
48Nc

3L1(L1
2 +L2

2)

+ 1
64Nc

4(L1
2 +L2

2)2
]1/4

(29f)

tan(β
′
)=− NcL2(

1
3 +NcL1

4 )

2+ 1
8Nc

2(L1
2−L2

2)+NcL1
3
, (29g)
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tan( ξ
′

2 )=− NcL2
4+NcL1

, (29h)

tan(η′)= C′ sin( ξ
′

2 )+D′ sin( β
′

2 )

C′ cos( ξ
′

2 )+D′ cos( β
′

2 )
, (29i)

tan(Γ ′)= C′ sin( ξ
′

2 )−D′ sin( β
′

2 )

C′ cos( ξ
′

2 )−D′ cos( β
′

2 )
, (29j)

The general solution in this case is,

um
n=

∫
M ′(k)[F ′]nei(kxm+nη′)dk+

∫
N ′(k)[H ′]nei(kxm+nΓ ′)dk (30)

and M ′ and N ′ are obtained from the initial conditions as

M ′(k) = A0
(1+ NcL1

6 )−H ′eiΓ ′ − iNcL2
6

F ′eiη′ −H ′eiΓ ′ , (31a)

N ′(k) = A0
−(1+ NcL1

6 )+F ′eiη′ + iNcL2
6

F ′eiη′ −H ′eiΓ ′ . (31b)

In Fig. 7(a) and (b) F ′ and H ′- contours are plotted in the (k∆x−
ω∆t)- plane. Compared to central schemes, here the computational mode is
not negligible for any combination of k∆x and ω∆t . Furthermore, there
are large ranges of k∆x and ω∆t for which the computational mode is
unstable (H ′> 1). For physical mode there is very limited ranges of k∆x
and ω∆t available over which this mode is near-neutral. The physical
mode shows instability for practically the whole range of ω∆t when k∆x

approaches zero. Thus, this scheme has a tendency of instability at the
largest length scale for any frequency. Also, this feature of third order
upwind scheme explains as to why this produces unstable results as the
grid is refined.

The spectral weights, M ′ and N ′ for the initial condition, are plot-
ted in Fig. 7(c) and (d), respectively. One notices that the computational
mode significantly contributes to the solution. Also there are ranges of
k∆x and ω∆t over which the computational mode has negative sign. Over-
all, the solution will be contaminated significantly by the computational
mode when AB-scheme is used with third order upwind scheme. Next, we
write down the various expressions, when OUCS4 scheme is used for spa-
tial discretization along with the AB-scheme. The amplification factors are
given by the roots of Eq. (27) where,
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Fig. 7. Amplification factor for solving 1D wave equation with AB time- integration and
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computational modes. Spectral weight of initial condition: (c) M’ for physical and (d) N’ for
computational modes.

L1 = −6
N∑

l=1

Cjl cos((l− j)k∆x), (32a)

L2 = 6
N∑

l=1

Cjl sin((l− j)k∆x). (32b)
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The general solution in this case is given as in Eq. (30). The time depen-
dent and the independent parts are as given in Eqs. (29) and (31).

If we replace the OUCS4 by SS scheme, then the amplification fac-
tors are obtained from Eq. (22) with L = a0 sin(k∆x) + b0

2 sin(2k∆x) +
d0
3 sin(3k∆x)+ e0

4 sin(4k∆x). a0, b0, d0, and e0 are the same as in Eq. (12).
The general solution is as given in Eq. (25) and the numerical phase speed,
group velocity etc. are calculated from Eqs. (24) and (26).

In Fig. 8(a) and (b) the time dependent parts, F ′ and H ′, are plotted
for the OUCS4 scheme used with the AB-scheme. It is seen that OUCS4
scheme will perform well only when ω∆t is restricted to a small value-
beyond which the physical mode is unstable. It is noted that the computa-
tional mode is unstable for large k∆x and ω∆t combinations. Overall, this
scheme will work for small time steps. Fig. 8(c) and (d) show the varia-
tion of time independent parts of the general solution and this shows that
the computational mode has less contribution as compared to the other
schemes discussed before.

