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Abstract
In this investigation, the ionic conduction mechanism in mixed ionic electronic conductors
composites of Sr2TiCoO6/YSZ has been studied with the help of universal dynamic response.
3 mol% and 8 mol% yttria stabilized ZrO2 have been mixed with Sr2TiCoO6 (STC) double
perovskite in 1:1 ratio to prepare STC/3YSZ and STC/8YSZ composites via solid-state
reaction route. AC Impedance spectroscopy has been carried out to examine the charge
transport mechanism, which has been modeled using the microstructural networks of resistors
and capacitors. Grain boundaries are more resistive and capacitive compared to the bulk.
Modulus spectroscopy analysis demonstrates the non-Debye character of conductivity
relaxation with frequency. Complex frequency-dependent AC conductivity is found to obey
Almond West power law and reveals that ion migration occurs through the correlated hopping
mechanism. Further, the DC conductivity and relaxation time have been found to follow the
Barton Nakajima and Namikawa relation, which is correlated with AC to DC conduction. The
time-temperature superposition principle has been used to explain the conductivity scaling in
the intermediate frequency range. At low temperatures, the ions are localized in the
asymmetric potential well, while at high temperatures, hopping behavior starts dominating.
Further Kramers–Kronig transformation connects the dielectric strength with conductivity
relaxation and verifies the impedance data.

Keywords: impedance spectroscopy, dielectric permittivity, mixed ionic electronic
conductors, Almond West power law, SOFC
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1. Introduction

Mixed ionic electronic conductor (MIEC) plays the vital role
in the application of energy conversion and storage devices

∗ Author to whom any correspondence should be addressed.

like fuel cells, batteries, oxygen permeable membranes, and
memristive systems [1–6]. MIEC materials known for demon-
strating both ionic as well as electronic conductivity are indis-
pensable for electrochemical devices [7, 8], which contain
three major components, such as anode, cathode, and oxy-
gen ion-conducting electrolyte [9]. In general, MIEC also
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possesses excellent mechanical durability and electrochemical
functionality [10]. MIECs such as (Y, La, Nb, Fe, Mo, Ni, Mn)
doped SrTiO3 perovskites [11–15], SrTiO3/YSZ [16, 17], and
SrTiO3/GDC [18, 19] composites have been reported in the
literature for the application as electrode materials in SOFC.
Yttria stabilized zirconia (YSZ) is the most commonly used
electrolyte ionic conductor. Yttria doping in ZrO2 gives rise
to the oxygen vacancies to maintain the charge balance since
a negatively charged Y+3 dopant occupies the place of Zr+4

lattice site [20]. These oxygen vacancies are further migrated
through the electrolyte and affect the conversion efficiency of
the fuel cell [21].

Among the various MIEC materials, donor or acceptor
doped SrTiO3 perovskites have demonstrated great potential as
electrode material for electrochemical devices. These ceramics
exhibit good electrical conductivity and similar thermal expan-
sion coefficient like YSZ electrolyte [22]. However, these per-
ovskites have some shortcomings, such as low catalytic activ-
ity, insufficient ionic conductivity, etc [16, 23]. Recently, the
composites of perovskite and YSZ have gained lot of atten-
tion due to their long-term stability, MIEC, and reduced car-
bon deposition [24–27]. He et al have reported composites of
YSZ with Sr0.88Y0.08TiO3−δ (YST) as potential anode mate-
rial for SOFC [26] demonstrating good stability in oxidiz-
ing and reducing atmosphere at high temperatures (1500 ◦C).
However, they have found it difficult to increase the over-
all conductivity of YST/YSZ composites as any attempt in
enhancing the electronic conductivity has led to the inferior
ionic conductivity resulting in the conductivity of the com-
posites as insufficient for attaining excellent performance of
SOFC. Bochentyn et al [25] have investigated the MIEC com-
posites of SrTi0.98Nb0.02O3-δ (STN) with YSZ and ceria for
the application as anode in SOFC. Because the processing of
STN requires the synthesis under reducing atmosphere at high
temperature, mechanical stress is generated within the STN
based composite systems leading to low mechanical resis-
tance [25]. Huang et al have studied the composite of YSZ
with La0.8Sr0.2MnO3 (LSM) for the application as the cath-
ode for SOFC [27] and they have found that microstructural
features such as grain boundaries play a crucial role in tuning
the overall conductivity via oxygen vacancy, structural disor-
der, and precipitate formation. However the transport mech-
anism of these perovskite/YZS MIEC composites are yet to
be understood. In the present work, attempt has been made to
provide a unified model on the transport properties of MIEC
composites. Recently, we have reported Sr2TiCoO6 (STC)
double perovskite synthesized in air, demonstrating good elec-
trical conductivity ∼27 S cm−1 at 700 ◦C [28]. In the present
work, the composite of STC and YSZ has been evaluated as
MIEC and disordered dielectric solid since this system con-
tains the random dispersal of conducting (STC) and insulat-
ing (YSZ) phases. To the best of our knowledge, this is the
first report on transport properties of STC/YSZ MIEC com-
posites. In the literature, disordered dielectric materials [29]
have been observed to follow the universal dielectric response
(UDR), proposed by Jonscher [30–33]. The anomalous disper-
sion power law of frequency-dependent dielectric permittivity

