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A B S T R A C T   

Despite having large electron concentration, the electrical conductivity of Nb doped SrTiO3 severely suffers from poor carrier mobility. Even after taking several 
attempts by different research groups, it is still challenging to improve carrier mobility without affecting the Seebeck coefficient. In this report, 1-dimensional CNT 
has been introduced in SrTi0.85Nb0.15O3 (STN) matrix to fabricate STN + CNT nano composites as CNT is expected to have boosted the mobility by several orders. We 
have reported more than 1000 % increase in electrical conductivity after CNT addition. In contrast, Seebeck coefficient remains flat with CNT loading. This 
remarkable enhancement of electrical conductivity accompanied by essentially no change in thermopower leads to a 380 % increase in the ZT parameter. Although 
CNT has been previously introduced in chalcogenides, binary oxides, and oxy-chalcogenides, such a remarkable surge in electrical transport with the incorporation of 
a small amount of CNT has never been reported. Moreover, to the best of our knowledge, this is the first report on thermoelectric properties of oxide perovskite 
composites with CNT. Our results suggest that forming oxide-CNT nano-composites can be a robust strategy to improve the thermoelectric performance in bulk 
materials for realistic applications.   

1. Introduction 

Thermoelectric power generator has been in use for decades in space- 
craft utilizing constant heat sources in radio-isotope thermoelectric 
generator (RTG) [1,2]. Further, a lot of efforts have been recently made 
in the development of thermoelectric generators, especially the 
computationally assisted technique to design the targeted thermoelec-
tric generators such as in medical devices, flexible electronics, 
solid-state refrigeration etc. [3–5] In the last two decades, the concept of 
waste heat recovery by TEG has piqued the interest as a mean of 
combating the global energy crisis and environmental concerns. The 
dimensionless figure of merit, ZT (= S2σ

κ T) determines the performance 
of thermoelectric materials, where S, σ and κ are Seebeck coefficient, 
electrical and thermal conductivity respectively. Ideally, high ZT is 
achieved in a thermoelectric material when it shows large σ, large S and 
low κ, which is difficult to coexist due to their interdependencies. 
Formerly, oxides have not been considered as good candidates for 
thermoelectric applications due to their poor electrical conductivity and 
large thermal conductivity compared to state-of-the-art chalcogenides. 
Nonetheless, oxide thermoelectrics have certain advantages over chal-
cogenides, such as high temperature stability, non-toxic constituents, 
and low processing cost [6]. SrTiO3 (STO) has received extensive 
attention as a leading n-type oxide thermoelectric material due to its 
large Seebeck coefficient (∼ 850μVK− 1) and tunable electrical 

conductivity [7]. Pristine STO shows very poor electrical conductivity 
with electron concentration, n < 1015cm− 3 [8]. Nb5+doped STO (STN) 
has been proven to be one of the potential thermoelectric candidates 
because of its large carrier concentration with a reasonably high Seebeck 
coefficient [9–11]. However, this donor doped STO exhibits low elec-
trical conductivity despite possessing a large electron concentration on 
the order of ∼ 1021cm− 3. It is believed that the presence of multivalent 
cations in ABO3 perovskite oxides causes a variation in local electronic 
charge and lattice strain, giving rise to localization of electrons, called 
Anderson localization [12–19]. Because of which, the mobility of elec-
trons gets suppressed in these complex oxides. In addition, this behavior 
is coupled with a high thermal conductivity, causing a deterioration of 
their thermoelectric performance. Recently, researchers have found that 
incorporation of graphite in donor doped STO can help these localized 
electrons to become delocalized, resulting in enhanced electron mobility 
[18,19]. This helps the STN + graphite composite attain a ground-
breaking ZT value of 1.42 for n-type bulk oxide thermoelectric [18]. 

