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Notations

Symbols
N denotes the set of natural numbers
∇

(
∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xn

)
Ω denotes an open subset of Rn, not necessarily bounded
∂Ω denotes the boundary of Ω

∂ α ∂ α1
∂x1

α1 . . .
∂ αn

∂xnαn and α = (α1, . . . ,αn)

R denotes the real number line
Rn denotes the n-dimensional Euclidean space
∆ ∑

n
i=1

∂ 2

∂x2
i

At denotes the transpose of any matrix A
A−1 denotes the inverse of any matrix A
ei := (0,0, . . . ,1,0, . . . ,0) with 1 in the i-th place denotes the standard basis vectors

of Rn

Function Spaces
C(X) is the class of all continuous functions on X
Ck(X) is the class of Ck functions which admit a continuous extension to the

boundary of X
Ck(X) is the class of all k-times (k≥ 1) continuously differentiable functions on X
C∞(X) is the class of all infinitely differentiable functions on X
C j,k(X×Y ) is the class of all j-times ( j ≥ 0) continuously differentiable functions

on X and k-times (k ≥ 0) continuously differentiable functions on Y
C∞

c (X) is the class of all infinitely differentiable functions on X with compact sup-
port

General Conventions
∇x,∆x or D2

x When a PDE involves both the space variable x and time variable t,
the quantities like ∇, ∆, D2, etc. are always taken with respect to the space
variable x only. This is a standard convention. Sometimes the suffix, like ∇x
or ∆x, is used to indicate that the operation is taken with respect to x.

ωn denotes the surface area of a n-dimensional sphere of radius 1.
Br(x) denotes the open disk with centre at x and radius r

vii
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Sr(x) denotes the circle or sphere with centre at x and radius r
BVP Boundary value problem
IVP Initial value problem



Chapter 1
Introduction

A partial differential equation (PDE) is an equation relating an unknown function
of two or more variables and some or all of its partial derivatives to some known
quantities/functions. The partial differential equation is a mathematical tool to ex-
press the phenomenons of nature. The process of understanding natural system can
be divided in to three stages:

(i) Modelling the problem: deriving the mathematical equation describing the nat-
ural system. The derivation process could be facilitated by physical laws such
as Newton’s law, momentum, conservation laws, balancing forces etc.

(ii) Solving the equation: What constitutes as a solution to a equation?
(iii) Studying the properties of a solution: Most often the solution(s) of a differ-

ential equation may not have a nice formula or representation. How much
information about the solution can one extract without any representation of a
solution?

If I is an open interval of R then recall that the derivative of a function u : I→R,
at x ∈Ω , is defined as

u′(x) := lim
h→0

u(x+h)−u(x)
h

,

provided the limit exists. Now, let Ω ⊆ Rn be an open and connected (domain)
subset, a convenient generalization of open interval I in higher dimension. The
directional derivative of u : Ω → R, at x ∈Ω and in a prescribed direction ξ ∈ Rn,
is defined as

∂ξ u(x) := lim
h→0

u(x+hξ )−u(x)
h

,

provided the limit exists. Let ei := (0,0, . . . ,1,0, . . . ,0), where 1 is in the i-th place,
denote the standard basis vectors of Rn. The partial derivative of u at x, in the i-th
direction, is the directional derivative of u, at x ∈ Ω and along the direction ei, and
is denoted as

uxi(x) =
∂u
∂xi

(x) := lim
h→0

u(x+hei)−u(x)
h

1



2 1 Introduction

and ∇u(x) := (ux1(x),ux2(x), . . . ,uxn(x)) is the gradient vector. The directional
derivative along any (unit) vector ξ ∈ Rn and the partial derivatives are related via
the identity ∂ξ u(x) =∇u(x) ·ξ . The divergence of a vector function u= (u1, . . . ,un),
denoted as div(u), is defined as div(u) := ∇ ·u. The curl of a 3-dimensional vec-
tor function u = (u1,u2,u3), denoted as curl(u), is defined as curl(u) := ∇×u. The
curl of a n-dimensional vector function u= (u1,u2, . . . ,un) is a n×n matrix function
where each element is given as (curl(u))i j =

∂ui
∂x j
− ∂u j

∂xi
.

1.1 Multi-Index Notations

The multi-index notation is very convenient to denote polynomials in higher dimen-
sions. This is also convenient to denote higher order partial derivatives in higher
dimensions.

A multi-index α = (α1, . . . ,αn) is a n-tuple where αi ∈N∪{0}, for each 1≤ i≤
n. Let |α| := α1 + . . .+αn. If α and β are two multi-indices, then α ≤ β means
αi ≤ βi, for all 1≤ i≤ n, and α±β = (α1±β1, . . . ,αn±βn). Also, α! = α1! . . .αn!
and, for any x ∈Rn, xα = xα1

1 . . .xαn
n . With these notations, a k-degree polynomial in

n-variables can be concisely written as ∑|α|≤k aα xα . The partial differential operator
of order α is denoted as

∂
α =

∂ α1

∂x1α1
. . .

∂ αn

∂xnαn
=

∂ |α|

∂x1α1 . . .∂xnαn
.

One adopts the convention that the index α j corresponds to the variable x j. Hence,
the order in which differentiation is performed is irrelevant as long as index j are
matched. This is not a restrictive convention because the independence of order of
differentiation is valid for smooth1 functions. For instance, if α = (1,1,2) then one
adopts the convention that

∂ 4

∂x1∂x2∂x32 =
∂ 4

∂x2∂x1∂x32 .

If |α| = 0, then ∂ α f = f . For each k ∈ N, Dku(x) := {∂ α u(x) | |α| = k}. The case
k = 1 is the gradient vector,

∇u(x) := D1u(x) =
(

∂
(1,0,...,0)u(x),∂ (0,1,0,...,0)u(x), . . . ,∂ (0,0,...,0,1)u(x)

)
=

(
∂u(x)
∂x1

,
∂u(x)
∂x2

, . . . ,
∂u(x)
∂xn

)
.

The case k = 2 is the Hessian matrix
1 smooth, usually, refers to as much differentiability as required.
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D2u(x) =



∂ 2u(x)
∂x2

1
. . . ∂ 2u(x)

∂x1∂xn

∂ 2u(x)
∂x2∂x1

. . . ∂ 2u(x)
∂x2∂xn

...
. . .

...
∂ 2u(x)
∂xn∂x1

. . . ∂ 2u(x)
∂x2

n


n×n

.

Observe that the Hessian matrix is symmetric for continuously differentiable func-
tions since the order in which partial derivatives are taken has no significance. The
Laplace operator, denoted as ∆, is defined as the trace of the Hessian operator, i.e.,
∆ := ∑

n
i=1

∂ 2

∂x2
i
. Note that ∆ = ∇ ·∇.

Further, for a k-times differentiable function u, the nk-tensor Dku(x) := {∂ α u(x) |
|α|= k} may be viewed as a map from Rn to Rnk

. The magnitude of Dku(x) is

|Dku(x)| :=

(
∑
|α|=k
|Dα u(x)|2

) 1
2

.

In particular, |∇u(x)|= (∑n
i=1 u2

xi
(x))

1
2 or |∇u(x)|2 = ∇u(x) ·∇u(x) and

|D2u(x)|= (∑n
i, j=1 u2

xix j
(x))

1
2 .

Example 1.1. Let u(x,y) : R2→ R be defined as u(x,y) = ax2 +by2. Then

∇u = (ux,uy) = (2ax,2by)

and

D2u =

(
uxx uyx
uxy uyy

)
=

(
2a 0
0 2b

)
.

Observe that ∇u : R2→ R2 and D2u : R2→ R4 = R22
.

1.2 Definition and Classification of PDE

Definition 1.1. Let Ω be an open and connected subset of Rn. A k-th order partial
differential equation of an unknown function u : Ω → R is of the form

F
(

Dku(x),Dk−1u(x), . . .Du(x),u(x),x
)
= 0, (1.1)

for each x ∈ Ω , where F : Rnk ×Rnk−1 × . . .×Rn×R×Ω → R is a given map
such that F depends, at least, on one k-th partial derivative u and is independent of
(k+ j)-th partial derivatives of u for all j ∈ N.

The case n = 1 corresponds to a k-th order ordinary differential equation (ODE)
F(u(k)(x), . . .u(x),x) = 0. For n > 1, the case k = 1 corresponds to a first order



4 1 Introduction

PDE F(Du(x),u(x),x) = 0 and the case k = 2 corresponds to a second order PDE
F(D2u(x),Du(x),u(x),x) = 0. For instance, when n = 2 and k = 1, the PDE is first
order with two unknown variable (x,y), represented as F(ux,uy,u,x,y) = 0 with F
depending, at least, on one of ux and uy. Similarly, when n = 3 and k = 1, the PDE
is a first order in three variables, represented as F(ux,uy,uz,u,x,y,z) = 0 with F
depending, at least, on one of ux,uy and uz. We warn here about the abuse in the
usage of x: in the n-variable case, x ∈ Rn is a n-tuple vector while in the two and
three dimension case, x is the first component of the vector. The usage should be
clear from the context.

The level of difficulty in solving a PDE may depend on its order k and linearity
of F . Let us begin by classifying PDEs in a scale of linearity.

Definition 1.2. (i) A k-th order PDE is linear if F in (1.1) has the form

Fu := Lu− f (x)

where Lu(x) := ∑|α|≤k aα(x)∂ α u(x) for given functions f and aα ’s. It is called
linear because L is linear in u for all derivatives , i.e., L(λu1 + µu2) =
λL(u1) + µL(u2) for λ ,µ ∈ R. In addition, if f ≡ 0 then the PDE is linear
and homogeneous.

(ii) A k-th order PDE is semilinear if F is linear only in the highest (k-th) order,
i.e., F has the form

∑
|α|=k

aα(x)∂ α u(x)+ f (Dk−1u(x), . . . ,Du(x),u(x),x) = 0.

(iii) A k-th order PDE is quasilinear if F has the form

∑
|α|=k

aα(Dk−1u(x), . . . ,u(x),x)∂ α u+ f (Dk−1u(x), . . . ,u(x),x) = 0,

i.e., the coefficient of its highest (k-th) order derivative depends on u and its
derivative only upto the previous (k−1)-th orders.

(iv) A k-th order PDE is fully nonlinear if it depends nonlinearly on the highest
(k-th) order derivatives.

Observe that the semilinear case excludes the possibility that f is linear in u
and its derivatives because otherwise the PDE can be written in the linear form.
Similarly, the quasilinear case excludes the possibility of either aα (with |α|= k) or
f being linear.

Example 1.2. (i) xuy− yux = u is linear and homogeneous.
(ii) xux + yuy = x2 + y2 is linear.

(iii) utt − c2uxx = f (x, t) is linear.
(iv) y2uxx + xuyy = 0 is linear and homogeneous.
(v) ux +uy−u2 = 0 is semilinear.

(vi) ut +uux +uxxx = 0 is semilinear.
(vii) u2

tt +uxxxx = 0 is semilinear.
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(viii) ux +uuy−u2 = 0 is quasilinear.
(ix) uux +uy = 2 is quasilinear.
(x) uxuy−u = 0 is nonlinear.

(xi) u2
x +u2

y = 1 is nonlinear.

Example 1.3 (Some important linear PDE). For x ∈ Rn and t ∈ (0,∞):

(i) (Transport Equation) ut(x, t)+b ·∇xu(x, t) = 0, for a given b ∈ Rn. The trans-
port equation may be thought of as describing the transport of a non-diffusing
and non-decaying pollutant along a flow channel with speed b. The unknown
u is the concentration of the pollutant.

(ii) (Laplace Equation) ∆u(x) = 0. The Laplace operator ∆ := ∑
n
i=1 ∂ 2

xi
is a second

order partial differential operator. Harmonic functions are solutions to the PDE
∆u = 0. The Laplace equation describes the steady state system of both heat
and wave equation.

(iii) (Poisson Equation) ∆u(x) = f (x), the inhomogeneous version of Laplace equa-
tion, where f usually represents a source. The Poisson equation appears in the
study of Newtonian potential and electrostatics. It also finds its application in
the study of geometry and topology of Riemannian manifolds.

(iv) (Helmholtz Equation) ∆u(x)+ k2u(x) = 0, for a given constant k.
(v) (Heat Equation) The heat operator ∂t−c∆x is a second order operator in Rn+1.

It describes transfer and diffusion phenomena. Fourier studied this operator in
the context of heat transfer. ut(x, t)− c∆xu(x, t) = 0, for non-zero c ∈ R, de-
scribes the conduction of heat in a homogeneous and isotropic medium where
c captures the conductivity of the material. u(x, t) represents the temperature at
x and time t.

(vi) (Kolmogorov’s Equation) ut(x, t)−A ·D2
xu(x, t)+ b ·∇xu(x, t) = 0, for given

n×n matrix A = (ai j) and b∈Rn. The first product is the matrix scalar product
and the second is the vector scalar product.

(vii) (Wave Equation) The wave operator ∂ 2
t −∆x is a second order operator in Rn+1.

It describes oscillatory phenomena and wave propogation. Note that the oper-
ator ∆x involves only the space variable x. utt(x, t)−c2∆xu(x, t) = 0, for a non-
zero c ∈ R, describes the propogation of transversal waves (or vibration) of
elastic medium such as strings (one dimension), membrane (two dimension).
In three dimensions it describes the propogation of electromagnetic waves in
vacuum or sound waves. c represents the propogation speed and u represents
the displacement or wave amplitude.

(viii) (General Wave Equation) utt(x, t)−A ·D2
xu(x, t)+ b ·∇xu(x, t) = 0, for given

n×n matrix A = (ai j) and b∈Rn. The first product is the matrix scalar product
and the second is the vector scalar product.

(ix) (Vibrating Plate) utt(x, t)−∆2u(x, t) = 0, for x∈R2, describes the vibrations of
a homogeneous isotropic two dimensional plate. The biharmonic operator, ∆2,
is the square of the Laplacian operator which is a fourth order operator given
as

∆
2 :=

∂ 4

∂x4
1
+2

∂ 4

∂x2
1∂x2

2
+

∂ 4

∂x4
2
.
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(x) (Schrödinger Equation) The Schrödinger operator −ı∂t−∆x was introduced to
describe the behaviour of the electron and elementary particles. It almost looks
like the heat operator except the −ı and that makes all the difference.

(xi) (Airy’s Equation) ut(x, t)+uxxx(x, t) = 0.
(xii) (Beam Equation) ut(x, t)+uxxxx(x, t) = 0.

(xiii) The Cauchy-Riemann (CR) operator is the first order differential operator ∂x +
ı∂y. If f : R2 → C is a holomorphic function then the CR equation is given
by fx + ı fy = 0. If z = x+ ıy then x = z+z̄

2 and y = z−z̄
2ı . By chain rule, 2∂z̄ =

(∂x + ı∂y) is the CR operator. In other words, any solution to the CR equation
is independent of the z̄ variable. The above discussion also suggests that 2∂z =
∂x− ı∂y, thus motivating the notion of “anti” CR operator ∂x− ı∂y. Also, we
obtain the relation that 4∂ 2

zz̄ = ∆ suggesting a possible connection between
Laplacian and CR equation.

Example 1.4 (Some nonlinear PDE).