In Fig. 9(a)–(d) the corresponding information is given for the SS
scheme. The behavior of this scheme is similar to other central schemes
discussed before. The computational mode will be important for DNS when
large ω∆t values are present.

The scaled numerical phase speed contours are shown in Fig. 10 for
the physical and computational modes for CD2, CD4 and the third order
upwind schemes. The physical mode shows desirable property on a small
patch near the origin for all the schemes. The computational mode has
very high phase speed for all length scales and very small ω∆t for all the
schemes. For the third order scheme there is a line, across which phase of
the computational mode display discontinuous jump.

In Fig. 11(a), (c), and (e) the numerical phase speed contours of
OUCS4, SS scheme for interior points and SS scheme for the second point
are shown for the physical mode. All the three figures show a large range
of k∆x over which the numerical phase speed is close to the actual value
for small ω∆t- the range for k∆x is twice the value obtained for the
schemes shown in Fig. 10. The contours for the numerical phase speed for
the computational mode of these schemes are shown in Fig. 11(b), (d), and
(f). These show very large phase speeds for small ω∆t values.

In Fig. 12 and 13 the numerical group velocity contours are plot-
ted in (k∆x−ω∆t)- plane for both the modes for AB-scheme. Figure 12
shows the scaled numerical group velocity components for the physical and
computational modes for CD2, CD4 and the third order upwind schemes
of spatial discretization. The corresponding results are shown for OUCS4
and SS spatial discretization schemes in Fig. 13. The variations are quali-
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Fig. 8. Amplification factor for solving 1D wave equation with AB time- integration and
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for computational modes. Spectral weight of initial condition: (c) M’ for physical and (d) N’
for computational modes.

tatively the same for the physical mode as the numerical phase speed vari-
ations shown in Fig. 11 for OUCS4 and SS schemes. Both the physical
and computational modes for the CD2 and CD4 schemes show a straight
line along which the group velocity is zero. For the third order scheme the
zero group velocity line is curved. For the CD2 and CD4 schemes, this
line also shows an interesting feature. If the physical mode travels from left
to right, the corresponding computational mode travels from right to left
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computational modes. Spectral weight of initial condition: (c) M for physical and (d) N for
computational modes.

and vice versa. Similar features also holds good for the third order upwind
scheme. As compared to the schemes of Fig. 12, OUCS4 and SS schemes
have better DRP property, as shown in Fig. 13. However, the computa-
tional mode has wider variations and the SS interior scheme does not dis-
play any upstream propagating mode.
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Fig. 12. Scaled numerical group velocity (VgN/c) for 1D wave equation with AB time-inte-
gration scheme. Figure (a), (c) and (e) show physical mode and (b), (d) and (f) show compu-
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Fig. 13. Scaled numerical group velocity (VgN/c) for 1D wave equation with AB time-inte-
gration scheme. Figure (a), (c), (e) show physical mode and (b), (d), (f) show computational
mode of OUCS4, SS-interior and SS-second scheme, respectively.
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3.3. Four Stage Runge Kutta Method

Following the same methodology discussed in the previous two sub-
sections and using the symbolic toolbox of MATLAB we have estimated
the amplification rate, scaled numerical phase speed and numerical group
velocity for CD2 and CD4 schemes when used with RK4 time integration
scheme. The results are shown in Fig. 14. For both the spatial schemes,
the amplification factor displays a large range of ω∆t over which the
scheme is neutrally stable- a very desirable feature of DNS methodol-
ogy. While the range of wave numbers and frequencies over which this
is true is identical for both the schemes, it is the numerical phase speed
and group velocity that shows difference between these two methods. In
both respects, CD4 scheme performs better than CD2 scheme. The range
of k∆x can be further increased over which DRP property is maintained,
if one replaces the CD4 scheme by compact schemes. Such a scheme is
used for the acoustics problem discussed in the following section.