In the present work, multiwalled carbon nanotube (CNT) has been 
introduced in STN matrix as a mobility enhancer. CNT is expected to 
help in delocalizing the localized electrons in STN by generating high 
momentum electrons. CNT, especially multiwalled CNT, is known for its 
high aspect ratios with nano-size dimensionality and its multichannel 
quasi-ballistic electrical conductivity of 1.85 × 105Sm− 1 [20,21]. Few 
reports have been found on CNT based composites with chalcogenides 
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such as Bi2Te3, SnSe, Cu2Se, Ag2Se showing a moderate improvement in 
thermoelectric figure of merit, with the reason being primarily demon-
strated as suppressed lattice thermal conductivity due to the phonon 
scattering at the newly formed CNT-matrix interfaces [22–26]. Addi-
tionally, it has been found that electrical conductivity is slightly 
improved as CNT acts as the ‘bridges’ between the grains to accelerate 
electrons [22,24]. In contrast, a few other reports suggest that electrical 
conductivity is slightly suppressed due to carrier scattering at 
CNT-matrix interfaces [23,25,26]. However, no such work on 
STO-based CNT composites has been reported till date. 

In the present work, nano-composites of SrTi0.85Nb0.15O3 (STN)+
CNT have been fabricated using spark plasma sintering (SPS). Being an 
excellent conductor, CNT acts as an electron accelerator, increasing the 
electrical conductivity of the STN + CNT composites by 11 times than 
that of pristine STN without any negative impact on Seebeck coefficient. 
We have reported more than 4 times augmentation in ZT values for STN 
+ CNT composites with respect to pristine STN. Such a robust thermo-
electric performance for n-type thermoelectric oxides is quite promising 
for high temperature applications. 

2. Experimental 

2.1. Material synthesis and STN + CNT composite formation 

SrTi0.85Nb0.15O3 (STN) is synthesized by mixing stoichiometric ratio 
of raw materials, namely SrCO3 (99.9% purity, Sigma Aldrich), TiO2 
(99.9% purity, Sigma Aldrich), Nb2O5 (99.9% purity, Sigma Aldrich). 
The mixture is calcined 4–5 times in reducing atmosphere at 1400◦C−

1500◦C with intermediate grinding steps. Once the single phase (STN) is 
obtained, it is mixed with different wt% (0.3, 0.5, 1, 1.5) of Multi walled 
CNT powder (> 98% purity) followed by high energy ball milling at 600 
rpm for better dispersion of CNT. Finally, STN + CNT powder is 
consolidated using spark plasma sintering (SPS) at 1400◦C using 30 Mpa 
pressure. These pellets are cut and machined into required dimensions 
for all the characterizations. 

2.2. Material characterization 

Phase and microstructure have been analysed using X-Ray Diffrac-
tion (PAN ANALYTICAL, ACMS, IITK), FESEM, Electron Backscatter 
Diffraction (JSM-7100F, JEOL, IITK), TEM (FEI-Tecnai G2 12 Twin 120 
KV TEM, AIC, IITK), X-ray Photoelectron Spectroscopy (PHI 5000 Versa 
Probe II, FEI Inc.), Raman Sepectroscopy (532nm DPSS laser, PRINCE-
TON INSTRUMENT ACTON SERIES SP 2500I SPECTROSCOPE). See-
beck and Electrical conductivity have been measured using ZEM- 
3M10R, ULVAC-RICO Inc. apparatus. Thermal diffusivity and specific 
heat capacity have been estimated from TC-1200RH and ADVANCE 
RIKO and HDSC PT 1600 (LINSEIS), respectively. carrier concentration 
measurement has been performed in HMS-5000 Series Hall Effect 
measurement system, Ecopia, ACMS, IITK). 