(i) (Poisson Equation) For any given f nonlinear in u, ∆u(x) = f (u).
(ii) (Inviscid Burgers’ Equation) ut(x, t)+ u(x, t)ux(x, t) = 0, for x ∈ R, describes

the one dimensional flux of a non-viscous fluid. It also models traffic dynamics.
(iii) (Eikonal Equation) |∇u(x)|= f (x) is a first order nonlinear equation. The level

surfaces {x | u(x) = t} describe the position of a light wave front at time t.
This equation also arises in optimal control and computer vision etc. In fact,
the name “eikon” is the transliteration of the Greek word for image.

(iv) (Hamilton-Jacobi Equation) ut(x, t)+H(∇xu(x, t),x) = 0.
(v) (Minimal Surface Equation) The equation

∇ ·

(
∇u√

1+ |∇u|2

)
= f (x)

arises in geometry. The graph of the solution u defined on the domain Ω (say
convex domain, for simplicity) has the given mean curvature f : Ω →R. When
f ≡ 0 the equation is called minimal surface equation.

(vi) (Monge-Ampére Equation) det(D2u(x)) = f (x,u,∇u) is a fully nonlinear PDE
encountered in optimal transport problems. The gradient of the solution, ∇u,
maps optimal transportation path.

(vii) (Schrödinger Equation) ıut(x, t)+∆xu(x, t)−V (u)u(x, t) = 0. The wavefunc-
tion u : Rn× [t0,∞)→C is associated with the evolution of a particle driven by
a potential V (u).

(viii) (Korteweg de Vries (KdV) Equation)
ut(x, t)+ux(x, t)+u(x, t)ux(x, t)+uxxx(x, t) = 0.

Exercise 1.1. Classify the PDE’s in terms of their linearity:

(i) (y−u)ux + xuy = xy+u2.
(ii) uu2

x− xuy =
2
x u3.

(iii) x2ux +(y− x)uy = ysinu.
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(iv) (siny)ux− exuy = eyu.
(v) ux + sin(uy) = u.

(vi) uux + x2uyyy + sinx = 0.
(vii) ux + ex2

uy = 0.
(viii) utt +(siny)uyy− et cosy = 0.

(ix) x2uxx + exu = xuxyy.
(x) eyuxxx + exu =−siny+10xuy.

(xi) y2uxx + exuux = 2xuy +u.
(xii) uxuxxy + exuuy = 5x2ux.

(xiii) ut = k2(uxx +uyy)+ f (x,y, t).
(xiv) x2uxxy + y2uyy− log(1+ y2)u = 0.
(xv) ux +u3 = 1.

(xvi) uxxyy + exux = y.
(xvii) uuxx +uyy−u = 0.

(xviii) uxx +ut = 3u.
(xix) utt −uxx +u3 = 0.
(xx) utt +uxxxx = 0.

(xxi) (cosxy2)ux− y2uy = tan(x2 + y2).

1.3 Solution of PDE

Definition 1.3. A function u : Ω → R is said to be a (classical) solution to the PDE
(1.1), if ∂ α u exists for all α explicitly present in (1.1) and u satisfies the equation
(1.1) pointwise for all x ∈Ω .

Example 1.5. Consider the first order equation ux(x,y) = 0 in R2. Freezing the y-
variable, the PDE can be viewed as an ODE in x-variable. On integrating both sides
with respect to x, we get u(x,y) = f (y) for any arbitrary function f : R→R. There-
fore, for every choice of f : R→ R, there is a solution u of the PDE. Note that
the solution u is not necessarily in C1(R2), in contrast to the situation in ODE. By
choosing a discontinuous function f , one obtains a solution which is discontinuous
in the y-direction. Further, in contrast to the ODE situation where the parameter was
a constant depending on the order of the equation here the parameter is an arbitrary
function.

Example 1.6. Consider the second order equation uxx(x,y) = 0 in R2. Freezing the y-
variable, the PDE can be viewed as a second order ODE in x-variable. On integrating
both sides with respect to x, we get ux(x,y) = f (y) for any arbitrary function f :R→
R. On integrating again both sides with respect to x, we get u(x,y) = x f (y)+ g(y)
for any arbitrary function g : R→ R. Therefore, for every choice of f ,g : R→ R,
there is a solution u of the PDE.
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Example 1.7. Consider the second order PDE uxy(x,y) = 0 in R2. In contrast to the
previous two examples, the PDE involves derivatives in both variables. Integrate
both sides with respect to y to obtain ux(x,y) = F(x), for any arbitrary integrable
function F : R→ R. Now, integrating both sides with respect to x, we get u(x,y) =
f (x)+ g(y) for an arbitrary g : R→ R and a f ∈ C1(R) where f ′ = F . But the u
obtained above is not a solution to uyx(x,y) = 0 if g is not differentiable. If mixed
derivatives have to be same then assume that f ,g ∈C1(R) for the above solution to
exist.

Example 1.8. Consider the first order equation ut(x, t) = u(x, t) in R× (0,∞) such
that u(x, t) 6= 0, for all (x, t). Freezing the x-variable, the PDE can be viewed as an
ODE in t-variable. Integrate both sides with respect to t to obtain u(x, t)= f (x)et , for
some arbitrary (not necessarily continuous) positive-valued function f : R→ (0,∞).

Example 1.9. Consider the second order equation utt(x, t) = −u(x, t) in R× (0,∞).
Freezing the x-variable, the PDE can be viewed as a second order ODE with constant
coefficients in t-variable. Thus, u(x, t) = f (x)cos t + g(x)sin t, for some arbitrary
(not necessarily continuous) function f ,g : R→ R.

Example 1.10. Consider the first order equation ux(x,y) = uy(x,y) in R2. On first
glance, the PDE does not seem simple to solve. But, by change of coordinates, the
PDE can be rewritten in a simpler form. Choose the coordinates w = x + y and
z = x− y and, by chain rule, ux = uw +uz and uy = uw−uz. In the new coordinates,
the PDE becomes uz(w,z) = 0 which is in the form considered in Example 1.5.
Therefore, its solution is u(w,z) = f (w) for any arbitrary f : R→ R and, hence,
u(x,y) = f (x+ y). However, now f can no longer be arbitrary.

Exercise 1.2. Rewrite the following PDE in the coordinates w and z.

(i) ux +uy = 1 for w = x+ y and z = x− y.
(ii) aut +bux = u for w = ax−bt and z = t/a where a,b 6= 0.

(iii) aux +buy = 0 for w = ax+by and z = bx−ay, where a2 +b2 > 0.
(iv) utt = c2uxx for w = x+ ct and z = x− ct.
(v) uxx +2uxy +uyy = 0 for w = x and z = x− y.

(vi) uxx−2uxy +5uyy = 0 for w = x+ y and z = 2x.
(vii) uxx +4uxy +4uyy = 0 for w = y−2x and z = x. (should get uzz = 0).

(viii) uxx +2uxy−3uyy = 0 for w = y−3x and z = x+ y.

The family of solutions, obtained in the above examples, may not be the only
family that solves the given PDE. Following example illustrates a situation where
three different family of solutions exist (more may exist too) for the same PDE.

Example 1.11. Consider the second order PDE ut(x, t) = uxx(x, t).

(i) Note that u(x, t) = c is a solution of the PDE, for any constant c ∈ R. This is a
family of solutions indexed by c ∈ R.

(ii) The function u : R2→R defined as u(x, t) = x2

2 + t +c, for any constant c ∈R,
is also a family of solutions of the PDE. Because ut = 1, ux = x and uxx = 1.
This family is not covered in the first case.
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(iii) The function u(x, t) = ec(x+ct) is also a family of solutions to the PDE, for each
c ∈ R. Because ut = c2u, ux = cu and uxx = c2u. This family is not covered in
the previous two cases.

Exercise 1.3. Determine a and b so that u(x,y) = eax+by is a solution to

uxxxx +uyyyy +2uxxyy = 0.

Exercise 1.4. Determine the relation between a and b for u(x,y) = f (ax+by) to be
a solution to 3ux−7uy = 0, for any differentiable function f such that f ′(z) 6= 0 for
all z ∈ R.

Recall that the family of solutions of an ODE is indexed by constants. In contrast
to ODE, observe that the family of solutions of a PDE is indexed by either functions
or constants. A family of surfaces indexed by constants or an arbitrary function,
upon differentiation, may lead to a PDE that has the surfaces as its solution.

Example 1.12. Consider the two parameter family of surfaces

u(x,y;a,b) = (x−a)2 +(y−b)2

for parameters (a,b)∈R2. Differentiating with respect to each variable, one obtains
ux = 2(x− a) and uy = 2(y− b). Eliminating a and b, one notes that the family of
surfaces is a solution to the PDE

u2
x +u2

y−4u = 0.

Example 1.13. Let u(x,y) = xy+ f (x2 + y2) be a surface for an arbitrary differen-
tiable function f . Differentiating the given equation with respect to x and y, one
obtains

ux = y+2x f ′(x2 + y2), uy = x+2y f ′(x2 + y2),

respectively. Eliminate f ′ after multiplying y and x, respectively, to obtain the PDE

yux− xuy = y2− x2.

Example 1.14. Let u(x,y) = f (x/y) be a surface given by an arbitrary differentiable
function f . Differentiating wth respect to x and y, one obtains

ux =
1
y

f ′, uy =
−x
y2 f ′,

respectively. Eliminate f ′ after multiplying x and y, respectively, to obtain the PDE

xux + yuy = 0.

Example 1.15. Let u(x,y) = (x+ a)(y+ b) be a two parameter family of surfaces.
Differentiating the given equation with respect to x and y, one obtains
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ux = y+b, uy = x+a,

respectively. Eliminate a and b to obtain the PDE

uxuy = u.

Example 1.16. Let u(x,y) = ax+ by be a two parameter family of surfaces. Differ-
entiating with respect to x and y, one obtains

ux = a, uy = b

respectively. Eliminate a and b to obtain

xux + yuy = u.

Exercise 1.5. Find the first order PDE, by eliminating the arbitrary function f , sat-
isfied by u(x,y) = ex f (2x− y). (Answer: ux +2uy−u = 0).

Exercise 1.6. Find the first order PDE, by eliminating the arbitrary function f , sat-
isfied by u(x,y) = e−4x f (2x−3y). (Answer: 3ux +2uy +12u = 0).

1.4 Cauchy Problem

In the theory of ordinary differential equations (ODEs), one may have come across
the initial value problems, i.e.

F(y(k), . . . ,y′,y,x) = 0 in I
y(x0) = y0 for some x0 ∈ I

y(i)(x0) = y(i)0 ∀i = {1,2, . . . ,k−1} for some x0 ∈ I
(1.2)

where I is a subinterval of R, and x0 ∈ Ī. Our experience with ODE hints that the
prescription of initial values at x0 are useful in computing the arbitrary constants
appearing in the general solution of the ODE. Thus, to solve for the unknown in the
one-dimensional interval I an ‘initial’ value was prescribed on a set {x0} which is
one dimension less than I. Motivated from this, one expects that for a PDE given on
a n-dimensional domain, the unknown should be prescribed on a n−1-dimensional
subset (or surface) called the hypersurface.

Definition 1.4. A set Γ ⊂ Rn is said to be Ck-hypersurface if for every p ∈ Γ there
exists a neighbourhood Up of p in Rn and a Ck map φp : Up→ R with ∇φp 6= 0 on
Up such that Γ ∩Up = {x ∈Up | φp(x) = 0}.

The above definiton says that a hypersurface is locally graph of some func-
tion with domain in Rn−1. Under the non-zero gradient condition, the implicit
function theorem states that the zero set, i.e. {φp(x) = 0} of a smooth function
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is, for some j, locally of the form x j = ψ(x̂ j), i.e. locally graph of ψ where
x̂ j := (x1, . . . ,x j−1,x j+1, . . . ,xn) is the (n− 1) tuple. Henceforth, without loss of
generality (by suitably rearranging the coordinate system), assume j = n, i.e. the lo-
cal graph is given as xn = ψ(x′) where x′ = (x1, . . . ,xn−1) the first (n−1) tuple. The
dimension is n−1 because the domain of ψ is a subset of Rn−1. Locally, the func-
tion (x′,xn) 7→ (x′,xn−ψ(x′)) “flattens” the hyperspace to the hyperplane {yn = 0}
where yi = xi for all i 6= n and yn = xn−ψ(x′). Further, a hypersurface is given by
an equation {φ = 0} where φ : Rn → R. If φ ∈ Ck(Rn) then the hypersurface is
Ck-hypersurface.

Example 1.17. Any surface in R3 is a hypersurface in R3. Any curve in R2 is a
hypersurface in R2. For instance, the unit circle φ(x,y) := x2 +y2−1 = 0 is a curve
and not graph of any function. But, locally, it is graph of the functions ψ±(x) =
±
√

1− x2. Consider the coordinate transformation (x,y) 7→ (w,z) where w = x and
z = φ(x,y). Then observe that all horizontal lines {y =±c} in xy-plane gets mapped
to the parabolae with intercepts c2−1 in wz-plane and all circles of radius r in xy-
plane gets mapped to horizontal line {z = r2−1} in the wz-plane. In particular, the
circle of radius of one is mapped to the axis {z = 0}. See Figure 1.1.

x

y

(0,0) w

z

(0,−1)

Fig. 1.1 Flattening a Circle

Any domain Ω ⊂ Rn is Ck if its boundary ∂Ω is a Ck-hypersurface. Let Γ ⊂ Ω

be a smooth hypersurface with a unit normal vector field ν . Recall that the normal
derivative is the directional derivative along the normal vector ν(x) for each x ∈ Γ .
The k-th normal derivative of u at x ∈ Γ is defined by

∂
k
ν u(x) = ∑

|α|=k
ν

α(x)∂ α u(x).

The Cauchy Problem is a generalization of the above question to PDE: given the
knowledge of the unknown u on a smooth hypersurface Γ ⊂ Ω , can one find the
unknown u satisfying the PDE? The prescription of u on Γ is said to be the Cauchy
data. It is desirable to know the minimum required Cauchy data in order to solve
the Cauchy problem. The IVP (1.2) motivates us to define the Cauchy problem as
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(
Dku(x), . . . ,Du(x),u(x),x

)
= 0 in Ω

u(x) = u0(x) on Γ

∂ i
ν u(x) = ui(x) on Γ ∀i = {1,2, . . . ,k−1}

(1.3)

where Ω is an open and connected subset (domain) of Rn and Γ is a hypersurface
contained in Ω . A natural question at this juncture is whether the knowledge of u
and all its normal derivative upto order (k−1) on Γ is sufficient to compute all order
derivatives of u on Γ . Posing the above question is natural because if the Cauchy
problem admits an analytic solution (a natural starting point before 20th century)
then one should be able to compute all the terms of the power series.

1.5 Well-posedness of PDE

It has been illustrated via examples that a PDE has a family of solutions. The choice
of one solution from the family of solutions is made by imposing boundary condi-
tions (boundary value problem) or initial conditions (initial value problem). If too
many initial/boundary conditions are specified, then the PDE may have no solution.
If too few initial/boundary conditions are specified, then the PDE may have many so-
lutions. Even with right amount of initial/boundary conditions, but at wrong places,
the solution may fail to be stable, i.e., may not depend continuously on the initial or
boundary data. It is, usually, desirable to solve a well-posed problem, in the sense
of Hadamard. A PDE, along with the boundary condition or initial condition, is said
to be well-posedness if the PDE

(a) admits a solution (existence);
(b) the solution is unique (uniqueness);
(c) and the solution depends continuously on the data given (stability).

