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Abstract: The experimental observation by Robins1, that a projectile spinning about its 
axis of travel experiences a transverse force (lift), was refuted by Euler2 purely as a 
contradiction to expected symmetry of fluid flow. This, undoubtedly had taken away the 
precedence of finding this effect by Robins and subsequently the same was credited to 
Magnus3, which is a testimony of “belief” overtaking physical observation. In the last 
century Prandtl 4  looked at this problem once again and came up with an upper limit on 
lift that a spinning cylinder will experience. This is now considered a fundamental tenet 
in explaining aerodynamic phenomenon of lift generation. However, over the last two 
decades evidences are accumulating via experimental 6,5  and numerical investigations 8,7  
that a new temporal instability affects this flow at high rotation rates, negating the above 
mentioned upper limit.  In this note, we trace the origin of this particular effect to its 
present day status with respect to flow past a rotating cylinder.    
 
1. The Beginning:  

 
Benjamin Robins’ contribution1 to fluid mechanics and aerodynamics has 

received little recognition than it deserves due to various reasons. One of the major 
reasons is that he propounded too many new ideas in a short span of time and he was also 
busy defending Newton’s contribution to calculus. He was largely a self taught person 
with a desire to take up teaching profession. Upon proving Newton’s ‘Treatise of 
quadratures’, he received FRS at the early age of twenty. However, he switched his 
attention to engineering constructing bridges, mills, harbors, making rivers navigable and 
draining fens. That he had multifaceted talent is evident, when one notes that he is now 
acknowledged as the father of science of ballistics9,10 (introducing the concept of rifling 
the bore of guns, holding the importance of air-resistance in deciding the range of 
artillery shots and improving the accuracy of projectiles by spinning them), credited for 
fundamental contributions to aerodynamics2 (the complex relationship between drag, 
shape of the body, its angle of attack and air-velocity could not be explained by the then 
simple theory propounded by Newton and he suggested that ground testing of vehicle is a 
pre-requisite for a successful design), experimental fluid mechanics1,2 (developing the 
whirling arm, the predecessor of present day wind tunnels, the only experimental device 
at that time and ballistic pendulum for the measurement of velocity of projectiles) and his 
many contributions to mathematics. He also noted the drag rise at transonic flight regime 
almost two hundred years ago, before its importance was re-discovered around Second 
World War2. Additionally, he dabbled in contemporary politics and also got involved in 
controversies related to writing the accounts of Lord Anson’s voyage around the world.  
To this, one must add the fact that he left the center stage of England, when he was 
appointed the engineer-general of the East India Company to improve the fortifications at 



St. David, Madras, where he died of fever at an early age of forty-four. In writing the 
book on ballistics9, he made the observation that a spinning projectile experiences a 
transverse force based on his experiments with ballistic-pendulum and whirling arm. This 
was not supported by Euler, the leading hydrodynamicist of the time, and this fact was 
rediscovered by Magnus3, almost a century later. In this note, we will discuss this 
particular effect with respect to flow past a rotating cylinder starting with Robins’ work 
to its present day status.  
 

It is incorrectly stated in some references11 that Robins was responsible for 
finding the lift force acting on rotating sphere. Undoubtedly, he experimented on 
spherical shots used for artillery purposes, but he was also first to suggest that a teardrop 
or egg-like shape of projectile with a center of gravity near the front of it. The 
observation of Robins’ for spinning projectiles was made using the whirling arm-- not a 
very satisfactory experimental device by present day standard. A whirling arm was used 
to measure aerodynamic forces at low speed, where the tested body was used to be hung 
at the end of a long arm that was free to rotate. This arm was rotated by a falling weight 
via a shaft with cable-pulley arrangement. The rotation of the arm produces the relative 
motion in air, the same principle that is even used today in wind tunnels to measure 
forces for steady flight. However, sustained rotation of whirling arm will impart angular 
momentum to the surrounding air, thereby making the accuracy of such measurements a 
point of concern. It is with this equipment that he reported his findings9 in the year 1742. 
It is noted2 that, – Euler was so excited about Robins’ book that he personally translated 
it into German in 1745 adding some commentary….. Euler’s interest in Robins’ work was 
both a hindrance and a help. The hindrance concerned Robins’ observation of the side 
force exerted on a spinning projectile moving through the air. Euler considered that to be 
a spurious finding, due to manufacturing irregularities in the projectile. Recognized as 
the dominant hydrodynamicist of the eighteenth century, Euler far overshadowed Robins, 
and thus Robins’ finding was not taken seriously for another century, until Gustav 
Magnus (1802-1870) verified the phenomenon as a real aerodynamic effect. This book9 
was also translated into French in 1751, the year of Robins’ death. It is to be noted that 
Napoleon read the latter translation from Euler’s German translation of the original book3, 
while he was a young artillerist at Auxonne, France. 
  