3. Results and discussions 

3.1. Microstructure and phase analysis 

STN + CNT composites have been synthesized by the solid-state 

Fig. 1. (a) Schematics of the composite processing (b) XRD of STN + CNT composites (c) Rietveld refinement of STN+0.5 wt% CNT (d) Raman spectroscopy of STN 
+ CNT (e–g) XPS spectra of STN+0.5 wt% CNT. (A colour version of this figure can be viewed online.) 
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route and consolidated using spark plasma sintering (SPS). Fig. 1(a) 
demonstrates the schematics of processing steps. An XRD analysis of all 
the compositions is shown in Fig. 1(b), where all the peaks are fully 
indexed with cubic Pm3m space group. STN with cubic perovskite 
structure has been retained throughout different CNT concentrations. 
Rietveld refinement has been performed to estimate the lattice param-
eters of all the composites, as shown in Fig. 1(c) and table (S1& S2). The 
lattice parameter of 3.92 Å has been found for pristine STN and it 
doesn’t change much after CNT addition. However, no XRD peak has 
been detected corresponding to the CNT phase due to its low concen-
tration [27]. The presence of CNT has been identified by Raman spec-
troscopy as shown in Fig. 1(d). The peaks at 1350 cm− 1 and 1590 cm− 1 

correspond to the high frequency D mode and low frequency G mode of 
CNT, respectively [28]. These D and G bands are related to the vibration 
frequency of sp3 and sp2 hybridized carbons [29,30]. It is to be noted 
that the intensity ratio between the D and G bands (ID/IG) of STN + CNT 

composites remains identical to pristine CNT, implying that CNT has not 
been considerably damaged throughout the severe processing steps. 
Moreover, there is no peak shift of D and G bands, indicating that CNT 
does not react or decompose during the processing. 

X-ray photoelectron spectroscopy (XPS) has been performed to verify 
the oxidation states and binding energies of C, Nb, Ti and O. Fig. 1(e-g) 
provides the detailed peak fittings and corresponding binding energies 
are tabulated in SI (Table S3)). The binding energies are in good 
agreement with the literature values [31–35]. The deconvolution of 
carbon spectra confirms that the most of the carbon (∼ 83 %) in CNT 
remains in graphitic bond (C–C bond). Some of the carbon has been 
found in the form of C–O bond C––O bond as expected due to the 
extreme processing steps such as nano-milling. XPS spectra of Nb reveals 
that around 76% of the Nb remains in the +5 state, which acts as donor 
dopant, whereas more than 90% of the Ti remains in the +4 state. 

Furthermore, the FESEM image of the fractured surface in Fig. 2(a) 
demonstrates that STN + CNT composites possess a sufficiently dense 
micro-structure. As indicated by yellow arrow in Fig. 2(a), CNTs are 
mostly found uniformly distributed at grain boundaries. Presence of 
CNT in the grain boundaries is further confirmed using energy dispersive 
x-ray spectroscopy (EDXS) as shown in Fig. 2(b). Elemental mapping by 
EDXS also confirms that all the constituent elements are homogeneously 
distributed throughout the microstructure, as shown in Fig. S1(a-e). The 
grain size distribution of STN + CNT composites has been estimated 

from bright field image of electron back scattered diffraction (EBSD), as 
shown in (Fig. 2(c) & Fig. S2). It has been found that about 70% of the 
total grains in STN+0.5 wt% CNT are in the size below 100 nm and less 
than 2% are above 700 μm. This wide range of grain size distribution is 
an ideal recipe to facilitate charge transport through large grains and 
enhance phonon scattering by grain boundaries. However, CNT is very 
prone to forming agglomerates because of its high surface energy. The 
pockets of CNT bundles become more prominent as the CNT concen-
tration increases, as shown in the phase contrast image in Fig. 2(d). To 
find out more about distribution of CNT in STN matrix TEM imaging has 
been performed. The d-spacing of two yellow circled regions in Fig. 2(e) 
has been calculated as 2.73Å and 3.36Å using the fast Fourier transform 
(FFT), and can be indexed with the planes of STN [110] and CNT [1120], 
respectively. Fig. 2(e) also shows two distinct areas separated by yellow 
dotted line labelled STN grains surrounded by CNT. The existence of 
CNT in the STN matrix is further illustrated schematically in Fig. 2(f) 

3.2. Electrical transport 

Temperature dependent Seebeck coefficient and electrical conduc-
tivity have been measured in the broad temperature range from 330 K to 
990 K to evaluate the electrical transport in STN + CNT composites, as 
shown in Fig. 3((a) & (b)). The negative Seebeck coefficient for all the 
compositions across the temperature range indicates that the electron is 
the major carrier in the composites. Linear increase of the Seebeck co-
efficient ranging approximately from 75 μV to 181 μV with temperature 
for all the compositions depicts n-type degenerate semiconductor 
behavior. The inclusion of CNTs has been shown to have minimal effects 
on the Seebeck coefficient of STN, as illustrated in the inset of Fig. 3(a). 
It is quite advantageous to obtain nearly identical Seebeck values even 
with CNT inclusions in STN, especially given that the CNT actually in-
creases the electrical conductivity of STN by an order of magnitude, as 
will be covered below. 

