The A, conjecture



The A, conjecture
w belongs to the A, class, 1 < p < oo if

b, =sup (g [ 0190 ) (1), (””l‘dy>pl<oo

A Calder6n-Zygmund operator with kernel K is a bounded
operator in L2(R") given by

T = [ Kxn)fl)dy  x ¢ supp(f)

C

=y XFy

[K(x,y)l <

|K(X7y) - K(X,’.y)| + ‘K(yvx)i K(yaxl)| <

for |x — x| < |x —yl|/2.



A, Conjecture and Theorem

Theorem
Let T a C-Z operator. There exists a constant c(n, T) such that,
for all weights w € A,,

ITl2(wy < e(n, T)[w]a,-
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Beurling transform Petermichl and Volberg 2002
Hilbert transform, Riesz transform Petermichl 2007-08
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Intermediate results : Lacey et al. Cruze Uribe et al. 2010, - - -
Solved by Hytdnen 2010
New proof by Andrei Lerner 2012
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Buckley’s Theorem for the maximal function

Theorem
For all weights w € Ap,

Ml < < P 7.

Step 1 : sufficient to do it for the dyadic analog.



Dyadic cubes and dyadic grids

Classical dyadic cubes : Q@ = [27%j,27k(j 4 1))". We call
0(Q) = 27X its size (or scale), D the set of dyadic cubes.
» Dyadic cubes Q such that {(Q) = 2~k constitute a partition
of R”.
» They are the disjoint union of 2" dyadic cubes such that
Q) =27k,
» Let Q, Q' two dyadic cubes. Then Q C Q" or Q' C Q, or Q
and @’ are disjoint.
Lemma.Let L a collection of dyadic cubes of bounded size. If L pax
is the subcollection of maximal dyadic cubes, then each cube of L
is contained in a cube of L max.



Other dyadic grids

Dy, with a € {0,1/3}", is the collection of
27K([0,1)4 +j + (—1)ka), with k € Z et j € Z".

Lemma. Each cube Q is contained in an interval Q' which belongs
to one of the 2" families D, and such that {(Q") < 6{(Q).



Maximal dyadic functions : Doob’s Inequality

M{MPef > £} g/ |f(x)|dx.
MPaf>)\
As a consequence, LP inequality with constant —£5.
The proof is geometric and is valid for all Radon non negative
measures.



Second step : dyadic inequalities

Let M,, the maximal (dyadic) operator for the measure wdx and
M, for the measure odx, with 0 = wL. They are both bounded
for the corresponding measure.
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Optimality of Buckley’'s Theorem

Luque, Pérez and Rela (to appear) :

Proposition

For fixed p > 1 let ¢ : [1,00) — (0, 00) an increasing function such
that for all w € A, and f positive,

IMF([Lowy < ([wla )l fllze(w)

Then ¢(t) > c(p)tﬁ for some constant c(p) > 0.

Proof for p = 2 : we prove that ¢(t) > t/4 for t > t;. For
1< qg<?2letf>0with norm 1in L9 et telle que

[Mfllq = 2[[M]lq.

We set

o0

1M
27 ‘MHk

k=0




o0 k
RiFy =S LM (f)

2 o
f<R(f) |IR(F)lla <2|flls,  M(RF) < 2RF.
Take as a weight w = (Rf)972.

IMFl, = (/((Mf)(Rf)g—l))q (Rf)q(l—g)dx>¢1,
IMf L, < (/(Mf)z(Rf)q_zdx);</(Rf)qu>1g

o) [ 2 (Reys-2an) ([ (o).

So ¢([wla,) = 4lIMl[g.
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Let us prove that [w]a, < 2|[M||4. Recall that w = (Rf)972. We
have, by Jensen inequality

Wl = sup (|lo| /Q (Rf)de) (|1©| /Q (Rf)de)
sup (’a/(?(Rf)1dx)2_q(|(13‘/Q(Rf)dx)2_q

[RFI5. 7 < [Rfla, < 2||M|q.
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Inverse Holder Inequalities

Lerner, Ambrosi et Pérez (2008)

Proposition

Soit w be such that MPw < [w]a,w. If r = 1 +1/(29 [w],,),
then for every dyadic cube

1 l/fd 2
= r < .
<|O|/QW) X_IQI/QW



Proof for d = 1. Let
{MPw > X} =Ul;  (disjoint union).