and ac conductivity are the typical characteristics of disor-
dered solids, composites, etc, found in their electrical proper-
ties. Almond et al have elucidated the detailed analysis of these
ion-conducting universalities by using the array of microstruc-
tural networks [34–38]. These microstructural systems are
generally modeled based on electrochemical impedance spec-
troscopy (EIS) data by using the chain of resistors and capac-
itors, which are associated with the grain and grain boundary
of the material [34].

In the current investigation, we have synthesized STC/YSZ
composites by solid-state reaction method and have inves-
tigated their microstructural and electrical properties using
x-ray diffraction (XRD), field emission scanning electron
microscopy (FESEM), and EIS. The conductivity isotherm is
analyzed using Almond West (AW) power law, in correlation
with the other physical models such as UDR, time-temperature
superposition principle (the time-temperature superposition
principle (TTSP)), Barton Nakajima and Namikawa (BNN)
relation, and Kramers Kronig relation [40], which has pro-
vided the insights into the charge transport mechanism of
this complex system. Furthermore, scaling analysis of the ac
conductivity spectra has been carried out using TTSP [39].

2. Experimental procedure

Dense STC/YSZ composite samples of Sr2TiCoO6 with
3 mol% and 8 mol% yttria doped ZrO2 labeled as 3YSZ
and 8YSZ, respectively, are synthesized by using solid-state
reaction route. First, Sr2TiCoO6 double perovskite has syn-
thesized using the starting materials such as SrCO3 (>99.9%
purity, Sigma Aldrich), Co3O4 (>99.7%, Alfa Assar), and
TiO2 (>99.5% purity, Sigma Aldrich). Precursors are mixed
adequately with ethanol for 24 h by using ball milling. The
mixed powder has dried for overnight in an oven at 80 ◦C.
Then, the powder is calcined at 1000 ◦C for 10 h. XRD
has been performed to confirm the phase purity of the cal-
cined STC powder. For the fabrication of STC/YSZ compos-
ite, the calcined powder Sr2TiCoO6 (STC), 3YSZ (>99.9%,
50 nm particle size, Nabond nano-technologies, Shenzhen,
China) and 8YSZ (>99.9% Inframat R© Advanced materialsTM

Manchester, USA) powders have been used. To synthesize the
STC/3YSZ and STC/8YSZ composites, STC powder has been
mixed with 3YSZ and 8YSZ powder, respectively, in weight %
ratio of 1:1 for each composition. The mixed powder is milled
in the planetary micro ball mill (Fritsch R©, Pulverisette seven
premium Line, Rhineland-Palatinate, Germany) at 600 rpm for
120 min, and ethanol is used as milling media. The milled pow-
der is mixed with 2 wt.% polyvinyl alcohol and subsequently
pressed into pellets of these composites. Sintering of STC/YSZ
pellets is carried out at 1200 ◦C for 12 h. The phase purity of
the composite materials has examined using the XRD profiles
over 2θ (20–80◦) range using the PANalytical X’Pert diffrac-
tometer. The micrograph of fractured STC/YSZ composites
has been obtained via FESEM (FESEM, FEI-Nova NanoSEM
450, Germany) in backscattered electron mode. AC impedance
spectroscopy measurement has been carried out via impedance
analyzer (Solartron 1260 A, UK) with 1286 Solartron elec-
trochemical interface between 250–650 ◦C temperature across
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frequency range 10 MHz–0.1 Hz with an applied 500 mV AC
amplitude in 5% H2 and 95% N2 atmosphere. The impedance
measurement is carried out in a vertical furnace where the sam-
ple is mounted between the spring-loaded alumina plates, and
platinum electrodes are used as the current collector for data
acquisition. The EIS data is measured with a Δ (temperature
difference) = 50 ◦C during the cooling cycle after stabilizing
the temperature at each step. Before doing the measurement,
the sample has coated with the platinum paste (Siltech Cor-
poration, Bengaluru, India) on both surfaces and is baked at
900 ◦C for 1 h. Impedance measurement data has analyzed
using the equivalent circuit fitting software (Zview, Scribner
Associates Inc.USA) [41].