It must be pointed out that both Euler and Robins had mutual admiration for each 
other’s work. For example, Robins published in 1739 “Remarks on M. Euler’s Treatise of 
Motion”. So the misinterpretation of Robins’ work was based truly upon the personal 
belief of Euler. We also note that Euler enunciated his famous equations of fluid motion 
only in 1752, the first mathematical model of inviscid flow. Even today, the Robins-
Magnus effect cannot be explained by solution of Euler’s equation. Hence, Euler’s 
observations were his intuitive feeling that a spinning symmetric body (with top-down 
symmetry) cannot experience an asymmetric force in the symmetric direction. In trying 
to explain the occurrence of transverse force experienced by a spinning body Prandtl 4  
advanced an explanation that was based on steady irrotational flow model. In doing so, he 
also advanced a maximum limit to this transverse force. This is the next development in 
this subject area that is interesting and discussed next.  

 



2. Maximum Principle Enunciated: 
 

The first qualitative explanation of lift force experienced by a aerodynamic shape 
was put forward by using Kutta-Jukowski theorem11. The lift experienced by the 
quintessential shape- namely the aerofoil- is obtained by forcing a stagnation point at the 
sharp trailing edge. Hence, the same is not directly applicable for flow past bodies 
without sharp trailing edges- as in case of a rotating cylinder. It was Prandtl4 who 
explained the flow past a rotating cylinder heuristically by considering the flow to be 
inviscid and irrotational.  
 

In putting forward his results, Prandtl4 came up with an upper limit on the value 
of this transverse force that a rotating cylinder will experience, as its rotation rate is 
increased. This can be readily explained with the sketches of the flow field in Figure 1. If 
one defines a non-dimensional rotation rate by ∞Ω=Ω UD 2/* , where the cylinder of 
diameter D rotates at *Ω  while being placed in a uniform stream of velocity ∞U , then 

one can define a Reynolds number by 
ν

DU∞=Re  for this flow field. In Figure 1, the top 

frame (a) depicts the steady inviscid irrotational flow field when the cylinder does not 
rotate and one can note a perfect top-down and fore-aft symmetry of the flow field. In 
frame (b), a case is depicted for 2<Ω , where both the front and rear stagnation points 
(half-saddle points) are deflected downwards, causing the flow to exert an upward force 
on the cylinder. With increase of Ω  to 2, these stagnation points move towards each 
other and merge at the lowermost point on the cylinder (as shown in Figure 1(c)). For this 
location of stagnation point, it is easy to show that the corresponding non-dimensional lift 
value is given by the coefficient π4