Any PDE not meeting the above criteria is said to be ill-posed. If the PDE (with
boundary/initial conditions) is viewed as a map then the well-posedness of the PDE
is expressed in terms of the surjectivity, injectivity and continuity of the “inverse”
map. The existence and uniqueness condition depends on the notion of solution in
consideration. There are three notions of solution, viz., classical solutions, weak
solutions and strong solutions. This textbook, for the most part, is in the classical
situation. Further, the stability condition means that a small “change” in the data
reflects a small “change” in the solution. The change is measured using a metric or
“distance” in the function space of data and solution, respectively. Though this text
deals with only well-posed problems, there are ill-posed problems which are also of
interest.

The following example illustrates the idea of continuous dependence of solution
on data in the uniform metric on the space of continuous functions.

Example 1.18. The initial value problem (IVP){
utt(x, t) = uxx(x, t) in R× (0,∞)
u(x,0) = ut(x,0) = 0
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has the trivial solution u(x, t) = 0. Consider the IVP with a small change in data,utt(x, t) = uxx(x, t) in R× (0,∞)
u(x,0) = 0

ut(x,0) = ε sin
( x

ε

)
which has the unique2 solution uε(x, t) = ε2 sin(x/ε)sin(t/ε). The change in solu-
tion of the IVP is measured using the uniform metric as

sup
(x,t)
{|uε(x, t)−u(x, t)|}= ε

2 sup
(x,t)
{|sin(x/ε)sin(t/ε)|}= ε

2.

Thus, a small change in data induces a small enough change in solution under the
uniform metric3.

Example 1.19 (Hadamard’s Counterexample). The initial value problem (IVP)
uxx(x, t) =−utt(x, t) in (−π

2 ,
π

2 )× (0,∞)
u(±π/2, t) = 0 {t > 0}

u(x,0) = 0 −π

2 < x < π

2
ut(x,0) = e−

√
n cosnx −π

2 < x < π

2

admits a family of solution

un(x, t) =
1
n

e−
√

n cosnxsinhny for odd integer n.

Observe that ‖un(·,0)‖∞→ 0 as n→ ∞ and, for all t > 0 and p = 2,∞

‖un(·,y)‖p→ ∞, as n→ ∞.

Exercise 1.7. Consider the IVP{
ut(x, t) =−uxx(x, t) in R× (0,∞)
u(x,0) = 1.

(a) Show that u(x, t)≡ 1 solves the IVP.

(b) Show that un(x, t) = 1+ en2t

n sin(nx) solves the IVP{
ut(x, t) =−uxx(x, t) in R× (0,∞)

u(x,0) = 1+ sin(nx)
n .

(c) Find supx{|un(x,0)−1|}.
(d) Find sup(x,t){|un(x, t)−1|}.
(e) Conclude that the IVP is not stable in the chosen metric and, hence, ill-posed.
2 This claim will be proved in later chapters.
3 The space R× (0,∞) is not compact and the metric is not complete. The example is only to
explain the notion of stability at an elementarty level.
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1.6 Equation of Conservation of Mass

We end this chapter with a derivation of the equation of conservation of mass. Let us
consider an ideal compressible fluid (say, gas) occupying a bounded region Ω ⊂Rn

(in practice, n = 3 but the derivation is true for any dimension). Let ρ(x, t) denote
the density of the fluid for x ∈ Ω at time t ∈ I ⊂ R, for some open interval I. For
mathematical rigor, let us assume Ω to be a bounded open subset of Rn and ρ ∈
C1(Ω × I). Cut a region Ωt ⊂ Ω and follow the deformation of Ωt at time t, as t
varies in I. For mathematical rigor, let Ωt have C1 boundaries (cf. Definition B.1).
The motion of Ωt gives rise to a trajectory x(t) for each point x(t) ∈ Ωt . Let the
velocity of deformation be b(x, t). We also assume that the deformation of Ωt is
smooth, i.e., b(x, t) is continuous in a neighbourhood of Ω × I.

Recall that mass is the product of density and volume and, hence, the mass of Ωt
is given as ∫

Ωt

ρ(x, t)dx.

The law of conservation of mass states that during motion the mass is conserved.
Hence, the mass of Ωt is constant for all t. Thus, its derivative with respect to t
should vanish, i.e.,

d
dt

∫
Ωt

ρ(x, t)dx = 0.

But

d
dt

∫
Ωt

ρ(x, t)dx = lim
h→0

1
h

(∫
Ωt+h

ρ(x, t +h)dx−
∫

Ωt

ρ(x, t)dx
)

= lim
h→0

∫
Ωt

ρ(x, t +h)−ρ(x, t)
h

dx

+ lim
h→0

1
h

(∫
Ωt+h

ρ(x, t +h)dx−
∫

Ωt

ρ(x, t +h)dx
)
.

The first limit is

lim
h→0

∫
Ωt

ρ(x, t +h)−ρ(x, t)
h

dx =
∫

Ωt

∂ρ

∂ t
(x, t)dx

and the second integral reduces as,∫
Ωt+h

ρ(x, t +h)dx−
∫

Ωt

ρ(x, t +h)dx =
∫

Ω

ρ(x, t +h)
(
χΩt+h −χΩt

)
=
∫

Ωt+h\Ωt

ρ(x, t +h)dx

−
∫

Ωt\Ωt+h

ρ(x, t +h)dx,

where χE is the characteristic or indicator function
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χE(y) =

{
1 y ∈ E
0 y 6∈ E.

To evaluate the Riemann integral on the RHS, partition the set (Ωt+h \Ωt) ∪
(Ωt \Ωt+h) with cylinders and evaluate the integral by making the cylinders as small
as possible. For each fixed t, choose 0 < s� 1 and a polygon that covers ∂Ωt from
outside such that the area of each face of the polygon is less than s and the faces are
tangent to some point xi ∈ ∂Ωt . Let the polygon have m faces F1,F2, . . . ,Fm that are
tangential at the points {x1,x2, . . .xm} ∈ ∂Ωt . Since Ωt+h is the position of Ωt , after
time h, any point x(t) ∈ Ωt moves to x(t +h) = b(x, t)h. Hence, the cylinders with
base Fi and height b(xi, t)h is expected to cover the region (in the integral) depend-
ing on whether the deformation is inward or outward. Thus, b(xi, t) ·ν(xi) is positive
or negative depending on whether Ωt+h deformes outward or inward, where ν(xi)
is the unit outward normal at xi ∈ ∂Ωt . Thus,∫

Ωt+h\Ωt

ρ(x, t +h)dx

−
∫

Ωt\Ωt+h

ρ(x, t +h)dx = lim
s→0

m

∑
i=1

ρ(xi, t)b(xi, t) ·ν(xi)hs

= h
∫

∂Ωt

ρ(x, t)b(x, t) ·ν(x)dσ

and

1
h

(∫
Ωt+h

ρ(x, t +h)dx−
∫

Ωt

ρ(x, t +h)dx
)

h→0→
∫

∂Ωt

ρ(x, t)b(x, t) ·ν(x)dσ .

But, by Gauss divergence theorem (cf. (B.1)),∫
∂Ωt

ρ(x, t)b(x, t) ·ν(x)dσ =
∫

Ωt

div(ρ(x, t)b(x, t))dx

and, hence,
d
dt

∫
Ωt

ρ(x, t)dx =
∫

Ωt

(
∂ρ

∂ t
+div(ρb)

)
dx.

Invoking the law of conservation of mass, one obtains

∂ρ

∂ t
+div(ρb) = 0 in Ω ×R. (1.4)

(1.4) is called the equation of continuity. Any quantity that is conserved as it moves
in an open set Ω satisfies (1.4), the equation of continuity. To summarise, the law
of conservation of mass states that the rate of change of mass in Ω is equal to the
sum of the rate at which mass flows in and out of Ω and the rate at which mass is
produced and destroyed due to sources/sinks in Ω . Thus,
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ρt(x, t)+divx[q(x, t)] = f (x, t) (1.5)

where f represents the sources in Ω and q(x) = (q1, . . . ,qn) denotes the flux vector
such that q ·ν gives the mass per unit area per unit time crossing the boundary ∂Ω

of Ω with unit exterior normal ν = (ν1, . . . ,νn).

Remark 1.1. By Fick’s law of diffusion, the flux q is related to ρ as

q(x, t) =−c∇xρ(x, t)+ρ(x, t)b(x) (1.6)

where b(x) = (b1, . . . ,bn) represents the velocity of the fluid which is known a pri-
ori. The quantity c > 0 is the diffusion coefficient which may depend on ρ but we
shall assume that it is constant. Substituting (1.6) in (1.5) yields the second order
PDE

ρt(x, t) = c∆xρ(x, t)−divx[ρ(x, t)b(x)]+ f (x, t) (1.7)

which describes the diffusion-dispersion phenomena.

Remark 1.2. If there is no diffusion and no source then c = f = 0 and (1.7) is the
first order PDE

ρt(x, t)+b(x) ·∇xρ(x, t)+ρ(x, t)divxb = 0. (1.8)

Remark 1.3. If the substance decays with no source then f (x, t) =−dρ(x, t), where
d indicates decay, and the phenomenon is reflected by the equation

ρt(x, t)+b(x) ·∇xρ(x, t)+ρ(x, t)divxb+dρ(x, t) = c∆xρ(x, t). (1.9)

The case d > 0 represents decaying and d < 0 represents increasing.



Chapter 2
First Order PDE

In this chapter one studies the Cauchy problem associated with the first order PDE
of the form {

F(∇u(x),u(x),x) = 0 in Ω

u(x) = u0(x) on Γ

We have already introduced the notion of non-characteristic hypersurface in § 1.4
for linear partial differential operator. The discussion in § 1.4 can be generalised to
first order quasilinear operator.

2.1 Characteristic Hypersurfaces for Quasilinear

Definition 2.1. For any given vector field a : Rn→ Rn and f : Rn+1→ R, let Lu :=
a(x,u) ·∇u− f (x,u) be the first order quasilinear partial differential operator defined
in a neighbourhood of x0 ∈Rn and Γ be a smooth hypersurface containing x0. Then
Γ is non-characteristic at x0 if

a(x0,u0(x0)) ·ν(x0) 6= 0

where ν(x0) is the normal to Γ at x0. Otherwise, we say Γ is characteristic at x0
with respect to L. If Γ is (non)characteristic at each of its point then we say Γ is
(non)characteristic.

If γ(r) :=(γ1(r), . . . ,γn(r)), for r∈Rn−1, be the parametrization of the initial data
curve Γ then the non-characteristic condition means that the vectors a(γ(r),u0(r))
and ∇rγ j, for all j, are linearly independent for all r, i.e. the determinant is non-zero
for the matrix ∣∣∣∣∣∣∣∣∣

a(γ(r),u0(r))
∂r1γ

...
∂rn−1γ

∣∣∣∣∣∣∣∣∣
n×n

6= 0 ∀r. (2.1)

17
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The motivation to name the property “non-characteristic” will become obvious
when we encounter the method of characteristics for the first order PDE. Geometri-
cally, a hypersurface is non-characteristic for first order if the coefficient vector field
a is not in its tangential direction, i.e. the coefficient vector a is not a tangent vector
to Γ . The non-characteristic condition depends on the initial hypersurface and the
coefficients of first order derivatives in the linear case. In the quasilinear case, it also
depends on the initial data.

Theorem 2.1. For any f ∈ C(Rn+1) and a such that |a| 6= 0, let u be a smooth
solution to the first order quasilinear Cauchy problem{

a(x,u(x)) ·∇u(x) = f (x,u) in Rn

u(x) = u0(x) on Γ .
(2.2)

If Γ is a non-characteristic hypersurface then it is possible to compute all order
partial derivatives of u on Γ in terms the initial data viz. the hypersurface Γ , the
initial condition {u0} and the coefficients a.

Proof. Let us first consider the case when Γ is the hyperplane {xn = 0}. We seek to
know whether all first order derivatives of u on {xn = 0} can be computed. Without
loss of generality, let us compute at x = 0, i.e u(0) and ∇u(0) := (∇x′u(0),∂xnu(0))
where x = (x′,xn) where x′ is the (n−1)-tuple. If the initial condition u0 is a smooth
function then the x′ derivative of u is computed to be the x′-derivatve of u0, i.e.
∇x′u(0) = ∇x′u0(0). It only remains to compute ∂xnu(0). Using the PDE, whenever
an(0,u0(0)) 6= 0, we have

∂xnu(0) =
−1

an(0,u0(0))
(
a′(0,u0(0)) ·∇x′u(0)− f (0,u0(0))

)
.

Now, for a general hyperspace Γ given by the equation {φ = 0} for a smooth func-
tion φ : Rn → R in a neighbourhood of the origin with ∇φ 6= 0. Recall that ∇φ

is normal to Γ . Without loss of generality, we assume φxn(x0) 6= 0. Consider the
change of coordinate (x′,xn) 7→ y := (x′,φ(x)), then its Jacobian matrix is given by(

I(n−1)×(n−1) 0n−1
∇x′φ φxn

)
n×n

and its determinant at x0 is non-zero because φxn(x0) 6= 0. The change of coordinates
has mapped the hypersurface to the hyperplane {yn = 0}. Rewriting the given PDE
in the new variable y, we get

Lu = a(x,u(x)) ·∇φ∂ynu+ terms not involving ∂ynu

and the initial conditions are given on the hyperplane {yn = 0}. Thus, the necessary
condition is a(x,u(x)) ·∇φ 6= 0 for all x ∈ Γ . Recall that ∇φ is the normal to the
hypersurface Γ .
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Example 2.1. In the two dimension case, the curve Γ = {γ1(r),γ2(r)} ⊂Ω ⊂ R2 is
non-characteristic for the quasilinear Cauchy problem{

a(x,y,u)ux +b(x,y,u)uy = c(x,y,u) in Ω

u = u0 on Γ
(2.3)

if Γ is nowhere tangent to (a(γ1,γ2,u0),b(γ1,γ2,u0)), i.e.

(a(γ1,γ2,u0),b(γ1,γ2,u0)) · (−γ
′
2,γ
′
1) 6= 0 for all r.

Example 2.2. Let Γ be a straight line y = mx + c in R2. The equation of Γ is
φ(x,y) = y−mx− c. Then, ∇φ = (−m,1). If using parametrization then the line
is Γ (r) := (r,mr + c) for r ∈ R. Let us verify the characteristic property of these
straight lines with respect to various first order PDEs.

(a) Consider the equation 2ux(x,y)+3uy(x,y) = 1 in R2. Therefore,

(a(γ1(r),γ2(r)),b(γ1(r),γ2(r))) · (−γ
′
2(r),γ

′
1(r)) = (2,3) · (−m,1) = 3−2m.

Thus, the line is not a non-characteristic for m = 3/2, i.e., all lines with slope
3/2 is not a non-characteristic.

(b) Consider the equation ux(x,y)+uy(x,y) = 1 in R2. Therefore,

(a(γ1(r),γ2(r)),b(γ1(r),γ2(r))) · (−γ
′
2(r),γ

′
1(r)) = (1,1) · (−m,1) = 1−m.