The response of the electrochemical cell has been repre-
sented in the complex Z∗ plot. This complex impedance spec-
troscopic data can be formulated into the modulus, admittance,
conductivity, and dielectric constant, which are defined by the
following equations [42, 43]

Z∗ = Z′ + jZ′′ (1)

M∗ = (ε∗)−1 = jωCoZ∗ = M′ + jM′′ (2)

Y∗ = σ∗ =
1

Z∗ = jωε∗ (3)

σ∗ = σ′ + jσ′′, (4)

where Z′ and Z ′′ are real and imaginary part of impedance,
M∗ is the complex electrical modulus, M′ and M′′ are real and
imaginary part of electric modulus, ε∗ is dielectric constant,
ω is the angular frequency, C0 is vacuum capacitance, Y∗ is
complex admittance σ∗ is the complex conductivity, σ′ and σ′′

are real and imaginary conductivity.

3. Result and discussion

The phase purity of STC/YSZ composite has been examined
by XRD, illustrated in figure 1. XRD profiles of STC/3YSZ
composite confirm the presence of both phases, i.e., STC
as well as 3YSZ. However, a small amount of monoclinic
ZrO2 phase, which was initially present in the 3YSZ pow-
der, has also been detected beside the tetragonal YSZ phase,
as shown in figure 1(a). On the other hand, no such evidence
of the minute monoclinic ZrO2 has been detected in the XRD
of STC/8YSZ composite, which shows only the presence of
cubic STC double perovskites and 8YSZ, as shown in figure
1(b). The XRD peaks correspond to STC are found to be
shifted toward the lower angle in both STC/3YSZ as well as
STC/8YSZ composites, implying the increase in lattice con-
stant of STC in these polycrystalline composites. The theoret-
ical density of the composite is calculated using mixing law,
which is defined by the following equation

ρt = v1ρ1 + v2ρ2, (5)

where v1 and v2 are the volume fraction of STC and YSZ
compounds, ρ1, ρ2 are the theoretical density of STC and
YSZ, respectively. The Archimedes principle has been used to
experimentally measure the density of these composites. The

theoretically calculated density for STC/YSZ composites has
been estimated as 5.675 g cm−3. From the experimentally
measured Archimedes density for both the composites, the
calculated relative density of STC/3YSZ and STC/8YSZ
samples are found to be ∼91% and ∼96%, respectively.
Figures 1(c) and (d) show the microstructure of STC/YSZ
composite, which is examined by the FESEM. Both the sam-
ples appeared to be adequately sintered. Although compos-
ite samples are appeared to be quite dense, ∼9% and ∼4%
porosity is observed in STC/3YSZ and STC/8YSZ systems,
respectively. The apparent porosity is beneficial for the SOFC
system because it provides a path to flow the gas species.
However, STC and YSZ are well bonded to each other and
form a continuous network that provides the unremitting way
for ions.

3.1. Electrical properties

The electrical properties of STC/YSZ composites have been
measured using the EIS in the temperature range from 250 ◦C
to 650 ◦C in 5% H2 + 95% N2 atmosphere. Figures 2
and S1 (https://stacks.iop.org/JPCM/33/315703/mmedia)
illustrates the Nyquist plot of STC/8YSZ and STC/3YSZ,
respectively. The figures indicate the high, intermediate,
and low frequency semicircles, in which high frequency
semicircle describes the bulk (grain) resistance, while inter-
mediate and low frequency depressed arcs present the total
resistance of grain boundary and electrode, respectively. The
grain boundary capacitance (∼ 10−10, F) has been found
to be higher than the grain capacitance (∼ 10−11, F), for
both STC/8YSZ and STC/3YSZ composites. The shape of
the semicircle is changed with the increasing temperature.
A small arc is appeared at high frequency while low and
intermediate frequency arc is seemed to be overlapped. The
resistivity of the STC/8YSZ and STC/3YSZ composites
for grain and grain boundary is decreased with increasing
temperature, suggesting the increment in ionic conductivity.
The overlapped low and intermediate frequency semicircle
arc is found to be more significant than the high frequency
semicircle, owing to the higher order of grain boundary
polarization resistance against the intragrain polarization.