4. ILLUSTRATIVE EXAMPLES

Here we demonstrate some of the properties of the schemes discussed
in the previous two sections. We choose two problems to highlight the
problems of spurious computational mode in using multilevel time integra-
tion schemes.

4.1. Solving Navier–Stokes Equation Using Third Order Upwind Scheme

The results of Sec. 2 clearly reveals that for high Reynolds number
flows central schemes are unsuitable when used with either Euler or AB-
scheme due to numerical instability. This is avoided by switching over to
upwind schemes those having a range of k∆x for which the schemes are
stable when used with Euler time integration scheme. To avoid changing
physical dissipation while stabilizing computations, it is practical to use
third order upwind schemes, as the one given by Eq. (19). Considering
numerical instability one is restricted to very small time steps when third
order upwind scheme is used. In contrast, the physical mode of AB-scheme
allows taking much larger time steps. But the major problems arise, as
the computational mode is non-negligible and has non-physical contribu-
tions including a part of the energy at large length scales that propagates
upstream—as indicated by the group velocity.

The above observations are demonstrated here by solving Navier–
Stokes equation for flow past a rotating circular cylinder, using the third
order upwind scheme for spatial discretization and Euler and AB—scheme
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scaled numerical group velocity (c) and (f) contours for RK4 time -integration scheme with:
(a)–(c) CD2 and (d)–(f) CD4 scheme.
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for temporal discretization. The physical problem is chosen for the uni-
form flow at Re= 3800 and a non-dimensional rotation rate, Ω = 10 i.e.
the peripheral speed of the cylinder is ten times the free-stream speed.
Flow past rotating cylinder for this type of flow parameters display phys-
ical instabilities- as reported in [25]. In a recent work [26] a possi-
ble explanation for the temporal instabilities is provided. In [26], the
Navier–Stokes equation is solved using (ψ−ω) formulation that uses third
order upwind scheme with Euler time integration scheme for Ω = 5. It
was noted that the flow suffered temporal instabilities after an impulsive
start-up. During these instabilities the loads change abruptly at discrete
times.

Here the results are compared between Euler and AB-time integra-
tion strategies using the same methods but at the higher rotation rate of
Ω = 10. In solving this problem a fine grid with 450 points in the radial
direction and 271 points in the azimuthal direction have been taken. The
first azimuthal line is 0.0005D distance away from the cylinder and the
outer boundary is located 24D from the cylinder. A non-dimensional time
step of 0.0001 have been used for both the time integration strategies.
The lift and drag coefficients are shown in Fig. 15, where Euler and AB-
schemes are used to advance the vorticity transport equation. For this
high rotation rate case, Euler time integration once again displays tem-
poral instabilities at discrete times. This instability was shown in [26] to
arise from a mechanism where a given equilibrium flow is destabilized by
far-field disturbance and as a consequence, lump of vorticity that is con-
fined within the recirculating fluid around the cylinder is released in the
wake of the cylinder. However, when the AB-scheme is used, the compu-
tational mode, has negative group velocity for combinations of small val-
ues of k∆x and ω∆t . As these are useful excited length and time scales
the computational mode prevents the lump of vortex to be released in
the wake. As a consequence the instabilities are weakened and in the Cl
and Cd vs time plots the discrete jumps in the value are smoothed out.
This is a demonstration of the spurious behavior of AB-scheme in solving
time dependent problems where a large range of length and time scales are
excited.

4.2. Solving Euler Equation For A Fluid Medium Excited by Pulses

The effectiveness of the schemes discussed in Sects. 2 and 3 will be
attempted here with the standard example that was introduced in [9],
where three Gaussian pulses are introduced in an uniform flow (M∞ =0.5)
and the response of the system is numerically calculated and compared
with the exact solution. At t=0, a pressure pulse is taken at the center of
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Fig. 15. The calculated lift and drag coefficients for Re = 3800 and Ω = 10.0 as a function
of time for impulsive start case using (a) Euler and (b) AB time- integration scheme.

the domain along with a vorticity and an entropy pulse taken downstream
of the pressure pulse at a distance equal to 1/3 of the length of the com-
putational domain. All these pulses reach the outflow boundary simulta-
neously. We take the same computational parameters and amplitude and
half width of the Gaussian pulses, as were taken in [9]. The codes are
written for the full Euler equation and the disturbance solution can be
extracted from it to compare with the exact solution.