Thus, the line is not a non-characteristic for m = 1, i.e., all lines with slope 1 is
not a non-characteristic.

2.2 Normal Vector of a Surface

Let φ(x,y,z) = 0 be the equation of a surface S in R3. Fix p0 = (x0,y0,z0)∈ S. What
is the normal vector at p0? Fix an arbitrary curve C lying on S and passing through
p0. Let r(t) = (x(t),y(t),z(t)) be the parametric form of C with r(t0) = p0. Since
C lies on S, φ(r(t)) = φ(x(t),y(t),z(t)) = 0, for all t. Differentiating w.r.t t (using
chain rule),

∂φ

∂x
dx(t)

dt
+

∂φ

∂y
dy(t)

dt
+

∂φ

∂ z
dz(t)

dt
= 0

(φx,φy,φz) · (x′(t),y′(t),z′(t)) = 0
∇φ(r(t)) · r′(t) = 0.

In particular, ∇φ(p0) · r′(t0) = 0. Since r′(t0) is the slope of the tangent, at t0, to
the curve C, the vector ∇φ(p0) is perpendicular to the tangent vector at p0. Since
the argument is valid for any curve in S that passes through p0, ∇φ(p0) is normal
vector to the tangent plane at p0. If, in particular, the equation of the surface is given
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as φ(x,y,z) = u(x,y)− z, for some u : R2→ R, then

∇φ(p0) = (φx(p0),φy(p0),φz(p0))

= (ux(x0,y0),uy(x0,y0),−1) = (∇u(x0,y0),−1).

2.3 Method of Characteristics for Quasilinear

Let us consider the quasilinear PDE a(x,u) ·∇u− f (x,u) = 0 in a domain Ω ⊂ Rn.
Solving for the unknown u : Ω → R is equivalent to determining the surface S in
Rn+1 given by

S = {(x,z) ∈Ω ×R | u(x)− z = 0}

The equation of the surface S is given by {φ(x,z) := u(x)− z = 0}. The smoothness
of surface S depends on the smoothness of u. The normal vector to S is given by
∇(x,z)φ = (∇u(x),−1). But using the PDE satisfied by u, we know that

(a(x,u(x)), f (x,u(x))) · (∇u(x),−1) = 0.

Thus, the data vector field V (x,z) := (a(x,z), f (x,z)) ∈Rn+1 is perpendicular to the
normal of S at every point of S. Thus, V must lie on the tangent plane of S, at each
of its point. Hence, we seek a surface S such that the given data field V is tangential
to S, at every point of S. This motivates the definition of integral surface.

Definition 2.2. A smooth curve in Rn is said to be an integral curve w.r.t a given
vector field, if the vector field is tangential to the curve at each of its point. Further,
a smooth surface in Rn is said to be an integral surface w.r.t a given vector field, if
the vector field is tangential to the surface at each of its point.

In the spirit of above definition and arguments, finding a solution to the first order
quasilinear PDE is equivalent to determining an integral surface S corresponding to
the coefficient vector field V = (a, f ). An integral surface w.r.t V is an union1 of
integral curves w.r.t V . The integral curves are also called characteristics and recall
that the non-characteristic condition implied the coefficient vector a is not tangential
to the hypersurface. Hence, the name non-characteristic.

Thus, finding the unknown u is equivalent to finding the integral surface corre-
sponding to the data vector field V (x,z))= (a(x,z), f (x,z)). Thus, if Γ = {x(s),z(s)}
is an integral curve corresponding to V lying on the solution surface S, i.e. V is tan-
gential to Γ at all its points, then the curve is described by the (n+ 1) system of
ODEs,

dx
ds

= a(x(s),z(s)) and
dz
ds

= f (x(s),z(s)). (2.4)

1 the union is in the sense that every point in the integral surface belongs to exactly one character-
istic
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The n+1 ODEs obtained are called characteristic equations. The method of char-
acteristics converts a first order PDE to a system of ODE whose solution describe
the integral curves.

Remark 2.1. If the coefficients a are independent of u, i.e. the PDE is linear then
the characteristic curves will not intersect. Because, if the curves intersect then, at
the point of intersection, they have the same tangent, which is not possible! If the
coefficients a are constants (independent of both x and u) then the characteristic
curves are straight lines.

Theorem 2.2. Let a and f are smooth2 functions in their arguments. A n-dimensional
surface S is an integral surface for (2.2) iff it is the union of characteristics.

Proof. The surface S, locally, has the equation z = u(x) for some C1 map u subject
to appropriate relabelling of the coordinate variables and components of a. For any
(x0,z0), let s 7→ (x(s),z(s)) denote the characteristic curve passing through (x0,z0).
Set v(s) := z(s)−u(x(s)). Note that x(0) = x0 and z(0) = z0. Since (x0,z0) ∈ S, we
have v(0) = 0. Then we have the IVP in v

dv
ds

=
dz
ds
−∇u · dx

ds
= f (x,z)−a(x,z) ·∇u(x)= f (x,v+u(x))−a(x,v+u(x)) ·∇u(x).

The above IVP has unique solution, locally. If a integral surface S is given by z =
u(x) then v = 0 is a solution of the above IVP and, hence, is its only solution. Thus,
z(s) = u(x(s),s) and S is the union of characteristics. Conversely, if S is union of
characteristics then v = 0 and the above IVP implies that S is an intergal surface.

Theorem 2.3 (Existence and Uniqueness). Let the coefficients a and f of (2.2)
admit continuous partial derivatives with respect to the variables x,u. Let {γ(r)} be
parametrization of the initial data curve Γ and u0 are continuously differentiable. If
the data curve is non-characteristic, i.e., (2.1) is satisfied then there exists a unique
solution of (2.2) in some neighbourhood of Γ .

Proof. For r ∈ Rn−1, let γ(r) := (γ1(r), . . . ,γn(r)) be the parametrization of Γ . The
characteristic curves are solution to the ODE’s

dx
ds

(r,s) = a(x,y,u) and
du
ds

(r,s) = f (x,y,u)

such that on Γ , x(r,s) = γ(r) and u(r,s) = u0(r). For each fixed r ∈ Rn−1, any
solution of the system of ODEs above is local in the s-variable. Note that the map
(r,s) 7→ x(r,s) is invertible in a neighbourhood of Γ because Γ is non-characteristic
and the Jacobian of the map is non-zero, i.e.∣∣∣∣∣∣∣∣∣

∂sx
∂r1γ

...
∂rn−1γ

∣∣∣∣∣∣∣∣∣
n×n

=

∣∣∣∣∣∣∣∣∣
a(γ(r),u0(r))

∂r1γ

...
∂rn−1γ

∣∣∣∣∣∣∣∣∣
n×n

6= 0.

2 smooth refers to as much continuous differentiability as required
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By inverse function theorem, one can solve for r and s in terms of x, locally, in the
neighbourhood of Γ and u(x) := u(r(x),s(x)) is a solution of (2.2) in that neighour-
hood of Γ .

a ·∇u(x) =
n−1

∑
i=1

uri(a ·∇ri)+us(a ·∇s)

=
n−1

∑
i=1

uri(x
′(s) ·∇ri)+us(x′(s) ·∇s)

= ur ·
dr
ds

+us
ds
ds

=
du
ds

= f (x,u).

Also, on Γ , u(x) = u(γ(r)) = u0(γ(r)).

Example 2.3 (Linear Transport Equation).
The transport of a substance in a fluid flowing (one dimenisonal flow) with con-

stant speed a, with neither source or sink of substance, is given by

ut(x, t)+aux(x, t)+du(x, t) = cuxx(x, t) (x, t) ∈ R× (0,∞)

where c is the diffusive coefficient of the substance and d is the rate of decay of the
substance. Note that the case of no diffusion (c = 0) is a linear first order equation
which will be studied in this section. Consider the homogeneous linear transport
equation in two variable,

ut +aux = 0, x ∈ R and t ∈ (0,∞),

where the constant a ∈ R is given. Thus, the given vector field V (x, t) = (a,1,0).
The characteristic equations are

dx
ds

= a,
dt
ds

= 1, and
dz
ds

= 0.

Solving the 3 ODE’s, we get

x(s) = as+ c1, t(s) = s+ c2, and z(s) = c3.

Eliminating the parameter s, we get the curves (lines) x− at = a constant in the
xt-plane (see figure 2.1). The ODE for z determines the value of u along the lines
x−at = x0 and, hence, z= a constant on the characteristic lines. Therefore, u(x, t) =
g(x−at) is the general solution, for an arbitrary function g.

Example 2.4. We shall now compute the solution of the Cauchy problem{
ut +aux = 0 x ∈ R and t ∈ (0,∞)

u(x,0) = u0(x) x ∈ R. (2.5)

where u0 : R→ R is a given smooth function. We now check for non-characteristic
property of Γ . Note that Γ ≡ {(x,0)}, the x-axis of xt-plane, is the (boundary) curve
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x

t

x−at =−r

(−r,0)

x = at

(0,0)

x−at = r

(r,0)

Fig. 2.1 Characteristics Curves

on which the value of u is given. Thus, (Γ ,u0) = {(x,0,u0(x))} is the known curve
on the solution surface of u. The curve Γ is given by the equation {t = 0} and,
hence, its normal is (0,1). Γ is non-characteristic, because (a,1) · (0,1) = 1 6= 0.
The characteristic equations are:

dx(r,s)
ds

= a,
dt(r,s)

ds
= 1, and

dz(r,s)
ds

= 0

with initial conditions,

x(r,0) = r, t(r,0) = 0, and z(r,0) = u0(r).

Solving the ODE’s, we get

x(r,s) = as+ c1(r), t(r,s) = s+ c2(r)

and z(r,s) = c3(r) with initial conditions

x(r,0) = c1(r) = r

t(r,0) = c2(r) = 0, and z(r,0) = c3(r) = u0(r).

Therefore,
x(r,s) = as+ r, t(r,s) = s, and z(r,s) = u0(r).

We solve for r,s in terms of x, t and set u(x, t) = z(r(x, t),s(x, t)).

r(x, t) = x−at and s(x, t) = t.

Therefore, u(x, t) = z(r,s) = u0(r) = u0(x−at). See figure 2.2.

Remark 2.2. The one space dimension transport equation describes the transport of
an insoluble3 substance P in a fluid flowing with constant speed a. If we consider
two observers, one a fixed observer A and another observer B, moving with speed a

3 assuming no diffusion and no decay of substance.
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Fig. 2.2 Transportation of Initial Data u0

and in the same direction as the substance P. For B, the substance P would appear
stationary while for A, the fixed observer, the substance P would appear to travel
with speed a. While the given PDE is the transport equation with respect to the
observer A, the PDE corresponding to z(r,s) in the characteristic equation describes
the transport equation of the “stationary” substance P from the viewpoint of the
moving observer B. The reference frame of B is given by r and s. The relation of r
and s in terms x and t is the coordinate transformation of the reference frame of A to
the reference frame of B. Fix a point x at time t = 0. After time t, the point x remains
as x for the fixed observer A, while for the moving observer B, the point x is now
x−at. Therefore, the coordinate system for B is (r,s) where r = x−at and s = t. Let
z(r,s) describe the motion of P from B’s perspective. Since B sees P as stationary,
the PDE describing the motion of P is zs(r,s) = 0. Therefore, z(r,s) = g(r), for some
arbitrary function g (sufficiently differentiable), is the solution from B’s perspective.
To solve the problem from A’s perspective, note that

ut = zrrt + zsst =−azr + zs and

ux = zrrx + zssx = zr.

Therefore, ut + aux = −azr + zs + azr = zs and, hence, u(x, t) = z(r,s) = g(r) =
g(x− at). The choice of g is based on our restriction to be in a classical solution
set-up. Note that, for any choice of g, we have g(x) = u(x,0). The line x− at = r,
for some constant r, in the xt-plane tracks the flow of the substance placed at r at
time t = 0 (cf. Fig 2.1).

2.3.1 General Solution by Lagrange’s Method

Consider the first order system of n ODEs
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x′(t) = f (x(t)) (2.6)

where the unknown is x : I→ Ω , I ⊂ R and Ω ⊂ Rn are open interval and subset,
respectively. The solution of the (2.6) is a curve or trajectory in Rn indexed by t ∈ I.

Definition 2.1 A point x0 ∈Rn is said to be a critical or stationary point if f (x0) = 0
otherwise it is called regular or non-stationary point.

Definition 2.3. A non-constant C1 function φ : Ω0 ⊂ Ω → R is a prime or first
integral of (2.6) if φ is constant for any solution x(t) of (2.6) that lies within Ω0.

Theorem 2.1 A C1-map φ : Ω0→R is a prime integral of (2.6) iff ∇φ(x) · f (x) = 0
for all x ∈Ω0.

Proof. Let φ be a prime integral of the first order system, i.e. φ is constant for any
solution x(t) of the system that lies within Ω0. Thus,

0 =
d
dt

φ(x(t)) = ∇φ · x′(t) = ∇φ · f (x(t)).

Since for any point in x0 ∈Ω0 there is a solution of the system through x0, we have
the orthogonality condition valid for all x ∈ Ω0. The above argument is reversible
because the equality is valid in the reverse direction too. Thus the condition is both
necessary and sufficient.

Definition 2.4. A collection of k ≤ n C1-map {φ1,φ2, . . . ,φk} are functionally inde-
pendent in a neighbourhood x0 ∈ Rn if the rank of the Jacobian matrix is k, i.e.

rank

∇φ1(x0)
...

∇φk(x0)


k×n

= k.

In other words, above definition means that {∇φi}1≤i≤k are linearly independent.
The following result says that among all possible prime integrals of (2.6) one can
choose functionally independent prime integrals.

Theorem 2.2 There exists exactly (n−1) functionally independent prime integrals
of (2.6) in a neighbourhood of a regular (non-stationary) point x0 ∈ Rn.

The functionally independent (n− 1) prime integrals plays the same role as the
linearly independent fundamentla system solutions of a linear differential equations.

Theorem 2.3 Let {φi}1≤i≤n−1 be functionally independent prime integrals of (2.6)
in a neighbourhood Va of x0 ∈ Rn. If ψ is a prime integral of (2.6) in some neigh-
bourhood of x0 then there exists an open neighbourhood U of {φi(x0)}1≤i≤n−1 ∈
Rn−1, an open neighbourhood Wa ⊂ Va and a C1-map G : U → R such that
ψ(x) = G(φ1(x), . . . ,φn−1(x)) for all x ∈Wa.
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Theorem 2.4. Let {φi(x,u)}1≤i≤n be n functionally independent prime integrals of
the n+ 1 system of characteristic ODEs (2.4) and G = G(h) be a C1 function on
Rn. If ∑

n
i=1 Ghi∂uφi 6= 0, then G(φ1(x,u), . . . ,φn(x,u)) = 0 is the general solution of

(2.2) in the implicit form.