max
=LC . The lift value attained is a maximum was 

reasoned by Prandtl heuristically, because if the flow field continues to be steady, then 
with further increase of rotation rate the single half-saddle point of Figure 1(c) would 
move in the flow field as a full saddle-point located on the closed streamline that 
demarcates the flow field into two parts (as shown in Figure 1(d)). The region located 
inside the closed streamline is insulated from the region outside and would be permanent 
if the flow is steady. This suggests that the circulation cannot increase beyond the 
rotation rate for the case shown in Figure 1(c). Thus, the Prandtl’s observation is based 
on a steady flow using an inviscid irrotational flow model. In an actual viscous flow, the 
circulation will be created at the solid wall continually that is convected and diffused 
according to the governing Navier- Stokes Equation. A steady flow model, as proposed 
by Prandtl, presupposes that an equilibrium exist between the process of creation of 
vorticity at the wall and its viscous diffusion. While in the proposed model of Prandtl 
such an equilibrium is assumed for all rotation rates up to the critical value )2( =Ω - it is 
assumed that the equilibrium is maintained even when the rotation rate is increased 
further.  How realistic is the model proposed by Prandtl? It seemed very real as no 
counter-examples were encountered for decades where it was violated and it became a 
very standard argument in all the text books about the infallibility of Prandtl’s limit. 
However, some recent experimental and numerical observations seems to suggest 
otherwise and they are casting serious doubts about the correctness of Prandtl’s logic.  
 



3. Maximum Principle Violated: 
 

The experimental observations in Tokumaru & Dimotakis6 have cast a doubt 
about the validity of this upper limit suggested by Prandtl. This observed6 violation was 
noted in an indirect manner, as the vertical velocity component ahead of the cylinder was 
measured and an inviscid point vortex model was used to calculate the lift. It was 
reported that the maximum lift was violated by 20% for Re = 3800 and 10=Ω - in a time 
average sense. The variation of the lift coefficient was provided for different rotation 
rates for the same Reynolds number of 3800. The authors considered diffusion, unsteady 
flow processes and three dimensional end effects as likely causes for the supposed 
violation of maximum lift limit. For a real fluid flow, all these can be a determining 
factor in breaking the equilibrium and creating circulation that violates the maximum 
principle. For supercritical rotation rates ( 2>Ω ), the vorticity will be generated at a 
larger rate for some period at the solid wall than it is dissipated by viscous action, thus 
violating the stated equilibrium. If this vorticity remains trapped within the recirculating 
streamline, then the circulation will increase for the cylinder while a part of it is 
dissipated by viscous diffusion. The role of diffusion is thus to peg the net circulation at a 
lower level. However, as we will see in the next section that viscous diffusion also plays 
a subtle role in supporting enhanced lift when it interferes with physical instability 
processes. This is clearly seen in computations that use excessive numerical dissipation to 
stabilize computations. Of course, the unsteady processes are most relevant for this 
supposed violation. In an unsteady scenario, the continuous generation of wall vorticity, 
if not balanced by viscous dissipation, will cause the lift to increase. The three- 
dimensionality can also indirectly increase circulation. However, for supercritical rotation 
rates, the flow being rotational, one can show that three- dimensionality will be 
suppressed via the application of Taylor- Proudman theorem12, as the Coriolis force will 
be significant in this case. Considering all these, it is instructive to compute the actual 
flow field by solving time dependent Navier-Stokes equation. To begin with, one can 
perform two- dimensional calculations as have been reported in13-15 for this flow field. 
The reported results in13-14 is particularly noteworthy, as the calculations are based on 
spectral method using a variable grid that is very fine at early times. Unfortunately, the 
reported results are only for low rotation rates and short period of integration times that 
did not show violation of maximum lift limit. The results in15 were obtained using a 
higher order accurate method of calculations for a range of Reynolds numbers, but for 
lower rotation rates. This same method was then used for high Reynolds numbers and 
rotation rates16,7,8. It is noted that the computed lift coefficients in7,8,16 matches well with 
the experimental results in6  i.e. for the first time numerical calculation revealed the 
violation of the maximum limit, that was in conformity with the experimental 
observations. The appearance of numerical results that supports experimental 
observations does more than simply validating the experiments. It also allows one a 
detailed time accurate account of the physical events, which is otherwise very difficult to 
track experimentally.   In fact, the computational results revealed a new physical 
instability in the process- that is what we recount next. 

 
 

 



4. A New Instability Uncovered 
 
The computations 16,8,7  showed a series of temporal instabilities at early stages of 

flow evolution. During these periods the computed results displayed overshoot of values 
of instantaneous lift coefficients in such a manner that the time averaged values match 
closely with the experimentally reported values. Are these instabilities real or an artifact 
of the computations?  