Electrical conductivity is enhanced to 1.7 × 105 Sm− 1 for 0.5 wt % 
CNT, which is more than 1000% larger compared to that of pristine STN. 
Although CNT possesses large electrical conductivity in the order of 
105 Sm− 1 [20,36,37] due to its large quasi-ballistic electrical transport, 
such a huge surge in electrical conductivity of STN due to less than 
1 vol% CNT incorporation is difficult to perceive. This order of magni-
tude surge in electrical conductivity without sacrificing the Seebeck 
coefficient helps to achieve a maximum power factor of 

Fig. 2. Microstructural study (a) FESEM of fractured surface (b) EDXS data (c) grain size distribution with bright field image at the inset (d) Phase contrast image, red 
and blue regions depicting STN and CNT, respectively (e) TEM analysis of STN+0.5 wt% CNT (f) Schematics of the CNT distribution in the matrix of STN. (A colour 
version of this figure can be viewed online.) 
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2375 μWm− 1K− 2 for STN+0.5 wt% CNT composition, which is around 
635 % larger than that of pristine STN. Being a degenerate type semi-
conductor, fermi energy is most likely to be located within the con-
duction band edge, and therefore, it should follow metallic-like 
behavior. But it is surprising to observe semiconductor like behavior at 
lower temperature regions before it undergoes a semiconductor 
(dσ/dT > 0) to metal-like (dσ/dT < 0) transition at 500 K− 600 K as 
listed in Table S5. 

To investigate the insight of electronic transport, carrier concentra-
tion has been estimated using four probe Hall measurements at room 
temperature. The electron concentration for all the compositions as 
shown in Table S4 is found to be in the range (4 − 5) × 1020cm− 3 indi-
cating not much variation in carrier concentration, which cannot justify 
such a huge enhancement in electrical conductivity. Furthermore, using 
the Pisarenko relation, DOS effective mass is found to be in the range of 
1.8 to 2.2 in Fig. S3 and it doesn’t vary much as well with CNT addition. 
Minimal deviation in DOS effective mass and electron concentration 
corroborates well with the identical Seebeck coefficient for different 
compositions, but the order of magnitude surge in σ still remains 
unanswered. 

To better comprehend the optimization of electronic properties, 
carrier concentration independent weighted mobility (μw) [39–42] as 
shown in Fig. 3(d) has been computed for all the compositions using 
Seebeck and electrical conductivity using equation (S2) in SI. Electron 
mobility of STN has been found to be increased dramatically due to the 
incorporation of CNT in the STN matrix. Most importantly, the same 
order of increment in μw has been obtained as what we have obtained in 
σ. Maximum μw of 120 cm2V− 1S− 1 has been achieved for STN+0.5 wt% 
CNT which is 1000% larger in comparison to that of pristine STN. It 
infers that such an enhanced μw is the main attributor to the afore-
mentioned increase in electrical conductivity. 

Positive slop of μw at lower temperatures suggests thermally acti-
vated mobility. Some previous literatures attribute the large enhance-
ment in σ in STN + r-GO composites to the reduction in Schottky barrier 
height as r-GO promotes formation of more oxygen vacancies in the 
vicinity of the grain boundaries [43–45]. Although this hypothesis is not 