Proof. Define Φ(x,u) :=G(φ1(x,u), . . . ,φn(x,u)). We first observe that Φ is a prime
integral of the system of n+ 1 equations (2.4). Note that ∇Φ = ∑

n
i=1 Ghi∇φi and,

hence, ∇Φ · (a, f ) = ∑
n
i=1 Ghi∇φi · (a, f ) = 0. By Theorem 2.1, Φ is a prime integral

of the (n+ 1) system of characteristic equations (2.4) because each φi are prime
integrals. Also Φ satisfies the equation

a(x,u) ·∇xΦ− f (x,u)Φu = 0. (2.7)

Note that Φu 6= 0 because Φu = ∑
n
i=1 Ghi∂uφi 6= 0. Since Φ is a prime integral and

Φu 6= 0, then the equation Φ(x,u) = 0 defines implicitly an integral surface u =
u(x,y) of (2.2). By the Implicit Function Theorem, the u is such that ux =−Φx

Φu
and

uy =−
Φy
Φu

and from (2.7) we get easily (2.2).

Example 2.5. Let us compute the general solution of the first order PDE xux(x,y)+
yuy(x,y) = u(x,y). The characteristic equations are

dx
ds

= x(s)
dy
ds

= y(s) and
dz
ds

= z(s).

Thus, x(s) = c1es, y(s) = c2es and z(s) = c3es. Eliminating the parameter s, we get
y/x = c4 and z/x = c5. Alternately, we can solve the ODEs

dy
dx

=
y
x

and
dz
dx

=
z
x
,

we get y/x = c4 and z/x = c5. Set φ(x,y,z) := y/x and ψ(x,y,z) := z/x. For x 6= 0,
the functions φ and ψ are functionally independent, i.e., their Jacobian has maximal
rank:

rank
(

φx φy φz
ψx ψy ψz

)
= rank

(
− y

x2
1
x 0

− z
x2 0 1

x

)
= 2.

Thus, the general solution is G(y/x,z/x) = 0 for an arbitrary function G. Compare
this answer with Example 1.16.

Example 2.6. Let us compute the general solution of the first order PDE yux−xuy =
2xyu. The characteristic equations are

dx
ds

= y(s)
dy
ds

=−x(s) and
dz
ds

= 2xyz.

To avoid cumbersome ODE, let us begin by assuming y 6= 0, then dividing the entire
equation by y, we get

dx
ds

= 1
dy
ds

=−x(s)/y(s) and
dz
ds

= 2xz.
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Solving which we get x(s) = s+c1, y(s) =−s2−2c1s+2c2 and |z(s)|= c3es2+2c1s.
Eliminating s between x and y, we get the characteristic curves to be y2 + x2 = a
constant and z = c4ex2

. Alternately, we can solve

dy
dx

=−x(s)/y(s) and
dz
dx

= 2xz.

we get the characteristic curves to be y2 + x2 = a constant and z = c4ex2
. Thus, the

general solution is G(y2 + x2,e−x2
z) = 0. Explicitly,

u(x,y) = g(y2 + x2)ex2

for some arbitrary smooth functions g.

Example 2.7. Let us compute the general solution of the first order PDE ux+2xuy =
u2. The characteristic equations are

dx
ds

= 1
dy
ds

= 2x(s) and
dz
ds

= z2(s).

Solving which we get x(s) = s+ c1, y(s) = s2 + 2c1s+ c2 and z(s) = −1/(s+ c3).
Eliminating s between x and y, we get the characteristic curves to be y− x2 = a
constant and x+1/z = a constant. Alternately, we can solve

dy
dx

= 2x(s) and
dz
dx

= z2.

we get the characteristic curves to be y− x2 = a constant and x+1/z = a constant.
Thus, the general solution is G(y− x2,x+1/z) = 0. Explicitly,

u(x,y) =
−1

x+g(y− x2)

for some arbitrary smooth functions g.

Example 2.8. Let us compute the general solution of the first order PDE ux1 +
ex1ux2 + ex3ux3 = (2x1 + ex1)eu. The characteristic equations are

dx1

ds
= 1

dx2

ds
= ex1

dx3

ds
= ex3 and

dz
ds

= (2x1 + ex1)ez(s).

Solving which we get x1(s) = s+ c1, x2(s) = ec1es + c2, e−x3(s) =−s+ c3 and

e−z(s) =−s2−2c1s− es+c1 + c4.

Eliminating s between x1 and x2, we get x2−ex1 = a constant, e−x3 +x1 = a constant.
Altenately, we can solve
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dx2

dx1
= ex1

dx3

dx1
= ex3 and

dz
dx1

= (2x1 + ex1)ez(s)

we get x2−ex1 = a constant, e−x3 +x1 = a constant and x2
1 +ex1 +e−z = a constant.

Then the general solution is G(x2− ex1 ,e−x3 + x1,e−u + x2
1 + ex1) = 0. Explcitly,

e−u = g(x2− ex1 ,e−x3 + x1)− x2
1− ex1

for some arbitrary smooth functions g.

Example 2.9. Let us compute the general solution of the first order PDE yuux +
xuuy = xy. The characteristic equations are

dx
ds

= yz,
dy
ds

= xz and
dz
ds

= xy.

Hence,

0 = x
dx
ds
− y

dy
ds

=
d(x2)

ds
− d(y2)

ds

=
d(x2− y2)

ds
.

Thus, x2− y2 = c1 and, similarly, x2− z2 = c2. Alternately, we can solve

dy
dx

=
x
y

and
dz
dx

=
x
z
.

Hence, the general solution is G(x2−y2,x2− z2) = 0 for some arbitrary function G.
Explicitly, for some g or h,

u2(x,y) = x2 +g(x2− y2) or u2(x,y) = y2 +h(x2− y2).

Example 2.10. Let us compute the general solution of the first order PDE 2yux +
uuy = 2yu2. The characteristic equations are

dx
ds

= 2y(s)
dy
ds

= z(s) and
dz
ds

= 2y(s)z2(s).

Solving in the parametric form is quite cumbersome, because we will have a
second order nonlinear ODE of y, y′′(s) = 2y(y′)2. However, for u 6= 0, we get
dz
dy = 2y(s)z(s) solving which we get ln |z| = y2 + c1 or z = c2ey2

. Similarly, dy
dx =

z
2y =

c2ey2

2y solving which we get c2x+e−y2
= c3 or, equivalently, xze−y2

+e−y2
= c3.

Thus, the general solution is

G(e−y2
(1+ xz),e−y2

z) = 0.
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or
u(x,y) = g

(
e−y2

(1+ xu)
)

ey2

for some arbitrary smooth functions g. Note that u ≡ 0 is a solution if we choose
g= 0. The characteristic curves are (1+xu)e−y2

= a constant and along these curves
ue−y2

is constant.

Example 2.11. The higher dimension homogeneous transport problem is given by

ut(x, t)+a ·∇u(x, t) = 0 in Rn× (0,∞) (2.8)

where u : Rn× [0,∞)→R is the unknown and a ∈Rn. By setting y := (x, t) in (2.8),

(a,1) ·∇yu(y) = 0 in Rn× (0,∞).

Thus, the directional derivative of u, for all y ∈ Rn × (0,∞), along the direction
(a,1) is zero. Hence, u must be constant along all lines in the direction of (a,1).
The parametric equation of a line passing through (x, t) and parallel to (a,1) is
(x, t) + s(a,1) = (x + sa, t + s). For the lines to lie in the half-space Rn × [0,∞),
it is enough to consider s ≥ −t. Loosely speaking, since u is constant on the line
(x+ sa, t + s), the value of u at s = 0 and s = −t must coincide. Hence, u(x, t) =
u(x−ta,0). To derive this conclusion in a precise way, we set v(s) := u(x+sa, t+s),
for all s ∈ (−t,∞), and for a fixed (x, t) ∈ Rn× (0,∞). Thus,

dv(s)
ds

= ∇u(x+ sa, t + s) · d(x+ sa)
ds

+ut(x+ sa, t + s)
d(t + s)

ds
= a ·∇u(x+ sa, t + s)+ut(x+ sa, t + s) = 0.

The last equality is due to (2.8) and, hence, v is a constant function. Therefore,
v(0) = v(−t) which implies that u(x, t) = u(x− ta,0). For instance, if the value of u
is known at time t = 0, say u(x,0) = g(x) on Rn×{t = 0} for a function g : Rn→R,
then

u(x, t) = u(x− ta,0) = g(x− ta).

Since (x, t) was arbitrary in Rn× (0,∞), we have u(x, t) = g(x− ta) for all x ∈ Rn

and t ≥ 0. Thus, g(x− ta) is a classical solution to (2.8) whenever g ∈C1(Rn). We
remark that if g 6∈ C1(Rn) then g(x− ta) can be interpreted as a weak solution of
(2.8).

Remark 2.3. Observe that in the Cauchy problem of Transport equation (2.5), sup-
pose we choose a discontinuous u0, viz.

φ(x) =

{
1 x > 0
0 x≤ 0

then u(x, t) inherits this jump continuity. The characteristic curve passing through
the point of disconitnuity will propagate the jump in the soluton surface. Thus, u is
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no longer a smooth solution. In applications it is often necessary to consider such
solutions which, by our definition, is not even a differentiable, hence, not a solution.
Such situations give rise to the need of relaxing the notion of solution.

Example 2.12. The inhomogeneous transport problem is

ut(x, t)+a ·∇u(x, t) = f (x, t) in Rn× (0,∞) (2.9)

where a∈Rn and f : Rn×(0,∞)→R are given. The f represents the intensity of an
external source. Motivated from the homogeneous case, set v(s) := u(x+ sa, t + s),
for all s ∈ R, for a fixed (x, t) ∈ Rn× (0,∞). Thus,

dv(s)
ds

= a ·∇u(x+ sa, t + s)+ut(x+ sa, t + s) = f (x+ sa, t + s).

In the homogeneous case, we concluded that u(x, t)−u(x− ta,0) = v(0)−v(−t) =
0. Therefore, consider

u(x, t)−u(x− ta,0) = v(0)− v(−t)

=
∫ 0

−t

dv
ds

ds

=
∫ 0

−t
f (x+ sa, t + s)ds

=
∫ t

0
f (x+(s− t)a,s)ds.

The last equality is obtained by a change of variable s := t + s. Hence,

u(x, t) = u(x− ta,0)+
∫ t

0
f (x+(s− t)a,s)ds

solves (2.9).

Example 2.13. The one space dimension transport equation, with no diffusion but
decay, is

ut(x, t)+aux(x, t)+Du(x, t) = 0 (x, t) ∈ R× (0,∞)

with a,D ∈ R. The characteristic equation

dx
ds

= a,
dt
ds

= 1, and
dz
ds

=−Dz.

Solving the 3 ODE’s, we get

x(s) = as+ c1, t(s) = s+ c2, and z(s) = c3e−Ds.

Eliminating the parameter s, we get the curves (lines) x− at = a constant in the
xt-plane (see figure 2.1). The ODE for z determines the value of u along the lines
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x−at = x0. Therefore, u(x, t) = g(x−at)e−Dt is the general solution, for an arbitrary
function g.

2.3.2 Data on Characteristic Curves, Non-Global and Blow-up of
Solutions

Exercise 2.1 (i) Find the general solution of the first order PDE 2ux(x,y) +
3uy(x,y)+8u(x,y) = 0.

(ii) For the PDE given above, check for the characteristic property of the following
curves

(a) y = x in the xy-plane
(b) y = 3x−1

2 .

(iii) Discuss the particular solutions of the above PDE, corresponding to

(a) u(x,x) = x4 on y = x
(b) u(x,(3x−1)/2) = x2 on y = (3x−1)/2
(c) u(x,(3x−1)/2) = e−4x.

Observe the nature of solutions for the same PDE on a characteristic curve
and on non-characteristic curve.

Proof. (i) The characteristic equations are

dx
ds

= 2,
dy
ds

= 3 and
dz
ds

=−8z.

Hence,
x(s) = 2s+ c1 y(s) = 3s+ c2 and z(s) = c3e−8s.

Thus, 3x−2y = c4 and z = c4e−4x or z = c5e−8y/3. Hence, the general solution
is G(3x−2y,e4xz) = 0. Explicitly, for some h or g,

u(x,y) = h(3x−2y)e−4x or u(x,y) = g(3x−2y)e−8y/3.

(ii) (a) Parametrise the curve y = x as Γ (r) : r 7→ (r,r). Thus γ1(r) = γ2(r) = r.
Since the coefficients of the PDE are a(r) = 2 and b(r) = 3, we have

(a,b) · (−γ
′
2(r),γ

′
1(r)) = (2,3) · (−1,1) =−2+3 = 1 6= 0.

Hence Γ is non-characteristic.
(b) Parametrise the curve y = (3x−1)/2 as Γ (r) : r 7→ (r,(3r−1)/2). Hence

γ1(r) = r and γ2(r) = (3r−1)/2 and

(a,b) · (−γ
′
2(r),γ

′
1(r)) = (2,3) · (−3/2,1) =−3+3 = 0.

Hence Γ is a characteristic curve.
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(iii) Recall that the general solution is G(3x−2y,e4xz) = 0 or

u(x,y) = h(3x−2y)e−4x or u(x,y) = g(3x−2y)e−8y/3.

(a) Now, u(x,x) = x4 implies G(x,e4xx4) = 0. Thus,

e4xz = e12x−8y(3x−2y)4

and
u(x,y) = (3x−2y)4e8(x−y).

Thus, we have a unique solution u.
(b) Using the given condition, we have G(1,x2e4x) = 0. Either h(1) = x2e4x

or h(x2e4x) = 1. The first case is not valid (multi-valued function). The
second case corresponds to z = e−4x which will not satisfy the Cauchy
data. Hence there is no solution u solving the given PDE with the given
data.

(c) Once again using the given condition, we have G(1,x2e4x) = 0. Either
h(1) = x2e4x or h(x2e4x) = 1. The first case is not valid (multi-valued
function). The second case corresponds to z = e−4x which will satisfy the
Cauchy data. Since there many choices of h that satisfies h(x2e4x) = 1, we
have infinite number of solutions (or choices for) u that solves the PDE.

Exercise 2.2 (i) Find the general solution (in terms of arbitrary functions) of the
first order PDE ux(x,y)+uy(x,y) = 1.

(ii) For the PDE given above, check for the characteristic property of the following
curves

(a) the x-axis, {(x,0)}, in the xy-plane
(b) y = x.

(iii) Discuss the particular solutions of the above PDE, corresponding to

(a) u(x,0) = φ(x) on x-axis.
(b) u(x,x) = x on y = x.
(c) u(x,x) = 1 on y = x.

Observe the nature of solutions for the same PDE on a characteristic curve
and on non-characteristic curve.

Proof. (i) The characteristic equations are

dx
ds

= 1,
dy
ds

= 1 and
dz
ds

= 1.

Hence,
x(s) = s+ c1 y(s) = s+ c2 and z(s) = s+ c3.

Thus, y− x = c4 and z− x = c5 or x− y = c4 and z− y = c5. Hence, for some
h and g,
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u(x,y) = x+h(y− x) or u(x,y) = y+g(x− y).

(ii) (a) Parametrise the curve x-axis as Γ (r) : r 7→ (r,0). Thus γ1(r) = r and
γ2(r) = 0. Since the coefficients of the PDE are a(r) = 1 and b(r) = 1,
we have

(a,b) · (−γ
′
2(r),γ

′
1(r)) = (1,1) · (0,1) = 1 6= 0.

Hence Γ is non-characteristic.
(b) Parametrise the curve y = x as Γ (r) : r 7→ (r,r). Hence γ1(r) = r = γ2(r)

and
(a,b) · (−γ

′
2(r),γ

′
1(r)) = (1,1) · (−1,1) =−1+1 = 0.