Assume that A > Lo [, wdx. Since w( f, w < 2\|[j|, we have

wdx = > w(l) < 2AMPw > ).
/M,Dm S w(l) < 2 MPw > A



/(MPW)5de _ 5/ A~ (/ de> dA
1 0 MPw>)\

)/ o0

I +/
w(h)/|1

/ /\’\
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)d)\+26/ M |MPw > \dA

“‘5/ wdx)2+! 4 5+1/(M, w)°Ldx.
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We now use the assumption MPw < [w]a, w
1

26[A1]
MD < (5+1 D é .
/I( / WdX 4‘/’5 / d 6 1 I(MI W) wdx

For 0 small enough the second term of the right hand side can be
substracted to the left hand side.



A flavor of the rest of the proof

The aim of Lerner : have new tools to analyze locally a function
and replace

1 1
fo=— | fd f,Q) = — f — foldx.
Q |Q|/Q X a(a ) |Q|/Q’ Q| X

Let Pg the probability % on Q.
Use of a Median m(f, Q) of f on Q and the (mean) Oscillation

wi(f, Q) = inf{w > 0; there exists ¢ such that Po(|f—c| > w) < A}.



wr(f, Q) = inf{w > 0; there exists ¢ such thatPg(|f—c| > w) < A}.

)-

. Prove that Pg(|f — c| > w) < A.

Claim. wy(f, Q) < A\~1a(Q
2(9)

Take ¢ = fg and w =
Implies that /\/l;%f < \TIMFS

We have more :
Proposition.For T a C-Z operator, we have I\/If(Tf) < C\Mf.



Proposition.For T a C-Z operator, we have Mf(Tf) < G\Mf.
Already done : there exists a constant ¢ such that
|Tf — T(fxg) — ¢l < Cinfq Mf.

Take this constant ¢ and w = K infg Mf.
Since | Tf —c| < |T(fxg) + Cinfq Mf,

PQ<|Tf—C|ZKi2)fo> < PQ< (fxg) = (K- C)lnfo)

Po<(fo U C/\f \d)

But T is weak-type(1, 1), so that for some constant C’

Po (T(fxg) = s) ‘Q’/\f x)|dx.

Take K > C + C'2"\ 1.
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Bochner-Riesz means.



Bochner-Riesz means via the restriction Theorem.
Bochner-Riesz means are given by

2\9 _
sef = [ (1-1§5) Foemoae

Convergence in LP reduces to LP boundedness of the single
operator 57, that is, the fact that

ms(€) = (1 - |¢%)%
is a Fourier multiplier of LP. The convolution operator T is given by
Ks(x) = clx| @127 1, (2n[x]).

Moreover

cos(x — 5 —

ﬂ) B
L(x)=c X2 424 0(x|73?).




_ n+1

So K behaves like |x|~"z ~¢ at infinity.
Necessary condition. For T to be bounded in LP it is necessary

that
n n+1

D 2

+9,

which we can rewrite as

‘1 1‘ 20+1
<

5_5 2n

Theorem. Assume that the restriction theorem holds for (p, 2).
Then the Bochner-Riesz conjecture holds for this value of p.

Sufficient to prove that
1(Ks) * fllp < C2"G 27072 ,.

Here 1y (x) = 1b(x/2¥) is supported in {2Kk=1 < |x| < 2k+11,



First reductions.

Let T, f = (kag) xf.
Claim. It is sufficient to prove that

11 _1
— (1K) * Fllipgaoaiy < C2PGTD 72K £ g 50y

for f supported in B(0,2¥)).

1

1< C2™G2)|| (e Ks) * o

. —_— k5
Claim. [ K;5(¢)| < Cm'

Claim. We conclude easily from this : no problem for |{]| < 1/2 or
|€] > 3/2. In between, we have

3/2 ~
/ (1+2kr)~N / f(r&)Pdo(€) < C274|IFZ,
1/2 snt

which we wanted.



. o~ —ké/
Claim. |y * ms(&)] < CW'

We will prove this estimate when my is replaced by ngs, where
0 < ng < 2759 on the annulus of thickness 2¥*1 inside the unit
sphere. Then

[k * ns(€))] §2‘k5/1 2 (|k| * do,)dr.
_r<2—k

But, for Tomas-Stein Theorem, seen that

[Ui| * do < 24(1 + (244 (€, 5))".

To conclude it is sufficient to look at 1y * v5(&) where vs is
supported in the ball of radius 1 — 2%, The key point here is to use
the fact that v vanishes in a neighborhood of the origin and can be
written as |x|?V7(x), so that

Di(€) = 27"k AN g (¢), or(€) < C24n(1 4 2K|g )N,

We then take into account that when taking ANV5, one has a rapid
decay far from the unit sphere.



