
The A2 conjecture



The A2 conjecture
w belongs to the Ap class, 1 < p <∞ if

[w ]Ap
= sup

Q

(
1

|Q|

∫
Q

w(y) dy

)(
1

|Q|

∫
Q

w(y)−
1

p−1 dy

)p−1
<∞

A Calderón-Zygmund operator with kernel K is a bounded

operator in L2(Rn) given by

T (f )(x) =

∫
K (x , y)f (y) dy x /∈ supp(f )

|K (x , y)| ≤ C

|x − y |n
, x 6= y

|K (x , y)− K (x ′, y)|+ |K (y , x)− K (y , x ′)| ≤ C |x − x ′|δ

|x − y |n+δ

for |x − x ′| ≤ |x − y |/2.



A2 Conjecture and Theorem

Theorem
Let T a C-Z operator. There exists a constant c(n,T ) such that,

for all weights w ∈ A2,

‖T‖L2(w) ≤ c(n,T )[w ]A2
.

I Beurling transform Petermichl and Volberg 2002

I Hilbert transform, Riesz transform Petermichl 2007-08

I Intermediate results : Lacey et al. Cruze Uribe et al. 2010, · · ·
I Solved by Hytönen 2010

I New proof by Andreï Lerner 2012



Buckley's Theorem for the maximal function

Theorem
For all weights w ∈ Ap,

‖M‖Lp(w) ≤
c(n)p

p − 1
[w ]

1

p−1
Ap

.

Step 1 : su�cient to do it for the dyadic analog.



Dyadic cubes and dyadic grids

Classical dyadic cubes : Q = [2−k j , 2−k(j + 1))n. We call

`(Q) = 2−k its size (or scale), D the set of dyadic cubes.

I Dyadic cubes Q such that `(Q) = 2−k constitute a partition

of Rn.

I They are the disjoint union of 2n dyadic cubes such that

`(Q) = 2−k−1.

I Let Q,Q ′ two dyadic cubes. Then Q ⊂ Q ′ or Q ′ ⊂ Q, or Q

and Q ′ are disjoint.

Lemma.Let L a collection of dyadic cubes of bounded size. If Lmax

is the subcollection of maximal dyadic cubes, then each cube of L
is contained in a cube of Lmax .



Other dyadic grids

Dα, with α ∈ {0, 1/3}n, is the collection of

2−k([0, 1)d + j + (−1)kα), with k ∈ Z et j ∈ Zn.

Lemma. Each cube Q is contained in an interval Q ′ which belongs

to one of the 2n families Dα and such that `(Q ′) ≤ 6`(Q).



Maximal dyadic functions : Doob's Inequality

λ|{MDα f > λ}| ≤
∫
MDα f>λ

|f (x)|dx .

As a consequence, Lp inequality with constant p
p−1 .

The proof is geometric and is valid for all Radon non negative

measures.



Second step : dyadic inequalities

Let Mw the maximal (dyadic) operator for the measure wdx and

Mσ for the measure σdx , with σ = w−1. They are both bounded

for the corresponding measure.

1

|Q|

∫
Q

f ≤ [w ]A2

|Q|
w(Q)

( 1

σ(Q)

∫
Q

f (x)σ−1(x)σ(x)dx
)

≤ [w ]
A2

|Q|
w(Q)

inf
Q

Mσ(f σ−1)

≤ [w ]
A2

1

w(Q)

∫
Q

Mσ(f σ−1)dx

≤ [w ]
A2

Mw

[
w−1

(
Mσ(f σ−1)

)]
. pause



Optimality of Buckley's Theorem

Luque, Pérez and Rela (to appear) :

Proposition

For �xed p > 1 let ψ : [1,∞)→ (0,∞) an increasing function such

that for all w ∈ Ap and f positive,

‖Mf ‖Lp(w) ≤ ψ([w ]Ap
)‖f ‖Lp(w).

Then ψ(t) ≥ c(p)t
1

p−1 for some constant c(p) > 0.

Proof for p = 2 : we prove that ψ(t) ≥ t/4 for t ≥ t0. For

1 < q < 2 let f ≥ 0 with norm 1 in Lq et telle que

‖Mf ‖q ≥ 2‖M‖q.
We set

R(f ) =
∞∑
k=0

1

2k
Mk(f )

‖M‖kq
.



R(f ) =
∞∑
k=0

1

2k
Mk(f )

‖M‖kq

f ≤ R(f ) ‖R(f )‖Lq ≤ 2 ‖f ‖Lq , M(Rf ) ≤ 2Rf .

Take as a weight w = (Rf )q−2.