Hence Γ is a characteristic curve.
(iii) Recall that the general solution is

u(x,y) = x+h(y− x) or u(x,y) = y+g(x− y).

(a) Now, u(x,0) = φ(x) implies h(x) = φ(−x)+ x or g(x) = φ(x), and

u(x,y) = y+φ(x− y).

Thus, we have a unique solution u.
(b) Using the given condition, we have h(0) = 0 or g(0) = 0. One has many

choices of function satisying these conditions. Thus, we have infinite num-
ber of solutions (or choices for) u that solves the PDE.

(c) Once again using the given condition, we have h(0) = 1− x or g(0) =
1− x for all x ∈ R. This implies h and g are not well defined. We have no
function h and g, hence there is no solution u solving the given PDE with
the given data.

Exercise 2.3 (i) Find the general solution (in terms of arbitrary functions) of the
first order PDE xux(x,y)+2xuuy(x,y) = u(x,y).

(ii) For the PDE given above, check if the following curves in xy-plane are non-
characteristic and discuss the particular solutions of the PDE

(a) y = 2x2 +1 and u(x,2x2 +1) = 2x.
(b) y = 3x3 and u(x,3x3) = 2x2.
(c) y = x3−1 and u(x,x3−1) = x2.

Observe the nature of solutions for the same PDE on a characteristic curve
and on non-characteristic curve.

Proof. (i) The characteristic equations are

dx
ds

= x,
dy
ds

= 2xz and
dz
ds

= z.

Hence,
x(s) = c1es z(s) = c2es and y(s) = c1c2e2s + c3.
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Thus, y = c2/c1x2+c3 and z = c2/c1x. Therefore, y−zx = c3 and, for some g,

u(x,y) = xg(y− xu).

The characteristic curves are y− xu = a constant which depends on u.
(ii) (a) Parametrise the curve y = 2x2+1 as Γ (r) : r 7→ (r,2r2+1). Thus γ1(r) = r

and γ2(r) = 2r2 + 1. Since the coefficients of the PDE are a(r) = r and
b(r,u) = 4r2, we have

(a,b) · (−γ
′
2(r),γ

′
1(r)) = (r,4r2) · (−4r,1) =−4r2 +4r2 = 0.

Hence Γ is not non-characteristic. But on the characteristic curves y−
2x2 = 1 the function u = 2x solves the PDE. Elsewhere the solution is
non-unique and there are many choices because u(x,2x2+1) = 2x implies
g(1) = 2. Thus, we have infinite number of solutions (or choices for) u
that solves the PDE on other characterisitc curves.

(b) Parametrise the curve y = 3x3 as Γ (r) : r 7→ (r,3r3). Hence γ1(r) = r and
γ2(r) = 3r3 and

(a,b) · (−γ
′
2(r),γ

′
1(r)) = (r,4r3) · (−9r2,1) =−9r3 +4r3 =−5r3 6= 0

for r 6= 0. Hence Γ is a non-characteristic curve. Using (u(x,3x3)= 2x2 we
get 2x2 = xg(3x3−2x3) which implies 2x = g(x3). Thus, g(x) = 2x1/3 and
u(x,y) = 2x(y− xu)1/3 or u3(x,y)+8x4u = 8x3y. Thus, we have a unique
solution. The characteristic curves are y− 2x3 = a constant and the data
u = 2x2 is given on y−3x3 = 0.

(c) Parametrise the curve y = x3−1 as Γ (r) : r 7→ (r,r3−1). Hence γ1(r) = r
and γ2(r) = r3−1 and

(a,b) · (−γ
′
2(r),γ

′
1(r)) = (r,2r3) · (−3r2,1) =−3r3 +2r3 =−r3 6= 0

for r 6= 0. Hence Γ is a non-characteristic curve. Using (u(x,x3− 1) =
x2 we get x = g(−1). Thus g is not well defined and, hence there is no
solution. The characteristic curves are y−x3 = a constant and u= x2 given
on y− x3 =−1 is not a solution.

Example 2.14. Consider the Burgers’ equation uy(x,y)+u(x,y)ux(x,y) = 1 in R2.

(a) Consider the Cauchy data u(x,x) = 2 on {y = x}. The normal to the data curve
is (−1,1). Therefore, (u,1) · (−1,1) = −u+1 = −2+1 = −1 6= 0. Hence, the
given initial curve is non-characteristic. The characteristic equations are

dx(r,s)
ds

= z(r,s),
dy(r,s)

ds
= 1 and

dz(r,s)
ds

= 1

with initial conditions

x(r,0) = r, y(r,0) = r, and z(r,0) = 2.
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Therefore, y(r,s) = s+ c1(r), z(r,s) = s+ c2(r) and x(r,s) = s2/2+ c2(r)s+
c3(r). Using the initial conditions, we get c1(r) = r = c3(r) and c2(r) = 2.
Solving for r and s, in terms of x,y and z, we get s = y− r = z− 2 and 2x =
s2 +4s+2r. Solving the system for x and y, by eliminating s, we get the charac-
teristic curves as the parabolae C(x,y,r) := 2(x+2− r)− (y+2− r)2 = 0. See
the blue curves in 2.3. For each r ∈R, the parabola has the vertex at (r−2,r−2).
Using the equation of s and r in x, we get z2− 2z− 2(x− y) = 0 and, hence,
z = 1±

√
1+2(x− y). The choice of minus sign before radical is ruled out be-

cause it does not satisfy the initial data. Hence, u(x,y) = 1+
√

1+2(x− y). The
solution u is constant along the lines y− x = a constant and u ≡ 1 on the line
x− y = −1/2. The solution does not exist in the region x− y < −1/2 because
the term inside square root is negative here. The region to the left of the cyan
coloured line in 2.3. The line x− y = −1/2 is the envelope of the family of
characteristic curves C(x,y,r) = 0. To see this differentiate C with respect to r
and eliminate r between Cr = 0 and C = 0. Note that Cr(x,y,r) = y+1− r = 0.
Using this r in C, we get the line x− y =−1/2.

x

y

Fig. 2.3 Non-Global Solutions

(b) Consider the Cauchy data u(x2,2x)= x. The normal to the data curve is (−2,2x).
Therefore, (u,1) · (−2,2x) = −2u+ 2x = 0. Hence, the given initial curve is
characteristic. The characteristic equations are

dx(r,s)
ds

= z(r,s),
dy(r,s)

ds
= 1 and

dz(r,s)
ds

= 1

with initial conditions

x(r,0) = r2, y(r,0) = 2r, and z(r,0) = r.



36 2 First Order PDE

Therefore, y(r,s) = s+ c1(r), z(r,s) = s+ c2(r) and x(r,s) = s2/2+ c2(r)s+
c3(r). Using the initial conditions, we get c1(r) = 2r, c2(r) = r and c3(r) =
r2. Solving for r and s, in terms of x,y and z, we get s = y− 2r = z− r and
2x = s2 +2rs+2r2. Solving the system for x and y, by eliminating s, we get the
characteristic curves as the parabolae C(x,y,r) := 2x− r2− (y− r)2 = 0. Using
the equation of s and r in x, we get 2z2+2yz+y2−2x= 0 and, hence, u(x,y) ==
y/2±

√
x− y2/4. Both the choice of sign before the radical is valid because it

satisfies the initial data. The solution is two-valued in the region {x > y2/4}
and no solution exists in the region {x < y2/4} because the term inside square
root is negative here. The parabola x− y2/4 = 0 is the envelope of the family of
characteristic curves C(x,y,r) = 0. To see this differentiate C with respect to r
and eliminate r between Cr = 0 and C = 0. Note that Cr(x,y,r) = 2y− 4r = 0.
Using this r in C, we get the parabola x− y2/4 = 0.

(c) Consider the Cauchy data u(x2/2,x)= x. The normal to the data curve is (−1,x).
Therefore, (u,1) · (−1,x) =−u+x = 0. Hence, the given initial curve is charac-
teristic. The characteristic equations are

dx(r,s)
ds

= z(r,s),
dy(r,s)

ds
= 1 and

dz(r,s)
ds

= 1

with initial conditions

x(r,0) = r2/2, y(r,0) = r, and z(r,0) = r.

Therefore, y(r,s) = s+ c1(r), z(r,s) = s+ c2(r) and x(r,s) = s2/2+ c2(r)s+
c3(r). Using the initial conditions, we get c1(r) = r = c2(r) and c3(r) = r2/2.
Solving for r and s, in terms of x,y and z, we get s = y− r = z− r and 2x =
s2 +2rs+ r2 = (s+ r)2. Solving the system for x and y, by eliminating s, we get
the characteristic curves as the parabola C(x,y,r) := x−y2/2 = 0 for all r. Using
the equation of s and r in x, we get z2 = 2x+g(z− y) for any arbitrary function
g such that g(0) = 0.

Example 2.15. Let Ω := {(x,y) ∈ R2 | y > 0}. Let Γ := {(x,0) | x ∈ R}. Consider
the semi-linear PDE {

ux(x,y)+uy(x,y) = u2(x,y) in Ω

u(x,0) = φ(x) on Γ .

The parametrisation of the initial curve is Γ (r) := (r,0) for all r ∈ R. Therefore,

(a(γ1(r),γ2(r)),b(γ1(r),γ2(r))) · (−γ
′
2(r),γ

′
1(r)) = (1,1) · (0,1) = 1 6= 0.

Hence, the given initial curve is non-characteristic. The characteristic equations are

dx(r,s)
ds

= 1,
dy(r,s)

ds
= 1 and

dz(r,s)
ds

= z2(r,s)

with initial conditions
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x(r,0) = r, y(r,0) = 0, and z(r,0) = φ(r).

Therefore, x(r,s) = s + c1(r), y(r,s) = s + c2(r) and z(r,s) = −1
s+c3(r)

. Using the

initial conditions, we get c1(r) = r, c2(r) = 0 and c3(r) = −(φ(r))−1. Note that
this makes sense only if φ(r) 6= 0 for all r. To overcome this situation, we write
z(r,s) = φ(r)

1−φ(r)s . Also, we have (x(r,s),y(r,s)) = (s+ r,s), where s ≥ 0 and r ∈ R.

Moreover, r = x− y and s = y. Therefore, u(x,y) = z(r,s) = φ(r)
1−φ(r)s = φ(x−y)

1−φ(x−y)y .
Note that the non-linearity in the z-variable, even though the equation is linear, may
cause a possible blow-up (or singularity) in the solution. For instance, even if we
assume φ is bounded, a very large value of y may induce a singularity.

Example 2.16. Consider the PDE ux +uy = u2. Let us find the solution of the PDE
that passes through the curve u = x on y =−x. The characteristic equations (ODE’s)
are

dx
ds

= 1 =
dy
ds

and
dz
ds

= z2(s).

The characteristic curves are x− y = a constant and z−1 + x = a constant. Note that
we have used the fact that u 6≡ 0 because zero solution does not satisfy the Cauchy
data. Thus, the general solution is u(x,y) = 1

g(x−y)−x , for some arbitrary smooth

functions g. Using the Cauchy data we obtain, g(x) = 4+x2

2x and hence,

u(x,y) =
2(x− y)

4+ y2− x2 .

Note that along the hyperbola x2− y2 = 4 the solution is infinite.

x

y

Fig. 2.4 Blow-up of Solutions



38 2 First Order PDE

2.3.3 Inflow Characteristics

For a well-posed Cauchy problem, the Cauchy data is prescribed only on the inflow
boundary part of the boundary of the domain. The inflow boundary part Γi ⊂ Γ is
defined as

Γi := {x ∈ Γ | a ·ν(x)< 0}

where a is the coefficient vector of the first order semilinear PDE a ·∇u(x) = f (x,u)
and ν(x) is the unit outward normal at x.

Example 2.17. Let us consider the linear transport equation in two variable in the
domain Ω := (0,∞)× (0,∞).

ut +aux = 0, x ∈ (0,∞) and t ∈ (0,∞),

where the constant a ∈ R is given. The boundary of Ω is Γ := {(0, t) | t > 0} ∪
{(x,0) | x > 0}. Let us check the non-characteristic condition of the data curve Γ .
Its parametrization is (r,0) when r ≥ 0 and (0,−r) when r < 0. Then

(a,1) · (γ ′2(r),−γ
′
1(r)) =

{
−1 r ≥ 0
−a r < 0.

Thus, the γ is non-characteristic. Though, it seems natural to define the initial value
u0 on the whole of Γ , the initial value prescription depends on the boundary with
the characteristics flowing in to the boundary. This is called inflow boundary. In
other words, we include the first point of intersection of the projected characteristics
with the boundary Γ . For instance, if a > 0 then the projected characteristics curves
inflow in to the entire boundary Γ and, hence, u0 should be prescribed on all of Γ .
However, if a < 0 then it is enough to prescribe u0 on the subset {(x,0) | x > 0} of
Γ . See fig 2.5.

x

t

a > 0
x

t

a < 0
x

x = Lt

a < 0

Fig. 2.5 Inflow Characteristics

Example 2.18. Let us consider the linear transport equation in two variable in the
domain Ω := (0,L)× (0,∞).

ut +aux = 0, x ∈ (0,L) and t ∈ (0,∞),
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where the constant a ∈ R is given. The boundary of Ω is Γ := {(0, t) | t > 0} ∪
{(0,L)×{0}}∪{(L, t) | t > 0}. Let us check the non-characteristic condition of the
data curve Γ . Its parametrization is

(γ1(r),γ2(r) =


(r,0) 0≤ r ≤ L
(L,r−L) L < r < ∞

(0,−r) r < 0.

Then

(a,1) · (γ ′2(r),−γ
′
1(r)) =


−1 0≤ r ≤ L
a L < r < ∞

−a r < 0.

Thus, the γ is non-characteristic. If a > 0 then the projected characteristics curves
inflow in to a subset of Γ and, hence, u0 should be prescribed on the subset {(0, t) |
t > 0}∪{(0,L)×{0}} of Γ . However, if a < 0 then it is enough to prescribe u0 on
the the subset {(0,L)×{0}}∪{(L, t) | t > 0} of Γ . See fig 2.5.

2.3.4 Intersection of Characteristic Curves: Shocks

Example 2.19 (Solution in Implicit Form). Consider the PDE of the form ut(x, t)+
a(u)ux(x, t) = 0 in R× (0,∞). The characteristic equations are:

dx
ds

= a(z),
dt
ds

= 1, and
dz
ds

= 0.

On eliminating the parameter s, we get dx
dt = a(z) and dz

dt = 0. Solving the system
of ODE, we get the general solution u(x, t) = g[x− ta(u)] in the implicit form. In
particular, the Burgers’ equation ut(x, t) + u(x, t)ux(x, t) = 0 in R× (0,∞) is the
situation corresponding to a(u) ≡ u. The general solution is u(x, t) = g(x− tu) in
the implicit form.

Example 2.20. We now consider the Cauchy problem of Burgers’ equation{
ut(x, t)+u(x, t)ux(x, t) = 0 in R× (0,∞)

u(x,0) = u0(x) on R×{0}.