To determine the conductivity of the grain and grain bound-
ary of composite samples, further, the impedance data have
fitted with the circuit L, (Rg–Qg), (Rgb–Qgb), and (RE–QE).
Where L is the inductance, Rg, Rgb, and RE are the resis-
tance due to grain, grain boundary, and electrode. Qg, Qgb,

and QE are the constant phase elements of the grain, grain
boundary, and electrode, respectively. The grain polarization
resistance (Rg) and grain boundary polarization resistance
(Rgb) values are estimated from the RC circuit fitting of the
Nyquist plot. The calculated grain and grain boundary con-
ductivity for STC/8YSZ at 650 ◦C temperature are found to be
1.58 mS cm−1 and 0.06 mS cm−1, respectively. STC/3YSZ
composite shows better conductivity at 650 ◦C, estimated as
2.55 mS cm−1 and 0.6 mS cm−1 for grain and grain boundary,
respectively.

Further, the activation energy for grain and grain boundary
is calculated from the gradient obtained in the linearly fitted
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Figure 1. XRD pattern of (a) STC/3YSZ and (b) STC/8YSZ composites compared with that of STC and YSZ ceramics, and FESEM image
of, (c) STC/3YSZ, and (d) STC/8YSZ composite.

curve with the Arrhenius equation as expressed below:

σ = σ0 exp

(
− Ea

KBT

)
, (6)

where σ is the conductivity, σ0 is a pre-exponential func-
tion, Ea is the activation energy, KB is Boltzmann constant,
and T is the absolute temperature. Figures 3(a) and (b) show
the Arrhenius plot of grain and grain boundary polariza-
tion for STC/3YSZ and STC/8YSZ composites, respectively.
The estimated activation energy for grain and grain bound-
ary is estimated as 0.42–0.48 eV and 0.50–0.55 eV, respec-
tively, for STC/YSZ ceramics. The obtained total activation
energy for STC/3YSZ and STC/8YSZ is 0.50 and 0.52 eV,
respectively, shown in figure S2. Similar values of activation
energy have been observed for both the composites STC/3YSZ
and STC/8YSZ, implying the occurrence of identical charge
carriers.

Figures 4 and S3 depict the spectroscopic plot of frequency-
dependent imaginary part of electric modulus and impedance
in the temperature range from 250 ◦C to 650 ◦C for STC/8YSZ
and STC/3YSZ composites, respectively. The electric

modulus (M′′) vs log(frequency) plot gives the well-resolved
peak for grain contribution showing the existing capacitance
in the grain interior. Another spectroscopic plot between Z′′ vs
log(frequency) illustrates the resistive process in the ceramics.
The grain boundaries are found to be more resistive and
capacitive compared to grain for all measured temperatures.
In the ideal Debye model, the imaginary part of the electrical
modulus (M′′) and impedance (Z′′) peak should be symmetric
[44]. In STC/8YSZ, at low-temperature modulus spectra
show nearly symmetric peak, but with increasing temperature,
it has become asymmetric and is shifted toward the higher
frequency range. Such kind of asymmetric modulus peak is
attributed to the thermal relaxation process in the literature
[45, 46]. Hence it can be summarized that conductivity in
both composite systems is driven by thermal relaxation.

Further, we have calculated the difference between the
relaxation frequencies of grain and grain boundary polariza-
tions, and the difference is found to be higher than two orders
of magnitude. The relaxation frequency of grain and grain
boundary contribution is estimated from the maximum peak
values of the spectroscopic plot of electric modulus (M′′) and
impedance (Z′′). The relaxation frequency ( f r) is calculated

4



J. Phys.: Condens. Matter 33 (2021) 315703 S Saini et al

Figure 2. Complex impedance spectra of STC/8YSZ composites, Nyquist plot is fitted with R–CPE circuit (semicircles) for grain, grain
boundary, and electrode contribution at various temperatures.