∂U

∂t
+ ∂E

∂x
+ ∂F

∂y
=H, (33)

where U =|ρ ρu ρv ρe|T
E=|ρu ρu2 +p ρuv ρuh|T and F =|ρv ρuv ρv2 +p ρvh|T
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H represents the forcing term that is zero in the present case. The fol-
lowing initial conditions for different primitive variables, instead, drive the
fluid dynamical system:

pd = ε1e
−α1r

2
, (34a)

ρd = ε1e
−α1r

2 + ε2e
−α2r

2
, (34b)

ud = ε3ye
−α3r

2
, (34c)

vd = −ε3xe
−α3r

2
, (34d)

where r2 = x2 + y2 and the quantities with subscript d represent distur-
bance components. We have used the same scales as those used in [9]
and ε1 =0.01, ε2 =0.1 and ε3 =0.0004 are the amplitudes of the pressure,
entropy and the vorticity Gaussian pulses respectively. The half- width of
the respective pulses (bi) are 3,5 and 5—the same that was used in [9].
This defines αi = ln2

bi
2 .

In solving Eq. (33) with the initial condition given by Eq. (34), we
used the same radiation and outflow boundary conditions that are given
in [9]. We have solved the full Euler equation (Eq. (33)) using the differ-
ent spatial schemes and three time integration schemes. Apart from Euler
and AB-scheme we have used the RK4 time integration scheme. The RK4
scheme was specifically chosen because this is a higher-order scheme, but
it does not have any spurious computational mode. We have solved the
equation in the physical plane using (200×200) uniform grid and a CFL
number of 0.5 and this fixes ∆t = 0.0569. For all the schemes we used
different layers of ghost cells on all four segments of the boundary to
check the effectiveness of outflow and radiation boundary conditions. In
[9] three layers of ghost cells were used, because their spatial discretization
scheme used seven point explicit stencil. In the SS scheme we have devel-
oped a nine point stencil that requires four layers of ghost cell. It is to be
noted that the usage of four layers of ghost cells in 2D can be a matter of
concern for 3D computations, where a very large numbers of points need
to be added. For example, for a grid of size (M×N×K), the added num-
ber of ghost cells are given by 8[MN +MK +NK + 8M + 8N + 8K + 64].
However, for the compact schemes ghost cells are not required per se,
but we have used them to avoid spurious reflections from the boundary
segments.

First, we compare the exact solution with the numerical solutions
using few combinations of spatial and temporal discretization schemes in
Fig. 16. Figure 16(a) and (b) show the comparison of the density and the
pressure disturbance of the numerical schemes along with the exact solu-
tion at 500∆t and 2000∆t , using four layers of ghost cells. All the schemes
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Fig. 16(a). Exact solution of Eqs. (33) and (34) compared with computed solutions after
500∆t , using the indicated space-time schemes using 9-pt. stencil with four layers of ghost
cells. Figure (i) and (ii) show the pressure and density disturbance respectively.

match quite well with the exact solution, except the results shown with
the AB-scheme at later times, as was stated explicitly in [13] and quoted
in the Introduction. The computed pressure waveform along the x-axis
matches with the exact solution for all times for the other schemes. How-
ever, density contours show a marginal mismatch with the exact solution.
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Fig. 16(b). Exact solution of Eqs. (33) and (34) compared with computed solutions after
2000∆t , using the indicated space-time schemes using 9-pt. stencil with four layers of ghost
cells. Figure (i) and (ii) show the pressure and density disturbance respectively.