We first check for non-characteristic property of Γ . Note that (Γ ,u0)= {(x,0,u0(x))}
is the known curve on the solution surface of u. We parametrize the curve Γ with
r-variable, i.e., Γ = {(r,0)}. Γ is non-characteristic, because (u,1) · (0,1) = 1 6= 0.
The characteristic equations are:

dx(r,s)
ds

= z,
dt(r,s)

ds
= 1, and

dz(r,s)
ds

= 0
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with initial conditions x(r,0) = r, t(r,0) = 0, and z(r,0) = u0(r). Solving the ODE
corresponding to z, we get z(r,s) = c3(r) with initial conditions z(r,0) = c3(r) =
u0(r). Thus, z(r,s) = u0(r). Using this in the ODE of x, we get

dx(r,s)
ds

= u0(r).

Solving the remaining ODEs, we get x(r,s) = u0(r)s+ c1(r), t(r,s) = s+ c2(r)
with initial conditions x(r,0) = c1(r) = r and t(r,0) = c2(r) = 0. Therefore, x(r,s) =
u0(r)s+ r and t(r,s) = s. Eliminating the s variable between x and t we obtain the
projected characteristic curves are given by x = u0(r)t+r passing through (r,0)∈Γ

and u takes the constant value u0(r) along these lines. Solving r and s, in terms of
x, t and z, we get s = t and r = x− zt. Therefore, u(x, t) = u0(x− tu) is the solution
in the implicit form.

Example 2.21. If the initial data u0(x) = c, for some constant c, then u(x, t) = c and
the characteristic curves are t = x/c+ constant.

Example 2.22. If we choose the initial data to be u0(x) = x, then the characteristic
curves C(x, t;r) = 0 are x = r(1+ t) and u(x, t) = x

1+t in R× (0,∞). u takes the
constant value r along the line t = x/r−1 and all these curves intersect at (0,−1).
Let us find the point of intersection of these curves. To do so we differentiate C
with respect to r, i.e. Cr = 0 which gives t = −1, for all r. Using the expression of
r in C(x, t;r) = 0 equation, we get the intersection point (0,−1). Thus, u is multi-
ply defined or undefined at (0,−1) but this point is not in the domain of interest.
This example also illustrates that the non-existence of a solution in a region has no
relevance to the discontinuity or non-smoothness of the data. See fig 2.6.

x

t

Fig. 2.6 Characteristics Curves for the initial data u0(x) = x

Example 2.23. In the Burgers’ equation, suppose we choose u0 to be the function

u0(x) =


−1 x <−1
x −1≤ x≤ 1
1 1 < x.

Then the characteristic curves C(x, t;r) = 0 are
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x =


−t + r r <−1
r(t +1) −1≤ r ≤ 1
t + r 1 < r.

Therefore,

u(x, t) =


−1 x+ t <−1

x
t+1 −(t +1)≤ x≤ (t +1)
1 1 < x− t.

Let us find the point of intersection of these curves. To do so we differentiate C with
respect to r, i.e. Cr = 0 which gives t = −1, for all r. Using the expression of r
in C(x, t;r) = 0 equation, we get the intersection point (0,−1). Thus, u is multiply
defined or undefined at (0,−1) but this point is not in the domain of interest. See
fig. 2.7.

x

t

Fig. 2.7 Characteristics Curves for the initial data increasing data

Example 2.24. If we choose the initial data to be u0(x) =−x, then the characteristic
curves are C(x, t;r) := r(1− t)−x = 0. Let us find the point of intersection of these
curves. To do so we differentiate C with respect to r, i.e. Cr = 0 which gives 1−t = 0
or t = 1. Using this value of t in C = 0 gives x = 0. Thus, observe that (0,1) lies on
all the characteristic curves, i.e. the curves intersect at (0,1). Therefore, u(x, t)= x

t−1
in R× (0,1). See fig. 2.8. The solution blows-up on the {t = 1}.

Remark 2.4. In contrast to the transport equation, the slope 1
u0(r)

of the projected
characteristic curves of the Burgers equation is not fixed and depends on the initial
condition. If r1 and r2 are such that r1 < r2 but u0(r1)> u0(r2) then the characteristic
curves will necessarily intersect at
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x

t

{t = 1}
(0,1)

Fig. 2.8 Characteristics Curves for the initial data u0(x) =−x

(x0, t0) :=
(

r2u0(r1)− r1u0(r2)

u0(r1)−u0(r2)
,

r2− r1

u0(r1)−u0(r2)

)
because the slope of the line passing through (r2,0) is bigger than the one passing
through (r1,0). This situation leads to a multi-valued solution because

u(x0, t0) = u(r2,0) = u0(r2)< u0(r1) = u(r1,0) = u(x0, t0).

Physically, the intersection of characteristic curves describes the phenomenon of
wave breaking, i.e, faster moving waves overtaking slower waves. This situation is
called the shock. Thus, even if one begins with a smooth decreasing initial data one
may not be able to find a solution for all time t.

Example 2.25. If we choose the initial data to be

u0(x) =


1 x≤ 0
1− x 0 < x < 1
0 x≥ 1.

Then the characteristic curves C(x, t;r) = 0 are

x =


t + r r ≤ 0
(1− r)t + r 0 < r < 1
r r ≥ 1.

Therefore,

u(x, t) =


1 x≤ t and x < 1
1−x
1−t t < x < 1
0 x≥ 1.

Let us find the point of intersection of these curves. To do so we differentiate C with
respect to r, i.e. Cr = 0 which gives 1− t = 0 or t = 1 for all 0 < r < 1 and using
this in C = 0 equation we get the envelope with vertex at (1,1) bounded by the lines
{x = t} and {x = 1}. Note that the solution behaves well outside the wedge shaped
region with vertex at (1,1) and bounded by the lines {x = 1} and {t = x}, i.e., in
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the closed region {(x, t) | 1≤ x≤ t}, the characteristics start crossing each other and
u(x, t) takes three values. See figure 2.9.

x

t

(1,1)

{x = t}
{x = 1}

Fig. 2.9 Characteristics Curves for the initial data linearly decreasing data

Example 2.26. In the Burgers’ equation, suppose we choose u0 to be the function

u0(x) =

{
cos2πx 0≤ x≤ 1
1 x≤ 0 and x≥ 1.

Then the characteristic curves C(x, t;r) = 0 are

x =

{
t cos(2πr)+ r 0≤ r ≤ 1
t + r r ≤ 0 and r ≥ 1.

To find the envelope, we find Cr = 0 which gives 2πt sin(2πr)−1 = 0 for 0≤ r≤ 1.
Thus, r = 1

2π
sin−1 ( 1

2tπ

)
. Since r ≥ 0, the domain of sin−1 on which its range is

positive is [0,1]. Thus, 0≤ 1/2tπ ≤ 1 implies that t ≥ 1/2π . The envelope first forms
at t = 1/2π , i.e. at the vertex (1/4,1/2π). Using the expression of r in C(x, t;r) = 0
equation, we get two branches of the envelope, for all t ≥ 2π ,

x =

√
t2− 1

4π2 +
1

2π
sin−1

(
1

2πt

)
∀x ∈ (1/4,∞)

x = −
√

t2− 1
4π2 +

1
2π

sin−1
(

1
2πt

)
∀x ∈ (−∞,1/4).

We have used the identity that cos(sin−1(s)) =±
√

1− s2. Note that the solution be-
haves well outside the wedge shaped region with vertex at (1/4,1/2π) and bounded
by the lines passing through (1/10,0) and (2/5,0), see the magenta lines in 2.10.
The characteristics start crossing each other and u(x, t) takes three values inside the
wedge (cf. figure 2.10).

Example 2.27. In the Burgers’ equation, suppose we choose u0 to be the function

u0(x) =

{
1 x < 0
0 x > 0.
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0.5 1 1.5

0.1

0.2

0.3

0.4

x

t

Fig. 2.10 Characteristics Curves for the non-monotone initial data

The initial data is decreasing and non-smooth. The solution is multi-valued for any
x > 0.

Example 2.28. If the initial data u0 is a non-decreasing function, i.e. u′0 ≥ 0 then the
characteristic curves do not intersect. However, in such a situation, it is possible that
we do not have enough information to compute the solution in the entire region.
Such situations also give rise to the need of relaxing the notion of solution. In the
Burgers’ equation, suppose we choose u0 to be the function

u0(x) =

{
0 x < 0
1 x > 0.

The initial data is non-decreasing and the soluton is

u(x, t) =

{
0 x < 0
1 x > t,

but there is no information of u on the wedge {0 < x < t}.

Example 2.29. Consider the Burgers’ equation{
ut(x, t)+u(x, t)ux(x, t) = x in R× (0,∞)

u(x,0) = 1 on R×{0}.

The normal to the data curve is (0,1). Therefore, (u,1) · (0,1) = 1 6= 0. Hence, the
given initial curve is non-characteristic. The characteristic equations are
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dx(r,s)
ds

= z(r,s),
dt(r,s)

ds
= 1 and

dz(r,s)
ds

= x(r,s)

with initial conditions

x(r,0) = r, t(r,0) = 0, and z(r,0) = 1.

Therefore, t(r,s) = s + c1(r), x(r,s) = c2(r)es + c3(r)e−s and z(r,s) = c4(r)es +
c5(r)e−s. Using the initial conditions, we get c1(r) = 0, c2(r) = (r+1)/2 = c4(r),
c3(r) = (r−1)/2 and c5(r) = (1− r)/2. Solving for r and s, in terms of x, t and z,
we get s = t and

r =
2x− et + e−t

et + e−t .

Therefore, u(x, t) = x e2t−1
e2t+1 +

2et

e2t+1 .

Example 2.30. Let Ω := {(x,y) ∈R2 | x > 0,y > 0}. Let Γ := {(x,0) | x > 0}. Con-
sider the linear PDE {

xuy(x,y)− yux(x,y) = u(x,y) in Ω

u(x,0) = φ(x) on Γ .

The parametrisation of the initial curve is Γ (r) := (r,0) for r > 0. Therefore,

(a(γ1(r),γ2(r)),b(γ1(r),γ2(r))) · (−γ
′
2(r),γ

′
1(r)) = (0,r) · (0,1) = r 6= 0.

Hence, the given initial curve is non-characteristic. The characteristic equations are

dx(r,s)
ds

=−y;
dy(r,s)

ds
= x and

dz(r,s)
ds

= z(s)

with initial conditions

x(r,0) = r, y(r,0) = 0, and z(r,0) = φ(r).

Note that
d2x(r,s)

ds
=−x(r,s) and

d2y(r,s)
ds

=−y(r,s).

Then, x(r,s) = c1(r)coss+c2(r)sins and y(r,s) = c3(r)coss+c4(r)sins. Using the
initial condition, we get c1(r) = r and c3(r) = 0. Also,

0 =−y(r,0) =
dx(r,s)

ds
|s=0=−c1(r)sin0+ c2(r)cos0 = c2(r).

and, similarly, c4(r) = r. Also, z(r,s) = c5(r)es where c5(r) = φ(r). Thus, we have
(x(r,s),y(r,s)) = (r coss,r sins), where r > 0 and 0 ≤ s ≤ π/2. Hence, r = (x2 +
y2)1/2 and s = arctan(y/x). Therefore, for any given (x,y), we have

u(x,y) = z(r,s) = φ(r)es = φ(
√

x2 + y2)earctan(y/x).
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Exercise 2.1. Find the general solution (in terms of arbitrary functions) of the given
first order PDE

(i) xux + yuy = xe−u with x > 0. (Answer: u(x,y) = f (y/x) for some arbitrary f ).
(ii) ux +uy = y+u. (Answer: u(x,y) =−(1+ y)+ f (y− x)ex).

(iii) x2ux + y2uy = (x+ y)u. (Answer: u(x,y) = f ((1/x)− (1/y))(x− y)).
(iv) x(y2−u2)ux−y(u2+x2)uy = (x2+y2)u. (Answer: u(x,y) = x

y f (x2+y2+u2)).
(v) (ln(y+u))ux +uy =−1.

(vi) x(y−u)ux + y(u− x)uy = (x− y)u.
(vii) u(u2 + xy)(xux− yuy) = x4.

(viii) (y+ xu)ux− (x+ yu)uy = x2− y2.
(ix) (y2 +u2)ux− xyuy + xu = 0.
(x) (y−u)ux +(u− x)uy = x− y.

(xi) x(y2 +u)ux− y(x2 +u)uy = (x2− y2)u.
(xii)

√
1− x2ux +uy = 0.

(xiii) (x+ y)uux +(x− y)uuy = x2 + y2.

Exercise 2.2. Find the general solution of the following PDE. Check if the given
data curve is non-characteristic or not. Also find the solution(s) (if it exists) given
the value of u on the prescribed curves.

(i) 2ut +3ux = 0 with u(x,0) = sinx.
(ii) ux−uy = 1 with u(x,0) = x2.

(iii) ux +uy = u with u(x,0) = cosx.
(iv) ux−uy = u with u(x,−x) = sinx.
(v) 4ux +uy = u2 with u(x,0) = 1

1+x2 .
(vi) aux +uy = u2 with u(x,0) = cosx.

(vii) ux +4uy = x(u+1) with u(x,5x) = 1.
(viii) (1− xu)ux + y(2x2 +u)uy = 2x(1− xu). Also, when u(0,y) = ey on x = 0.

(ix) e2yux + xuy = xu2. Also, when u(x,0) = ex2
on y = 0.

(x) ux−2xuuy = 0. Also, when u(x,2x) = x−1 on y = 2x and when u(x,x3) = x on
y = x3.

(xi) −3ux +uy = 0 with u(x,0) = e−x2
. (Answer: u(x,y) = e−(x+3y)2

).
(xii) yux + xuy = x2 + y2 with u(x,0) = 1 + x2 and u(0,y) = 1 + y2. (Answer:

u(x,y) = xy+ |x2− y2|).
(xiii) yux + xuy = 4xy3 with u(x,0) =−x4 and u(0,y) = 0.
(xiv) yux + xuy = u with u(x,0) = x3.
(xv) ux + yuy = y2 with u(0,y) = siny.

(xvi) ux + yuy = u2 with u(0,y) = siny.
(xvii) ux + yuy = u with u(x,3ex) = 2.

(xviii) ux + yuy = u with u(x,ex) = ex.
(xix) ux + xuy = u with u(1,y) = φ(y).
(xx) xux +uy = 3x−u with u(x,0) = arctanx.

(xxi) xux +uy = 0 with u(x,0) = φ(x).
(xxii) xux + yuy = u with u(x,1) = 2+ e−|x|.

(xxiii) xux + yuy = xe−u with u(x,x2) = 0.
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(xxiv) xux− yuy = 0 with u(x,x) = x4.
(xxv) e2yux + xuy = xu2 with u(x,0) = ex2

.
(xxvi) uux +uy = 1 with u(2r2,2r) = 0 for r > 0. (Answer: No solution for y2 > 4x).

(xxvii) (y−u)ux +(u− x)uy = x− y with u(x,1/x) = 0.
(xxviii) x(y2 +u)ux− y(x2 +u)uy = (x2− y2)u with u(x,−x) = 1.

(xxix)
√

1− x2ux +uy = 0 with u(0,y) = y.

Exercise 2.3. Solve the equation xux +2yuy = 0 with u(1,y) = ey. Does a solutions
exist with data on u(0,y) = g(y) or u(x,0) = h(x)? What happens to characteristic
curves at (0,0)?

Exercise 2.4. Solve the equation yux +xuy = 0 with u(0,y) = e−y2
. In which region

of the plane is the solution uniquely determined?