fully refutable for well-dispersed CNT composites, it is difficult to 
perceive this mechanism as the primary cause of the spectacular 
enhancement in weighted mobility, even higher than that of the single 
crystal [44,46]. Moreover, it fails to justify almost no change in the 
Seebeck coefficient for all the compositions as oxygen vacancies supply 
more electrons to the conduction band owing to its behavior as an 
electron donor dopant [47–51]. The band model cannot adequately 
explain the charge transport mechanism in these complex oxide perov-
skites, which contain point defects due to the presence of multivalent 
cations and high temperature (>1400 K) ceramic processing. Further-
more, the percolation model doesn’t appear to operate in this instance, 
as the passage of a large number of electrons through CNT is expected to 
have deteriorated the Seebeck coefficient [52]. In addition, it is very 
unusual that the STN + CNT composites, including the pristine STN, 
exhibit semiconductor like behavior at lower temperature regions 
despite possessing larger carrier concentration than the critical con-
centration required to satisfy the Mott criteria for SrTiO3 based oxides 
(1018cm− 3) [53]. Based on our prior research, it is posited here that 
localization of electrons called Anderson localization, which has been 
observed in many complex oxides, could be a possible reason behind the 
poor electronic conductivity of the pristine STN despite its large electron 
concentration [54–56]. Nb doping in the B site, repeated calcination in a 
reducing atmosphere, and nano-milling can all generate a lot of defects 
and lattice strain, giving rise to a difference in local electric field causing 
localization of electrons. As a result, small polaron hopping (SPH) can be 
found as a dominant electron transport mechanism at lower temperature 
regions, as shown in Fig. 3(e). This explains the thermally activated 
charge transport leading to semiconductor like electrical conductivity 
(dσ/dT > 0) in STN + CNT composites. The activation energy (Ehop) for 
SPH (Table S6) has been found to be decreasing with a little addition of 
CNT, as determined from linear fitting of ln(σ) with 1/KBT in equation 

(1). 

σ =
σ0

T
exp

(

−
EHop
KB T

)

(1) 

Fig. 3. Electrical transport (a) Seebeck coefficient with temperature (with composition in inset) (b) electrical conductivity (c) power factor (d) weighted mobility 
(μw) of STN + CNT composites in comparison to single crystal (SC-STN) [38] (e) ln(σT) vs. 1/KBT (f) Schematics of the electron transport depicting momentum 

enhancement by transfer of electron through CNT in the sintered STN + CNT composites. 
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Where, σ0 and T0 are constants. Further, one-dimensional CNT serves as 
an electron mobility booster by providing a conductive channel for 
ballistic electron transport [57]. The intrinsic electron mobility of CNT 
at room temperature is in the range of > 103 cm2V− 1S− 1 [58–60]. As a 
result, electrons coming out of CNT are expected to achieve high mo-
mentum. In addition to the supply of high energy electrons from CNT to 
STN, the presence of CNT in the composites is expected to impart enough 
strain to help the localized electrons in STN to attain an itinerant state, 
as shown schematically in Fig. 3(f). Meanwhile, the overall electron 
concentration is not influenced; hence, it remains undetectable by the 
Hall measurement technique. Although CNT possesses a large electron 
concentration as estimated to be around 1020 − 1022 cm− 3 [58–60], it is 
unable to influence the overall electron concentration of STN + CNT 
composites as STN already contains surplus of electrons (on the order of 
1021 cm− 3). Moreover, such a low content of CNT (1− 2 %) is not in fact 
expected to affect the overall electron concentration of STN + CNT 
composites. As a result, overall Seebeck coefficient remains almost un-
altered even after CNT addition because of its independence on the state 
of electrons, i.e., whether they are localized or itinerant [61]. Formation 
of CNT agglomerates cannot be ignored as it has a large tendency to form 
bundles as observed in Fig. 2(d). Eventually, electron scattering begins 
to dominate at larger CNT concentrations (>0.5 wt%), reflected through 
a slightly larger value of m∗ for STN+2 wt% CNT. This is also consistent 
with the μw reduction at large CNT concentrations because of which 
electrical conductivity is suppressed. 