It is interesting to note that there is a small dispersion between the two
solutions at 500∆t , which however disappears at 2000∆t and higher times.
It is to be noted that the exact solution is in reality the asymptotic solu-
tion that is due to the poles and singularities near the origin in the spec-
tral plane. If there are any higher modes and essential singularities that
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are away from the origin in the ω- plane, then they will be responsible for
the transients. A bump in the density contour is noted for 2000∆t which
is of the order of 1% of the peak amplitude. This is obtained for all the
spatial and temporal discretization combinations and the same bump was
also noticed in [9] in Fig. 7. Even when the four layers of ghost cells were
used, the RK4 time integration scheme produced spurious reflections from
the inflow boundary. To remedy this we used an 8th order Filter (F8) as
given in [8].

Having seen that all the schemes show good agreement with the exact
solution along the x-axis, it is natural to compare the solution at other
locations next. This has been attempted by plotting the contours for den-
sity, pressure and speed in the full computational domain in Fig. 17 and
18.

In Fig. 17(a) the results are shown for OUCS3 spatial scheme
used with Euler time discretization scheme. Similarly for the results in
Fig. 17(b) and (c) the same spatial scheme, but RK4 and AB-time dis-
cretization schemes have been used. For each combinations of spatial
and temporal discretization schemes, we have used Five, seven and nine
point stencils at the boundary for the Euler time integration scheme in
Fig. 17(a). All the three quantities show that the five point stencil is inad-
equate to prevent reflections from the boundary. Thus in other time inte-
gration schemes we do not show five point stencil results. If we compare
Fig. 17(a) and (b), we find that the density and pressure contours for
Euler and RK4 schemes match well, however the speed contours in the
Euler time scheme show oscillations. For the AB-time integration scheme
the results, as shown in Fig. 17(c), for density and pressure contours are in
good agreement with Euler and RK4 schemes, with no oscillations. How-
ever, the central core in density contour disappears as compared to the
results of Fig. 17(a) and (b) and also with similar results shown in [9].
The speed contours do not match with the other time integration schemes
with gross mismatch in the mean value itself. This is due to the large
dissipation associated with the computational mode as discussed in Sec. 2.2.
Among the three time integration schemes RK4 performs the best only
when an 8th-order filter is used. Euler scheme will however, be preferred if
the high frequency small wavelength oscillations, noted in speed contours,
are removed by applying a high order filter.

For OUCS4 spatial scheme, one notices similar features of the solu-
tion for all the time integration schemes, as was noted for OUCS3 scheme.
The AB-time integration scheme shows large errors and even the mean
flow is distorted. Thus, this time integration scheme cannot be used for
computational acoustics problems. It is to be pointed out that the basic
OUCS4 scheme has inherent numerical instability problem at the near
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Fig. 17(a). Solution of Eqs. (33) and (34) obtained using OUCS3 spatial discretization with
Euler time-integration scheme after 2000∆t (∆t = 0.0569). Disturbance quantities shown in
(i)–(iii): density; (iv)–(vi): pressure and (vii)–(ix): speed. Figure in: (i), (iv) and (vii) are with
5 pt. stencil and two layers of ghost cells; (ii), (v) and (viii) are with 7 pt. stencil and three
layers of ghost cells and (iii), (vi) and (ix) are with 9 pt. stencil and four layers of ghost cells.