‖Mf ‖
Lq

=
(∫ (

(Mf )(Rf )
q
2
−1)
)q

(Rf )q(1− q
2

)dx
) 1

q

‖Mf ‖
Lq
≤

(∫
(Mf )2 (Rf )q−2dx

) 1

2

(∫
(Rf )qdx

)1− q
2

≤ ψ([w ]A2
)
(∫

f 2 (Rf )q−2dx
) 1

2

(∫
(Rf )qdx

)1− q
2

.

So ψ([w ]A2
) ≥ 4‖M‖q.



Let us prove that [w ]A2
≤ 2‖M‖q. Recall that w = (Rf )q−2. We

have, by Jensen inequality

[w ]A2
= sup

Q

( 1

|Q|

∫
Q

(Rf )q−2dx
)( 1

|Q|

∫
Q

(Rf )2−qdx
)

≤ sup
Q

( 1

|Q|

∫
Q

(Rf )−1dx
)2−q( 1

|Q|

∫
Q

(Rf )dx
)2−q

≤ [Rf ]2−qA2
≤ [Rf ]A2

≤ 2‖M‖q.



Inverse Hölder Inequalities

Lerner, Ambrosi et Pérez (2008)

Proposition

Soit w be such that MDw ≤ [w ]A1
w . If r = 1 + 1/(2d+1[w ]A1

),
then for every dyadic cube(

1

|Q|

∫
Q

w r

)1/r

dx ≤ 2

|Q|

∫
Q

w .



Proof for d = 1. Let

{MDI w > λ} = ∪Ij ( disjoint union).

Assume that λ > 1

|I |
∫
I
wdx . Since w(Ij) =

∫
Ij
w ≤ 2λ|Ij |, we have∫

MD
I
w>λ

wdx =
∑

w(Ij) ≤ 2λ|MDI w > λ|.



∫
I

(MDI w)δwdx = δ

∫ ∞
0

λδ−1

(∫
MD

I
w>λ

wdx

)
dλ

=

∫ w(I )/|I |

0

+

∫ ∞
w(I )/|I |

≤
∫ w(I )/|I |

0

λδ−1w(I )dλ+ 2δ

∫ ∞
0

λδ|MDI w > λ|dλ

≤ 1

|I |δ
(

∫
I

wdx)δ+1 +
2δ

δ + 1

∫
I

(MDI w)δ+1dx .



We now use the assumption MDw ≤ [w ]A1
w .∫

I

(MDI w)δwdx ≤ 1

|I |δ
(

∫
I

wdx)δ+1 +
2δ[A1]

δ + 1

∫
I

(MDI w)δwdx .

For δ small enough the second term of the right hand side can be

substracted to the left hand side.



A �avor of the rest of the proof

The aim of Lerner : have new tools to analyze locally a function

and replace

fQ =
1

|Q|

∫
Q

fdx a(f ,Q) =
1

|Q|

∫
Q

|f − fQ |dx .

Let PQ the probability dx
|Q| on Q.

Use of a Median m(f ,Q) of f on Q and the (mean) Oscillation

ωλ(f ,Q) = inf{ω > 0; there exists c such that PQ(|f−c| > ω) ≤ λ}.



ωλ(f ,Q) = inf{ω > 0; there exists c such thatPQ(|f−c | > ω) ≤ λ}.

Claim. ωλ(f ,Q) ≤ λ−1a(Q).

Take c = fQ and ω = a(Q)
λ . Prove that PQ(|f − c | > ω) ≤ λ.

Implies that M#
λ f ≤ λ

−1M#f .

We have more :

Proposition.For T a C-Z operator, we have M#
λ (Tf ) ≤ CλMf .



Proposition.For T a C-Z operator, we have M#
λ (Tf ) ≤ CλMf .

Already done : there exists a constant c such that

|Tf − T (f χ
Q̃

)− c | ≤ C infQ Mf .
Take this constant c and ω = K infQ Mf .

Since |Tf − c| ≤ |T (f χ
Q̃

) + C infQ Mf ,

PQ

(
|Tf − c | ≥ K inf

Q
Mf

)
≤ PQ

(
T (f χ

Q̃
) ≥ (K − C ) inf

Q
Mf

)
≤ PQ

(
T (f χ

Q̃
) ≥ (K − C )

|Q̃|

∫
Q̃

|f (x)|dx

)
.

But T is weak-type(1, 1), so that for some constant C ′

PQ

(
T (f χ

Q̃
) ≥ s

)
≤ C ′

s|Q|

∫
Q̃

|f (x)|dx .