Figure 3. Arrhenius plot of conductivity vs 1000/T (a) STC/3YSZ and (b) STC/8YSZ composites.

using the following expression:

f r =
1

2π(RQ)1/n
, (7)

where R is resistance, and Q is the constant phase element for
the circuit fitting.

Since the charge transport in this system is thermally acti-
vated, the relaxation frequency parameter usually follows
Arrhenius law given by the following equation

f r = f 0 exp

(
− Ea

kBT

)
, (8)
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Figure 4. Frequency-dependent spectroscopic plot of Z ′′ and M′′ for STC/8YSZ composite in the temperature range from 250 ◦C to 600 ◦C.

where f r is the relaxation frequency, f 0 is a pre-exponential
function, Ea is the activation energy, kB is Boltzmann con-
stant, and T is the absolute temperature. Figure 5 illustrates
the variation in relaxation frequency of grain and grain bound-
ary polarization of STC/YSZ composite material with tem-
perature. STC/3YSZ and STC/8YSZ, both the composites
exhibit higher grain boundary resistance than grain polar-
ization resistance. STC/3YSZ shows better conductivity than
STC/8YSZ, as shown in table 1. STC/8YSZ exhibits lower
ionic conductivity, almost one order of magnitude low σgb

than the STC/3YSZ. Activation energy calculated from the
Arrhenius plot of relaxation frequency is found to be lower for
STC/3YSZ composite compared to that of STC/8YSZ, sug-
gesting easy charge carrier mobility in STC/3YSZ composites,
which further corroborates well with increased conductivity
values obtained in this composition. Considerable differences
between the activation energy of conductivity and relaxation
frequency are noticeable. According to Austin and Mott [47],
this difference implies the relaxation frequency dominated by
the hopping energy of charge carriers. At the same time, the
overall conduction is affected by the hopping energy, disor-
der, and binding energy of polarons. Therefore, further discus-
sion is required to understand the conduction and relaxation
mechanism in these composites.

4. Discussion

The conduction mechanism of STC/YSZ composites in terms
of ionic conductivity, AC conductivity, DC conductivity, and

dielectric relaxation is analyzed using complex impedance
spectroscopy data. A real part of frequency-dependentconduc-
tivity (σ

′
) obtained from the impedance spectroscopy at dif-

ferent temperatures (250 ◦C–650 ◦C) is shown in figures 6(a)
and S4 for STC/8YSZ and STC/3YSZ composites, respec-
tively. Further, to elucidate the ion transport and charge car-
rier dynamics, the transport phenomenon is explained with
the help of UDR [32]. In ceramics, two types of insulating
barriers exist, such as (i) grain boundaries and (ii) domain
boundaries, which restrict the motion of the charge carrier
[48, 49]. In our case, grain boundaries are like insulating barri-
ers. Moreover, the frequency-dependent charge carrier move-
ment influences the conductivity in three ways, which are (i)
long-range diffusion of charge carrier, (ii) localized carrier
motion into the grains boundaries, and (iii) localized carrier
motion into the domain boundaries [48]. The potential energy
barrier appears as uncertainties or anomalies in the system,
which is investigated using the relaxation process.

The frequency-dependent conductivity curve can be
explained in three parts, low, intermediate, and high frequency
region. At low frequency, conductivity is independent of fre-
quency, which is corresponding to dc conductivity. In mid fre-
quencies, conductivity increases nonlinearly with frequency
and is seen as a dispersive region in the conductivity curve.
At higher frequencies, conductivity increases linearly with fre-
quency. Such kind of conductivity behavior can be described
by Jonscher power law over a wide frequency range. Jonscher
power law or UDR of conductivity can be expressed as [50]

σ′(ω) = σDC + Aωn, (9)
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Figure 5. Arrhenius plot for relaxation frequency ( f r) vs 1000/T for grain and grain boundary polarization of (a) STC/3YSZ and (b)
STC/8YSZ composite materials.

Table 1. Conductivity for grain (σg), grain boundary (σgb), and total (σTotal) obtained from Nyquist plot fitting at temperature
650 ◦C, activation energy for grain and grain boundary is calculated from the fitting data and relaxation frequency of modulus
spectra for STC/YSZ compositesa.