boundary point which we remove by using explicit 4th order dissipation
for DNS. However, for the acoustics problem we did not introduce any
dissipation. Once again, the RK4 scheme used with the 8th order filter
produces results with no oscillations.
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Fig. 17(b). Solution of Eqs. (33) and (34) obtained using OUCS3 spatial discretization with
RK4 time-integration scheme after 2000∆t (∆t = 0.0569). Disturbance quantities shown in
(i), (ii): density; (iii), (iv): pressure and (v), (vi): speed. Figures in: (i), (iii) and (v) are with 7
pt. stencil and 3 layers of ghost cells; (ii), (iv) and (vi) are with 9 pt. stencil and 4 layers of
ghost cells.
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Fig. 17(c). Solution of Eqs. (33) and (34) obtained using OUCS3 spatial discretization with
AB time-integration scheme after 2000∆t (∆t=0.0569). Disturbance quantities shown in (i),
(ii): density; (iii), (iv): pressure and (v), (vi): speed. Figure in: (i), (iii) and (v) are with 7 pt.
stencil and three layers of ghost cells; (ii), (iv) and (vi) are with 9 pt. stencil and four layers
of ghost cells.
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Fig. 18(a). Solution of Eqs. (33) and (34) obtained using OUCS4 spatial discretization with
Euler time integration scheme after 2000∆t (∆t=0.0569). Disturbance quantities shown in (i),
(ii): density; (iii), (iv): pressure and (v), (vi): speed. Figure in: (i), (iii) and (v) are with 7 pt.
stencil and three layers of ghost cells; (ii), (iv) and (vi) are with 9 pt. stencil and four layers
of ghost cells.
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Fig. 18(b). Solution of Eqs. (33) and (34) obtained using OUCS4 spatial discretization with RK4
time integration scheme after 2000∆t (∆t=0.0569). Disturbance quantities shown in (i), (ii): den-
sity; (iii), (iv): pressure and (v), (vi): speed. Figure in: (i), (iii) and (v) are with 7 pt. stencil and three
layers of ghost cells; (ii), (iv) and (vi) are with 9 pt. stencil and four layers of ghost cells.
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Fig. 18(c). Solution of Eqs. (33) and (34) obtained using OUCS4 spatial discretization with
AB time integration scheme after 2000∆t (∆t =0.0569). Disturbance quantities shown in (i),
(ii): density; (iii), (iv): pressure and (v), (vi): speed. Figures in: (i), (iii) and (v) are with 7 pt.
stencil and three layers of ghost cells; (ii), (iv) and (vi) are with 9 pt. stencil and four layers
of ghost cells.
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5. CONCLUSION

In the present work, we have analyzed some time integration schemes
with different high accuracy compact and explicit spatial discretization
schemes. Various important properties of spectral accuracy, numerical sta-
bility and DRP are investigated. Two examples from DNS and compu-
tational acoustics have been solved to highlight the efficacy of various
schemes.

Since the major problem in acoustics is to predict weak signals
and distinguish it from background noise (which arises due to numerical
errors), emphasis is on highly accurate discretization schemes. It is shown
that high order does not necessarily imply high accuracy for both space
and time schemes. Used spatial compact schemes like the OUCS3 and
OUCS4 schemes are only 2nd order formally accurate, and yet they per-
formed as well as the optimum 4th order scheme of [9] and a 6th order
accurate optimized explicit scheme (SS scheme) developed by us. The com-
pact schemes have better DRP property than the explicit schemes. We have
also investigated the effect of using multi-layer ghost cells at the boundary
to avoid spurious reflection, through the SS scheme and its one sided vari-
ants. Additionally, higher order filter is used for the same purpose.

Similarly, among time integration schemes, the 2nd order accurate
AB-scheme performed poorly compared to 1st order accurate Euler time
integration scheme as shown by comparing the numerical results with
exact solution of the linearized Euler equation. This is shown due to the
presence of a spurious computational mode that is heavily damped and
that apportions to itself a large fraction of the initial condition. The RK4
scheme does not suffer from this problem, as this does not have computa-
tional mode.

Solution of incompressible Navier–Stokes equation for the problem of
a rotating and translating circular cylinder showed physical temporal insta-
bility when Euler time integration scheme was used. The AB-scheme could
not capture the sharp changes in loads during the instabilities. Solution of
compressible Euler equation for an acoustics problem showed, once again,
the inadequacy of the AB-scheme. The Euler and RK4 scheme performed
satisfactorily, when the latter was used with a 8th order filter to avoid spu-
rious reflection from the boundary.
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