Take K ≥ C + C ′2nλ−1.



Bochner-Riesz means.



Bochner-Riesz means via the restriction Theorem.
Bochner-Riesz means are given by

SR f (x) =

∫
|ξ|≤1

(
1− |ξ|

2

R2

)δ
f̂ (ξ)e2πiξ.xdξ.

Convergence in Lp reduces to Lp boundedness of the single

operator S1, that is, the fact that

mδ(ξ) = (1− |ξ|2)δ+

is a Fourier multiplier of Lp. The convolution operatorTδ is given by

Kδ(x) = c |x |−(n/2)−δJn/2+δ(2π|x |).

Moreover

Jν(x) = c
cos(x − νπ

2
− π

4
)

|x |1/2
+ O(|x |−3/2).



So Kδ behaves like |x |−
n+1

2
−δ at in�nity.

Necessary condition. For Tδ to be bounded in Lp it is necessary

that
n

p
<

n + 1

2
+ δ,

which we can rewrite as ∣∣∣∣1p − 1

2

∣∣∣∣ < 2δ + 1

2n
.

Theorem. Assume that the restriction theorem holds for (p, 2).
Then the Bochner-Riesz conjecture holds for this value of p.

Su�cient to prove that

‖(ψkKδ) ∗ f ‖p ≤ C2
n( 1

p
− 1

2
)−δ− 1

2 ‖f ‖p.

Here ψk(x) = ψ(x/2k) is supported in {2k−1 ≤ |x | ≤ 2k+1}.



First reductions.
Let Tk f = (ψkKδ) ∗ f .
Claim. It is su�cient to prove that

I = ‖(ψkKδ) ∗ f ‖Lp(B(0,2k+3)) ≤ C2
[n( 1

p
− 1

2
)−δ− 1

2
]k‖f ‖Lp(B(0,2k))

for f supported in B(0, 2k)).

I ≤ C2
nk( 1

p
− 1

2
)‖(ψkKδ) ∗ f ‖2.

Claim. |ψ̂kKδ(ξ)| ≤ C 2
−kδ

(1+(2kd(ξ,S))N
.

Claim. We conclude easily from this : no problem for |ξ| < 1/2 or

|ξ| > 3/2. In between, we have∫
3/2

1/2
(1 + 2k r)−N

∫
Sn−1
|f̂ (rξ)|2dσ(ξ) ≤ C2−k‖f ‖2p,

which we wanted.



Claim. |ψ̂k ∗mδ(ξ)| ≤ C 2
−kδ/2

(1+(2kd(ξ,S))N
.

We will prove this estimate when mδ is replaced by nδ, where

0 ≤ nδ ≤ 2−kδ on the annulus of thickness 2k+1 inside the unit

sphere. Then

|ψ̂k ∗ nδ(ξ)| ≤ 2−kδ
∫
1−r<2−k

(|ψk | ∗ dσr )dr .

But, for Tomas-Stein Theorem, seen that

|ψk | ∗ dσ ≤ 2k(1 + (2kd(ξ, S))N .

To conclude it is su�cient to look at ψ̂k ∗ νδ(ξ) where νδ is
supported in the ball of radius 1− 2−k . The key point here is to use

the fact that ψ vanishes in a neighborhood of the origin and can be

written as |x |2Nη(x), so that

ψ̂k(ξ) = c2−Nk∆Nφk(ξ), φk(ξ) ≤ C2kn(1 + 2k |ξ|)−N .

We then take into account that when taking ∆Nνδ, one has a rapid

decay far from the unit sphere.



Relation with Prediction Theory
Let Yn a sequence of Gaussian centred random variables with

variance 1 such that E(YjYk) = r(j − k).
r is positive de�nite : for every �nite sequence (ξj),∑

j ,k

r(j − k)ξjξk ≥ 0.

Bochner's Theorem (or Herglotz) : there exists a probability on

[0, 2π] such that

r(n) =

∫
2π

0

e−intdµ(t).

E(YjYk) =

∫
2π

0

e−ijte iktdµ(t)

Can one project on the past in the space of Gaussian r. v. ?

Equivalent to projection in L2(dµ). Helson-Szegö 1965 dµ = wdx

and w = exp(u + Hv), with u and v bounded, |u| < π/2.



The Strichartz estimates



The Schrödinger equation

i∂tu −∆xu = h

u|t=0 = f .

For h = 0,

u(t, x) =

∫
Rd

e2πi(x .ξ+2πt|ξ|2) f̂ (ξ)dξ.