Composites

Conductivity (from Nyquist fitting) Activation energy

σg (mS cm−1) σgb (mS cm−1) σTotal (mS cm−1) Using Nyquist fitting Using modulus spectroscopy

Eg (eV) Egb (eV) Eg (eV) Egb (eV)

STC/3YSZ 2.55 0.59 0.49 0.42 0.50 0.38 0.48
STC/8YSZ 1.58 0.06 0.05 0.48 0.55 0.45 0.52

aσg = grain conductivity; σgb = grain boundary conductivity; σTotal = total conductivity (from Nyquist fitting)

where A is a constant, σDC is DC conductivity, and n is
an exponent. If n lies between 0.5 < n < 0.7, i.e., complex
conductivity obeys UDR behavior [51].

Conductivity is strongly dependent on frequency in the
intermediate region. AW [52, 53], found that the Jonscher
power law is not valid over the entire range of frequencies as
ω → 0 and subsequently proposed the hopping frequency (ωC)
of carriers. Therefore the modified Jonscher law known as AW
power law can be expressed by the following formula [54]

σ′ = σDC

[
1 +

(
ω

ωC

)n]
, (10)

where σDC is DC conductivity, ωC is the crossover or hopping
frequency of ionic carriers, and n is an exponent lies between
(0 � n � 1).

Figure 6(a) shows the non-negligible electrode polariza-
tion at low frequency in the low temperatures. This electrode
polarization is decreased with increasing temperature, and DC
contribution appears clearly while at 250 ◦C, σ′(ω) drops
sharply below the limiting value of DC conductivity infers
the frequency crossover [55]. Figures 6(a) and S4(a) demon-
strates the frequency-dependent conductivity curve, which is
fitted using the AW power law for STC/8YSZ and STC/3YSZ,

respectively. DC conductivity (σDC), crossover frequency
(ωC), and exponent (n) obtained from the AW fitting, are pre-
sented in table 2 for STC/8YSZ and STC/3YSZ composites.
The exponent (n) is found to be decreased with increasing tem-
perature. The values of exponent (n) attained from the AW
power law lie in the range of Jonscher regime of UDR for
STC/8YSZ and STC/3YSZ ionic solids. In σ′ vs frequency
plot, a plateau region appears at low frequency,which is shifted
toward the higher frequency with increasing temperature. This
frequency-independent conductivity assigned as DC conduc-
tivity (σDC) or long-range ionic conductivity is found to be
increased monotonically with temperature, as shown in table 2.
At high temperatures, the characteristic plateau region corre-
sponding to DC conductivity becomes more prominent, sug-
gesting ease of transport of charge carriers, which encounter
thermal activation energy barrier due to localization, especially
in the grain boundaries.

Almost four decades ago, Barton [56], Nakajima [57],
and Namikawa [58] (BNN) gave an empirical relation which
correlates between the electrical conductivity and dielec-
tric strength. BNN relation defines the crossover frequency
(ωc = 1/τC) from DC conductivity to the dispersive region

7
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Figure 6. (a) Frequency-dependent AC conductivity fitted using AW power law, (b) scaling of ac conductivity according to TTSP for
STC/8YSZ composite at different temperatures from 250 ◦C–650 ◦C, and plot of log10σDC vs log10τC, showing the BNN relation for
(c) STC/3YSZ and (d) STC/8YSZ composites.

which can be expressed as follows [59, 60]

σDC =
pε0Δε

τC
, (11)

where p is a numerical constant of order 1, ε0 is the permittiv-
ity of free space, Δε is dielectric strength and τC is relaxation
time calculated from the crossover frequency. Figures 6(c) and
(d) display the log–log plot between DC conductivity and the
relaxation time for these composites based on the data attained
from equation (10). Graph figures 6(c) and (d) illustrates the
linear relationship (slop ∼1 or close to unity) between DC
conductivity and relaxation time, which infers the presence
of single transport mechanisms and interrelated AC and DC
conduction.