 
 It is interesting to note that in some experiments by Werle5, a layer of co-rotating 

liquid in contact with the cylinder surface suffering aperiodic instabilities were noticed 
for supercritical rotation rates of the cylinder for 3300Re = - a value somewhat closer to 
the reported value of Reynolds number in6.  The author intentionally called them as 
aperiodic instabilities that were visually recorded. 
 

In7,8,16, a third order upwind scheme was used for capturing these temporal 
instabilities by taking very small time steps ( 510−=∆t ). In accurate numerical 
computations, apart from achieving high spectral resolution it has to be ensured that the 
discretization should not alter the physical dissipation that is only a second derivative of 
the variable. This is the cause for the success of third order upwind schemes that adds 
fourth order dissipation only. There are other methods that have been also used17,18 for 
this problem and they have produced results that are totally different from experimental 
observations. For example, in17, the author used a “Streamline- Upward/Petrov-Galerkin” 
(SUPG) method, along with Pressure- Stabilizing/ Petrov-Galerkin (PSPG) numerical 
stabilization terms for a case where the cylinder rotated eccentrically. The author stated 
that – these computations are also important from the point of view that in a real 
situation it is almost certain that the rotating cylinder will be associated with a certain 
degree of wobble.  This was prompted by the author’s earlier attempt18  in computing the 
flow for 3800Re =  and 5=Ω  that resulted in an error of 400% at 250=t . The reason 
for the failure by SUPG/ PSPG is due to the massive artificial stabilization of the 
numerical scheme by added second derivative term that interferes with physical 
dissipation. Additionally, the time steps used are about 410  times larger than that used 
in7,8,13-16  that would be simply not able to capture the transient events recorded in7,8,13-16 .  
 
 A typical set of results are shown in Figure 2, where the time variation of the 
force and moment coefficients have been computed for 3800Re =  and 5=Ω . Here, 
more accurate compact different scheme has been used19 for computing the same flow 
field. The instability displayed in this case consists of sharp discontinuous jump in the 
values of force and moment coefficients at discrete times. Such instabilities were also 
seen in the results reported in 16,8,7 . The physical mechanism behind the instability is 
already explained in 8  by an equation based on energy principle derived from full Navier- 
Stokes equation without any approximation. It was noted that the basic equilibrium 
solution is destabilized by an intense interaction between the velocity and vorticity fields 
of the primary and disturbance field. In the context of computations, the disturbance field 
arises via truncation error and accumulated round off error. In simulating physical 
instabilities, the chosen numerical schemes must be neutrally stable. If there is numerical 



dissipation present that interferes with the physical dissipation, then the physical 
instabilities will be subdued. This is the case with the results of 18,17 , where excessive 
second order dissipation suppresses physical instabilities. It is interesting to note that the 
time at which instabilities appear would depend on the amplitude of accumulated error. 
As the compact scheme19  has higher accuracy than the third order upwind scheme 8 , the 
first temporal instability occurs later for the compact scheme. However, the value of  lC  
at which the first instability appears remains the same.  
 
Closing Remarks: 
The evolution of this problem has run parallel with the webs and tides of developments in 
fluid mechanics through last three hundred years. It began with experimental observation 
of Robins that was negated by heuristic observation of Euler. However, when the 
analytical fluid mechanics was in its prime, Prandtl, another leading aerodynamicist, not 
only explained the phenomenon theoretically, but also proposed a new limit on the 
phenomenon based on heuristic logic and this survived for many decades before 
evidences started accumulating that this limit may be violated. It is interesting to note that 
the two experimental observations on this supposed violation is visual in one case and 
uses analytical model to arrive at the observation in the other case. In contrast, the 
computational evidences are based on the full governing equations. However, the 
detection by numerical calculation depends on the existence of ambient noise (numerical 
error) and the accuracy of the numerical method used. It shows the need to study and 
develop models for the actual background noise that is present in experiments. A realistic 
noise model with very high accuracy computational algorithms- that preserves 
fundamental physical principles- would provide conclusive evidence of this and many 
other problems of instabilities.    
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