3.3. Thermal transport 

The total thermal conductivity in Fig. 4(a) has been determined by 
measuring thermal diffusivity, specific heat, and density, as depicted in 
Fig. S4 and Table S7 in SI. Even though CNTs possess a very large 
thermal conductivity of about 2000 Wm− 1K− 1, the κtotal of all the STN +
CNT composites exhibits a minimal increase with respect to pristine STN 
[37,62]. To evaluate the thermal transport phenomena in detail, κe has 
been estimated using the Wiedemann-Franz law (κe = LσT) as shown in 
SI [63]. The temperature dependent κe has been found to be a replica of 

electrical conductivity, as shown in Fig. S4(d). Further, lattice thermal 
conductivity (κl) has been calculated by subtracting κe from the total 
thermal conductivity as shown in Fig. 4(b). Temperature dependent κl of 
all the STN + CNT composites remain range bound between 
6.5 Wm− 1K− 1 to 2.8 Wm− 1K− 1. The monotonically decreasing trend of κl 
with temperature for all the compositions suggests the dominance of 
phonon-phonon Umklapp scattering at high temperature regions. This 
phenomenon has already been reported in several oxide composites [18, 
19,64–66]. It is worth noting that despite ~10 times increase in κe as 
expected due to an order of magnitude increase in electrical conduc-
tivity, κtotal could be restricted since the overall thermal conductivity is 
dominated by lattice thermal conductivity (κl); hence, the curvature of 
κe is overshadowed by κl. However, unlike graphene and graphite, CNT 
doesn’t work effectively to suppress the κl significantly suggesting that 
phonon doesn’t scatter much in the interfaces of 1-dimensional CNT 
with STN grains. However, κl is not enhanced too much if it is considered 
with a 635% increase in PF after CNT loading. 

3.4. Thermoelectric performance 

Finally, the dimensionless figure of merit, ZT, has been computed in 
Fig. 4(c), where the maximum ZT of 0.48 has been found for STN+0.5 wt 
% CNT at 945 K which is also attained by STN+1 wt% CNT near 990 K 
temperature. The highest ZT value of the STN + CNT composite is about 
340% larger than that of pristine STN. The maximum theoretical effi-
ciency (ηmax) is further calculated using equation (2&3) [67]. 

ηmax = ηc

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + Z Tavg

√
− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + Z Tavg

√
+ Tc

Th

(2)  

ZTavg =

∫ Th
Tc

ZT(T)dT
Th − Tc

(3)  

Where, ηc, Tc, Th are Carnot efficiency, cold and hot end temperatures, 
respectively. From equation (2&3), it is evident that ZTavg is more 
important parameter than maximum ZT in terms of its practical impli-
cation in actual TEG devices. ZTavg of all the STN + CNT composites are 

Fig. 4. Thermal transport and figure of merit (a) κtotal with temperature (b) κl with temperature (c) ZT with temperature (d) ZTavg with temperature for all STN +
CNT composites. 
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estimated in Fig. 4(d). Maximum ZTavg of 0.3 has been obtained by 
STN+0.5 wt% CNT in the temperature range of 330 K − 990 K, yielding 
a maximum theoretically attainable efficiency of 6.6%, making it a po-
tential option to be utilized in high temperature TEG applications. This 
can create a new opportunity for the development of TEG device using 
high performance oxide-CNT composites. Moreover, other high- 
performance oxides can be further utilized to form CNT based com-
posites in the quest for next generation potential thermoelectric 
material. 

4. Conclusion 

In summary, we have successfully synthesized STN + CNT nano- 
composites using spark plasma sintering. As confirmed by FESEM and 
TEM, CNTs are distributed in grain boundary regions. The presence of 
CNT in STN matrix offers high energy electrons, resulting in a remark-
able enhancement in the electron mobility, which would otherwise 
suffer from Anderson localization of electrons. We have reported a 
maximum 1000 % surge in weighted mobility without any significant 
deterioration in thermopower for STN + CNT composite compared to 
that of pristine STN. As a result, a maximum ZT of 0.48 has been ob-
tained for STN+0.5 wt% CNT at 945 K, which is around 380% larger 
than that of the pristine STN. In this work, we have shown a strategy of 
oxide-CNT nanocomposite formation for enhanced thermoelectric per-
formance, where 1-D CNT acts as a mobility enhancer. 
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