With increasing temperature, the manifold increase in
crossover frequency (ωC) is found, separating DC and AC
conductivity, as illustrated in table 2. As a consequence,
the conductivity dispersion region moves toward the higher

frequencies with increasing temperature suggesting conduc-
tivity scaling. Conductivity scaling can be expressed by TTSP,
which is stated by the following expression [39, 61]

σ′

σDC
= f s

(
ω

ωc

)
, (12)

where f s is the scaling function which is independent of tem-
perature and described the ion dynamics in the system, σ′ is
a real part of complex conductivity, σDC is DC conductiv-
ity, and ωc is the crossover frequency. Figures 6(b) and S4(b)
demonstrate the conductivity scaling curve for STC/8YSZ and
STC/3YSZ composites, respectively. Here σDC and ωc are
physical parameters and form a master curve for conductivity
with increasing temperature. In the low frequency region, the
conductivity scaling curve lies on the single master curve and
subsequently obeys TTSP [62] but not in the entire frequency
regime. However, TTSP is followed in a broader frequency
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Table 2. DC conductivity (σDC), crossover frequency or hopping frequency (ωC), and exponent (n) obtained from AW power law fitting of
ac conductivity with frequency plot for STC/8YSZ and STC/3YSZ composites respectively, from temperature 250 ◦C–650 ◦C.

Composites STC/8YSZ STC/3YSZ

Temperature DC conductivity Crossover frequency Exponent DC conductivity Crossover frequency Exponent
(◦C) (σDC/S × cm−1) (ωC/rad s−1) (n) (σDC/S × cm−1) (ωC/rad s−1) (n)

250 1.05 × 10−10 1 0.72 4.30 × 10−9 21 0.65
300 3.14 × 10−9 10 0.67 2.62 × 10−8 79 0.57
350 1.78 × 10−8 42 0.60 1.39 × 10−7 371 0.52
400 8.64 × 10−8 206 0.59 5.13 × 10−7 1340 0.49
450 3.29 × 10−7 825 0.58 1.81 × 10−6 4983 0.44
500 1.12 × 10−6 2960 0.57 5.33 × 10−6 18 247 0.43
550 3.42 × 10−6 9192 0.55 1.53 × 10−5 66 079 0.42
600 9.24 × 10−6 23 869 0.50 3.77 × 10−5 176 036 0.41
650 2.39 × 10−5 67 671 0.49 8.59 × 10−5 468 043 0.41

range in the higher temperatures, especially above 500 ◦C, as
shown in the inset of figures 6(b) and S4(b).

The permittivity spectra have been studied further to
understand the other anomalies in the STC/YSZ compos-
ites. Figures 7(a), (b) and S5(a), (b) display the frequency-
dependent real (ε′) and imaginary (ε′′) part of permittivity
estimated from impedance data at various temperatures for
STC/8YSZ and STC/3YSZ composites, respectively. In gen-
eral, real (ε′) and imaginary (ε′′) part of complex permittiv-
ity increases monotonically with increasing temperature, but
with increasing frequency, permittivity starts decreasing in
inhomogeneous systems. Similar behavior has been reported
[63–65] in the literature. Koop’s theory [49] can explain this
frequency-dependent behavior of permittivity in composite,
inhomogeneous systems, etc. According to this model, the
inhomogeneous system consists of conducting grains sepa-
rated by the poorly performing grain boundaries such that ions
start to pile up at the grain boundaries. Therefore, grain bound-
aries become more resistive and capacitive and give rise to
polarization [49]. Consequently, the polarization resistance of
grain boundaries becomes much higher than the grain polar-
ization resistance. Therefore, grain conductivity is larger than
the conductivity of grain boundaries, and these grain bound-
aries are acting here as an insulating barrier. The step-like
decrease is observed in both ε′ and ε′′ spectra due to molec-
ular reorientation. At low frequencies, dielectric permittivity
(ε′) and dielectric loss (ε′′) is increased manifold with increas-
ing temperature for both STC/YSZ composites, as shown in
figures 7(a), (b), and S6(a), (b), respectively. This increment
in permittivity implies the existence of interfacial polariza-
tion in the ionic conductors [66, 67]. The occurrence of larger
imaginary permittivity is possibly due to space charge accumu-
lation at the grain boundary, which suggests the high ohmic
losses at the interfaces of the materials. These ohmic losses
occur due to resistance between the electrode and bulk, which
causes performance degradation of the devices. ε′ and ε′′

decrease sharply as moving toward the higher frequencies,
which suggests the reduction in interfacial polarization. There-
fore, conductivity enhances with temperature. At low tempera-
tures, relaxation occurs due to the localized motion of carriers,
but at high temperature, hopping behavior starts dominating.