Relation with Prediction Theory

Let Y, a sequence of Gaussian centred random variables with
variance 1 such that E(Y;Yy) = r(j — k).
r is positive definite : for every finite sequence (¢;),

3 — k)& > 0.

ik

Bochner's Theorem (or Herglotz) : there exists a probability on
[0, 27] such that

27
r(n) = /0 e~ dyi(t).

27 L
B;Yi) = [ e Tekdu(t)
0

Can one project on the past in the space of Gaussian r. v.?
Equivalent to projection in L2(d ). Helson-Szegd 1965 du = wdx
and w = exp(u + Hv), with v and v bounded, |u| < 7/2.



The Strichartz estimates



The Schrodinger equation

iOpu — Agu =
U|t:0 — f.
For h=0,
u(t, X) — / e2ﬂi(x'£+2ﬂt|£|2)/f\(§)d§.
Rd

We recognize a variant of the extension operator £ for the
paraboloid 1, of the equation 7 = 27|£|?. We extend here the

measure given on the paraboloid by f(§)d¢.
The paraboloid has non vanishing curvature.lf analogous to the
sphere,

ull ararry < ClIfl 2oy
with g =2+ 3.



The proof.

For homogeneity reasons we can assume that fis supported in the
ball B(0,1), and we consider the measure du(x) = ¢(x)dx on the
paraboloid, with ¢ smooth cut-off function.

Claim. |fi(t, x)| < |t|79/2.

The key point : [i(t, x) = (ﬁ)d/z e~ ixP/@mt) .

For g in S(RY) let U(t)g = fi(t,-) *x g. Then
1U(2)glloo < 1t lg]l1, 1U(t)gll2 < llgll2-

> 4=

[U(t)gller < [t] 2% #"|igllp-
Next we use the trick that it is sufficient to prove an (, LP’, LP)
inequality for the convolution by 7i in RI*1 (see S. Ray lectures).



1 * f(t,-):/RU(t—s)f(s)ds,

where we use the notation f(t) for the function x — (¢, x).

AE) = 17 sy < [ V(= sy
_d L1y
< € [ e sl 55 o
R
Use HLS to conclude.
Remark. This proof extends to all hypersurfaces with non

vanishing Gaussian curvature. One always has the required estimate
by the stationary phase method.



The whole equation.

Let us write e™® for the operator given on RY by

—_— . o~
eitDf — o~ 4im*tlEPF

Then the solution is given by
- t .
u(t) = e TAf 4 / e (=98 p(s5)ds.
0

Theorem. Assume that % + % = %. Then

lull gy < CliFlliz + 1Al o oy
(



Proofforp:q:2+§.

lullp < Clill2 + [1Allp-

We have the same inequalities for the propagator e*2 than for
U(t) and it is sufficient to assume that f is 0. Then the proof is the
same.

The general case is also given by the HLS theorem.



Non linear equation.

i0; — Dy = Au*u
U|t:0 = f.

Assuming that X is a real number, quantities ||u(t)||2 and
4

Vu(t)]3 — )\Hu(t)Hiz are invariant.
d

When A > 0 it is called focusing. When A < 0, it is defocusing.

. t .
u(t) = e tAF 4 ) / e i(t=98 4 (5)[ 4 u(s)ds.
0

Theorem. Let ||f| 2 = L. If A is sufficiently small, the NLS
equation has a global solution such that HUH2+% is bounded. It is
the unique solution having these properties and depends
continuously of the data.



2

Fixed point in the metric space X = {v € L2+£ :
d

[Vl s < C} for
the mapping that maps v to

4

t
(Tu)(t) = e ™BF 4 A / e (=98 4 (5)[ ¥ u(s)ds.
0
For free : Tu is in X for \ small. Indeed,
; :
Iviwlly < VI, o Il s
Have to consider the L27d norm of Tu — Tv or, more precisely, of

Al Jo €2 u(s)[*/9u(s) — v(s)|ds.

One can also prove finite existence in time for all \.



Scattering.

i0; — Axu = Au[¥9u

Ult:() == f

Define fy = f + A [ ™2 |u(t)] 4 u(t)dt
Backward effect of the non linearity.

Theorem. '
lu(t) — e *AF 12 — .

Proof. Have to look at the function of x given by
e A [ ei5A|u(s)|3u(s)ds. Use the adjoint of the propagator

2+5
seen as an operator from L2 to L; 7.