We recognize a variant of the extension operator E for the

paraboloid Π, of the equation τ = 2π|ξ|2. We extend here the

measure given on the paraboloid by f̂ (ξ)dξ.
The paraboloid has non vanishing curvature.If analogous to the

sphere,

‖u‖Lq(Rd+1) ≤ C‖f ‖L2(Rd )

with q = 2 + 4

d
.



The proof.

For homogeneity reasons we can assume that f̂ is supported in the

ball B(0, 1), and we consider the measure dµ(x) = φ(x)dx on the

paraboloid, with φ smooth cut-o� function.

Claim. |µ̂(t, x)| ≤ |t|−d/2.

The key point : µ̂(t, x) =
(

1

2πt

)d/2
e−i |x |

2/(2πt) ∗x φ.

For g in S(Rd ) let U(t)g = µ̂(t, ·) ∗x g . Then

‖U(t)g‖∞ ≤ |t|−d/2‖g‖1, ‖U(t)g‖2 ≤ ‖g‖2.

So

‖U(t)g‖p′ ≤ |t|
− d

2
( 1
p
− 1

p′ )‖g‖p.

Next we use the trick that it is su�cient to prove an (, Lp
′
, Lp)

inequality for the convolution by µ̂ in Rd+1 (see S. Ray lectures).



µ̂ ∗ f (t, ·) =

∫
R
U(t − s)f (s)ds,

where we use the notation f (t) for the function x 7→ f (t, x).

A(t) = ‖µ̂ ∗ f (t, ·)‖Lp′ (Rd ) ≤
∫
R
‖U(t − s)f (s)‖Lp′ (Rd )ds

≤ C

∫
R
|t − s|−

d
2

( 1
p
− 1

p′ )‖f (s)‖Lp(Rd )ds.

Use HLS to conclude.

Remark. This proof extends to all hypersurfaces with non

vanishing Gaussian curvature. One always has the required estimate

by the stationary phase method.



The whole equation.

Let us write e it∆ for the operator given on Rd by

ê it∆f = e−4iπ
2t|ξ|2 f̂ .

Then the solution is given by

u(t) = e−it∆f +

∫ t

0

e−i(t−s)∆h(s)ds.

Theorem. Assume that 2

p
+ d

q
= d

2
. Then

‖u‖Lpt (Lqx ) ≤ C‖f ‖L2x + ‖h‖
L
p′
t (Lq

′
x )
.



Proof for p = q = 2+ 4

d
.

‖u‖p ≤ C‖f ‖2 + ‖h‖p′ .

We have the same inequalities for the propagator e it∆ than for

U(t) and it is su�cient to assume that f is 0. Then the proof is the

same.

The general case is also given by the HLS theorem.



Non linear equation.

i∂t −∆xu = λ|u|4/du
u|t=0 = f .

Assuming that λ is a real number, quantities ‖u(t)‖2 and

‖∇u(t)‖2
2
− λ‖u(t)‖2+ 4

d

2+ 4

d

are invariant.

When λ > 0 it is called focusing. When λ < 0, it is defocusing.

u(t) = e−it∆f + λ

∫ t

0

e−i(t−s)∆|u(s)|
4

d u(s)ds.

Theorem. Let ‖f ‖L2x = 1. If λ is su�ciently small, the NLS

equation has a global solution such that ‖u‖
2+ 4

d
is bounded. It is

the unique solution having these properties and depends

continuously of the data.



Fixed point in the metric space X = {v ∈ L2
2+ 4

d

; ‖v‖
2+ 4

d
≤ C} for

the mapping that maps u to

(Tu)(t) = e−it∆f + λ

∫ t

0

e−i(t−s)∆|u(s)|
4

d u(s)ds.

For free : Tu is in X for λ small. Indeed,

‖v
4

d w‖p′ ≤ ‖v‖
4

d

2+ 4

d

‖w‖
2+ 4

d
.

Have to consider the L2+ 4

d norm of Tu − Tv or, more precisely, of

|λ|
∫ t
0
e−i(t−s)∆|u(s)|4/d |u(s)− v(s)|ds.

One can also prove �nite existence in time for all λ.



Scattering.

i∂t −∆xu = λ|u|4/du
u|t=0 = f .

De�ne f+ = f + λ
∫∞
0

e it∆|u(t)|
4

d u(t)dt
Backward e�ect of the non linearity.

Theorem.

‖u(t)− e−it∆f+‖L2x → 0.

Proof. Have to look at the function of x given by

e−it∆
∫∞
t

e is∆|u(s)|
4

d u(s)ds. Use the adjoint of the propagator

seen as an operator from L2x to L
2+ 4

d
t,x .