Further, to comprehend the presence of the relaxation process
in the inhomogeneous composite system, the DC conduction
free dielectric loss (ε′′der) was calculated using the following
expression [68–70]

ε′′der = −π

2
× ∂ε′ ( f )

∂ (ln f )
(13)

ε′ (ω) is the real part of complex permittivity, and f is the
frequency. Figure 7(c) and S5(c) illustrate the graph of DC
conduction free loss (ε′′der) with frequency. The derivative loss
spectra show the step in the same position as shown in the
ε′ spectra, which suggests the transition of carriers [68]. Two
types of relaxation process are visible in dielectric loss (ε′′der)
spectra shown in figures 7(c) and S5(c). At low frequency,
interfacial polarization phenomenon occurs while at high fre-
quency, the relaxation arises owing to the confined motion of
carriers into the potential well [70]. Hypothetically, such tran-
sition occurs due to the Maxwell Wagner Sillars process in
which ions are accumulated at the interfaces or grain bound-
aries of the phase-separated materials. Interfacial polarization
also exists between the contact electrode and materials.

Additionally, Kramers Kronig transformation validates the
impedance spectroscopy data by applying the linearity con-
dition [71, 72]. ε′ and ε′′ are interrelated by Kramers Kronig
transformation [73]. In this approach, ε′ is proportional to the
power law of ac conductivity ( f m) and satisfying ε

′
= B f m−1,

which can be expressed as [74]

ε′ f = B f m, (14)

where f is the frequency, B is constant, and m is the expo-
nent and obtained from the slope of the graph between log(ε′ f )
vs log( f ). It can be seen from figures 7(d) and S5(d) that
the ε′ f becomes nearly linear at low temperatures and high
frequency region. With increasing temperature, this linear
region is shifted toward the high frequency range due to
the relaxation process. At 250 ◦C, the value of exponent m
observed from the fitting is ∼1.0 for both STC/YSZ com-
posites, as shown in the inset of figures 7(d) and S5(d). The
value of m close to unity indicates the presence of other
anomaly. Nevertheless, with increasing temperature, m starts
decreasing, which implies that UDR starts dominating the
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Figure 7. Frequency-dependent permittivity plot in the temperature range from 250 ◦C to 650 ◦C for STC/8YSZ composite, (a) real part of
permittivity (ε′) (b) imaginary part of permittivity (ε′′), (c) DC conduction free dielectric loss (ε′′der), (d) Plot of ε′ f as a function of frequency
and inset of (d) showing the Kramers Kronig transformation curve at 250 ◦C.

transport. These anomalies effectively describe the polariza-
tion, charge carrier hopping, electronic, ionic, or polaronic
nature in inhomogeneous, disordered solids.

5. Conclusions

In summary, we have determined the conduction mechanism
in STC/YSZ composites through impedance spectroscopy,
modulus, and dielectric spectra. The grain, grain boundary
conductivity for composites have been calculated using the
Nyquist fitting and found to be increased with temperature.
The total conductivity obtained from the Nyquist fitting is
0.49 S cm−1 and 0.05 S cm−1 at 650 ◦C for STC/3YSZ
and STC/8YSZ composites, respectively, which can be
used as electrode materials in the solid oxide fuel cell.
Conductivity from Nyquist fitting and relaxation frequency
from modulus obey the Arrhenius behavior. Further, UDR
model explains the conduction mechanism of charge carriers.
AC conductivity of STC/YSZ composites follow the AW
power law. The exponent (n) value obtained from AW power
law fitting lies in the range 0.7–0.4 for STC/YSZ, which
validated the Jonscher regime and ions hopping occurs in
the composites systems. The conductivity scaling obeys
TTSP, where AC conductivity curve lies onto one master
curve in an explicit frequency range. AC and DC conduction
are interrelated to each other. DC conduction free dielec-
tric loss has explained the dielectric relaxation due to the
localized motion of charge carriers at low frequency. The
inhomogeneous system consists of conductive grains,

separated by the poorly performing grain boundaries, and
interfacial polarization ensues between the material and elec-
trode. Furthermore, Kramers Kronig transformation validates
the impedance spectra data. The Kramers Kronig exponent
shows lower m values in the UDR region. Therefore, UDR
is found to be powerful tool to study the charge transport
mechanism in STC/YSZ, which can be further used for other
composites and disordered solids.
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