Exercise 2.5. Solve the equation ux+yuy = 0 with u(x,0) = 1. Also, solve the equa-
tion with u(x,0) = x. If there is no solution, give reasons for non-existence.

2.4 Characteristic Hypersurfaces for Fully Nonlinear

For any given smooth map F : Rn×R×Ω → R, a fully nonlinear first order PDE

F(∇u(x),u(x),x) = 0 in Ω , (2.10)

where Ω ⊂ Rn is an open subset and u is the unknown. We set p := ∇u, z := u
for convenience. Since F is smooth in its arguments, its derivatives Fpi , Fz and Fxi

exists. Let us denote ∇pF := (Fp1 , . . . ,Fpn) and ∇xF := (Fx1 , . . . ,Fxn).
In the quasilinear situation, F(p,z,x) = a · p− f (x,z). Thus, the tangent vector

was known a priori as (a, f ). This information is lacking in fully nonlinear. For
instance, consider the fully nonlinear eikonal equation |∇u|2 = 1. This PDE can be
rewritten as (p,1) ·(p,−1) = 0. Thus, in contrast to the quasilinear case, the tangent
vector now depends on ∇u which is not known, a priori. Thus, we need to determine
characteristic curve x(s), the value of u along x(s) and the tangent plane at each s of
the curve which is called the characteristic strip.

For any fixed (x,z) ∈ Ω ×R, set W (x0,z0) := {p ∈ Rn | F(p,z0,x0) = 0}. Let S
denote the unknown graph (surface) of u in Rn+1 given by the equation {φ(x,z) :=
u(x)− z = 0}. Thus, solving for u in (2.10) is equivalent to finding a u ∈C1(Ω) and
a p ∈W (x,u(x)) such that p = ∇u(x), for all x ∈Ω . For each (x0,z0) ∈ S, consider
the family of planes

(z− z0) = p · (x− x0) ∀p ∈W (x0,z0).

Since S is the solution surface among these planes there is one plane which is tangen-
tial to S at (x0,z0) because for that choice of p, (p,−1) is normal at (x0,z0) on S. The
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envelope4 of the family of planes form a cone C(x0,z0), with vertex at (x0,z0). To
see this note that, for each (x,z)∈C(x0,z0), there exists a p= p(x) such that the cor-
responding plane and the cone C(x0,z0) have the same normal. Thus, the equation
of the cone C(x0,z0) is z− z0 = p(x) · (x−x0). The normal of the envelope cone and
the tangent plane are same. Thus, for each 1≤ j ≤ n, p j(x) = p j(x)+∂ j p · (x− x0)
or ∂ j p · (x− x0) = 0. But differentiating F(x0,z0, p(x)) = 0 with respect x j gives
∇pF(x0,z0, p(x)) · ∂ j p = 0. Thus, in a neighbourhood of x0, (x− x0) is parallel to
∇pF(x0,z0, p(x)), i.e. there exists a λ (x) such that ∇pF(x0,z0, p(x)) = λ (x)(x−x0).
Solving for (p(x),λ (x)) using above n equations and F(x0,z0, p(x)) = 0 yields a
p(x) appearing in the equation of the cone C(x0,z0). Thus, the equation of the cone
C(x0,z0) is determined by the p = p(x) which can be found by solving the n+ 1
system of equations above. The cone C(x0,z0) is tangential to S and is called the
Monge cone.

Definition 2.5. A surface S in Rn+1 is said to be an integral surface associated to
(2.10) if at each point (x0,z0) ∈ S ⊂ Rn+1 it is tangential to the Monge cone with
vertex at (x0,z0).

We make a note that the coefficients of the first order derivatives in the quasilinear
case, i.e. F(p,z,x) = a · p− f (x,z) satisfies the relation a = ∇pF .

Definition 2.6. Let F(∇u,u,x) = 0 be a fully nonlinear PDE defined in a neigh-
bourhood of x0 ∈ Rn and Γ be a smooth hypersurface containing x0. Then Γ is
non-characteristic at x0 with respect to F , if there exists a function v such that v = u
on Γ , F(∇v(x0),v(x0),x0) = 0 and

∇pF(∇v(x0),v(x0),x0) ·ν(x0) 6= 0

where ν(x0) is the normal to Γ at x0. Otherwise, we say Γ is characteristic at x0
with respect to F . If Γ is (non)characteristic at each of its point then we say Γ is
(non)characteristic.

The arguments leading to the above definition of non-characteristic hypersur-
face is similar to the arguments given in Theorem 2.1 for the first order quasilin-
ear PDE case, except that now the coefficients of first order derivatives are writ-
ten in terms of p-derivatives of F . In particular, in the two dimension case, the
initial data curve Γ = {γ1(r),γ2(r)} in Ω ⊂ R2 is non-characteristic for (2.10)
with Cauchy data u = u0 on Γ , if there exists function α(r) and β (r) such that
F(α(r),β (r),u0(r),γ1(r),γ2(r)) = 0 and u′0(r) = α(r)γ ′1(r)+β (r)γ ′2(r) and Γ sat-
isfies

(Fq(γ1,γ2,u0,α,β ),Fp(γ1,γ2,u0,α,β )) · (−γ
′
2,γ
′
1) 6= 0.

In the case of two dimension we shall switch to the notation (p,q) instead of (p1, p2)
for convenience sake.
4 Envelope of a family of planes is that surface which is tangent, at each of its point, to some plane
from the family.



2.5 Method of Characteristics for Fully Nonlinear 49

Example 2.31. Let Ω := {(x,y) ∈ R2 | x > 0} and Γ := {(0,y) | y ∈ R}. Consider
the fully nonlinear PDE {

uxuy = u(x,y) in Ω

u(0,y) = y2 on Γ .

The parametrisation of the initial curve is Γ (r) := (0,r) for all r ∈R and u0(r) = r2.
We seek functions α and β such that

α(r)β (r) = r2 and 2r = β (r).

Solving them, we get β (r) = 2r and α(r) = r/2. Since F(p,q,z,x,y) = pq− z, we
have

Fqγ
′
2(r) = p = α(r) = r/2 6= 0, for r 6= 0.

Hence, the given initial curve is non-characteristic except at (0,0).

Example 2.32. Consider the fully nonlinear eikonal equation |∇u|2 = 1 in Rn−1×
(0,∞) and the hypersurface Γ := {xn = 0}. Let us check whether Γ is non-
characteristic for the given PDE. Note that F(p,z,x) := |p|2 − 1. Let us define
v(x′,xn) := u(x′,0) + cxn for a c that will be chosen appropriately later. Then
|∇v(x0)|2 = |∇x′u(x0)|2 + c2. Let us choose

c =±
√

1−|∇x′u(x0)|2.

We have the corresponding v satisfying F(∇v(x0),v(x0),x0) = 0. Further,

∇pF(∇v(x0),v(x0),x0) ·ν(x0) = Fpn(x0) = 2vxn(x0) = 2c.

If |∇x′u(x0)|< 1 then c 6= 0 and ∇pF(∇v(x0),v(x0),x0) ·ν(x0) 6= 0. Thus, Γ is non-
characteristic at x0 when the initial data u0 is given such that |∇x′u0(x0)| < 1 for
the given fully nonlinear PDE. Observe that for a nonlinear PDE the concept of
characteristics also depend on initial values. The case when |∇x′u(x0)|= 1 the data
curve is characteristic but the Cauchy problem may admit a solution. For instance,
for the Cauchy data u0(x′) = xi, for fixed 1≤ i≤ n−1, we have the solution u(x) =
xi. However, for any choice of u0 such that |∇x′u0(x′)|2 > 1, there is no solution to
the Cauchy problem.

2.5 Method of Characteristics for Fully Nonlinear

We shall now derive the characteristics equation for a fully nonlinear PDE. In con-
trast to the quasilinear case, in the fully nonlinear case the characetristic curves that
we seek carry with them a tangent plane that also needs to be found. Thus, we need
to determine a characteristic strip. Equivalently, the system of n ODEs that was a
complete system by itself in the quasilinear case is no longer a complete system
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in the fully nonlinear. For instance, for the eikonal equation |∇u|2 = 1 we have
(∇u,1) · (∇u,−1) = 0. Thus, the characteristic curves (x(s),z(s)) satisfy the ODE

d
ds

x(s) = p(s) and
d
ds

z(s) = 1.

The above system of ODEs is not a complete system with 2n+1 unknowns, includ-
ing p, but with only (n+1) equations.

To make the system complete, one needs to introduce ODEs corresponding to
the unknown varibale p along the curve. The fact that the PDE is first order imposes
the condition that |∇pF |2 6= 0. Differentiating F with respect to the xi-variable in
(2.10), one obtains

n

∑
j=1

Fp j ux jxi +Fz pi +Fxi = 0.

The idea is to choose a curve x(s) in Ω such that one can compute u and ∇u along
the curve. Thus, one seeks to find x(s) such that

n

∑
j=1

Fp j(p(s),z(s),x(s))ux jxi(x(s)) + pi(s)Fz(p(s),z(s),x(s))

+ Fxi(p(s),z(s),x(s)) = 0.

The first term involves a second derivative of u. Since u should solve a first order
PDE, one wishes to eliminate the second order derivatives. Differentiate pi(s) w.r.t
s to obtain

d pi(s)
ds

=
n

∑
j=1

uxix j(x(s))
dx j(s)

ds
.

By setting
dx j(s)

ds
= Fp j(p(s),z(s),x(s))

one obtains

d pi(s)
ds

=
n

∑
j=1

Fp j(p(s),z(s),x(s))ux jxi(x(s))

= −pi(s)Fz(p(s),z(s),x(s))−Fxi(p(s),z(s),x(s)).

Thus, we have a system of n ODEs for computing p along the curve x(s), i.e.

d p(s)
ds

=−p(s)Fz(p(s),z(s),x(s))−∇xF(p(s),z(s),x(s)). (2.11)

In obtaining above ODEs we had set the curve x(s) to satisfy another n system of
ODEs, i.e.

dx(s)
ds

= ∇pF(p(s),z(s),x(s)). (2.12)
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Now to compute u along the curve x(s), we differentiate z(s) with respect to the
s-variable to obtain

dz(s)
ds

=
n

∑
j=i

ux j(x(s))
dx j(s)

ds
=

n

∑
j=i

ux j(x(s))Fp j(p(s),z(s),x(s)).

Thus, we have one nore ODE corresponding to the value of z along the curve x(s),
i.e.

dz(s)
ds

= p(s) ·∇pF(p(s),z(s),x(s)). (2.13)

The 2n + 1 system of first order ODE are called the characteristic equations of
(2.10). Thus, along the characteristic curves the PDE degenerates to a system of
ODEs. A fully nonlinear PDE can be solved if all the 2n+1 ODEs are solvable. The
n+1 system of ODEs (2.12) and (2.13) can be used compute the characteristic curve
(x(s),z(s)) which lies on the integral surface, while the system of ODEs (2.11) give
the normal vector at each point of the curve and, hence, determines a tangent plane.
Thus, the solution of the 2n+1 system of ODEs is called a characteristic strip. Note
that for linear, semilinear and quasilinear PDE the coefficients are independent of
∇u and, hence, there is no need to compute ∇u, a priori. Thus, in these cases, it is
enough to solve the n+ 1 ODEs (2.12) and (2.13) because they form a determined
system.

Remark 2.5. There are some cases of fully nonlinear PDE which are as easy to solve
as quasilinear PDE. This arises when the right hand side (RHS) of (2.11) is a sim-
ple situation. For instance, the RHS is zero for the possible two situations. The first
one being when the fully nonlinear PDE is of the form F(p) = 0, i.e. F is indepen-
dent of x and z variables. The other possible case is the nonlinear PDE of the form
F(p,z,x) := p · x− z+ f (p) = 0 where f : Rn → R is given. This form of PDE is
called the Clairaut’s equation. Another simple case is when the PDE is of the form
F(p) = z, i.e. F is independent of x variable. In this case, RHS is p itself.

2.6 Complete, Singular and General Integrals

Consider the first order PDE (2.10), i.e. F(∇u(x),u(x),x) = 0 in Ω . Let A⊂ Rn be
an open set which is the parameter set. Let us introduce the n× (n+1) matrix

(Dau,D2
xau) :=

 ua1 ux1a1 . . . uxna1
...

...
. . .

...
uan ux1an . . . uxnan

 .

Definition 2.7. A C2 function u = u(x;a) is said to be a complete integral in Ω ×A
if u(x;a) solves (2.10) for each a ∈ A and the rank of the matrix (Dau,D2

xau) is n.
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The condition on the rank of the matrix means that u(x;a) strictly depends on all the
n components of a. The complete intergal has as many constant parameters as the
independent variables.

Definition 2.8. Let Ω ⊂Rn and A⊂Rm be open subsets and let u = u(x;a) be a C1

function of both x and a. Suppose the equation Dau(x;a) = 0 is solvable for a, as a
C1 function of x, say a = φ(x), i.e., Dau(x;φ(x)) = 0, then v(x) := u(x;φ(x)) is the
envelope of the functions {u(·;a)}a∈A.

The idea is that for each x ∈ Ω , the graph of v is tangent to the graph of u(·;a)
for a = φ(x). The envelope v is called the singular integral when v solves the PDE
(2.10). The singular integral denotes the equation of envelope of the surface repre-
sented by the complete integral of the given PDE. The singular integral is obtained
by eliminating the constant a between the n equations Dau = 0 and the complete
integral.

Theorem 2.5. Suppose for each a∈A, u(·;a) is a solution to (2.10) and the envelope
v of u, given as v(x) = u(x,φ(x)), exists then v also solves (2.10).

Proof. Since v(x) = u(x;φ(x)), for each i = 1,2, . . . ,n,

vxi(x) = uxi +
n

∑
j=1

ua j φ
j

xi
(x) = uxi

because Dau(x;φ(x)) = 0. Therefore,

F(∇v(x),v(x),x) = F(∇u(x;φ(x)),u(x;φ(x)),x) = 0.

Definition 2.9. The general integral is the C1 envelope v (provided it exists) of the
functions u(x;a′,h(a′)) where a′ := (a1,a2, . . . ,an−1) and h : A′ ⊂ Rn−1→ R.

The general intergal is obtained by eliminating the constant a′ between the n− 1
equations Da′u = 0 and φ(x,z;a′,h(a′)).

Remark 2.6. Let us illustrate in the two dimension set-up the procedure to obtain
a general solution from a complete integral. Let G(x,y,z,a,b) be a complete in-
tegral of F(p,q,z,x,y) = 0. Impose b = h(a) in the complete integral G to ob-
tain G(x,y,z,a,h(a)) and impose the envelope condition DaG = 0. Thus, 0 = Ga +
h′(a)Gh. This gives a = φ(x,y,z). So, the general solution is G(x,y,z,φ ,h◦φ) = 0.

Remark 2.7. Note that if the fully nonlinear PDE is of the form F(p) = 0, i.e. F is
independent of x and z variables. Thus, the RHS of (2.11) is zero which implies p
are constants in the s variable. Using this information and (2.12) in (2.13), we get
z(x;a,b) = ā · x̄+bxn +an is a solution to PDE provided F(ā,b) = 0, i.e. b = ψ(ā)
for some ψ . Thus, the complete integral is of the form z(x;a) = (ā,ψ(ā)) · x+ an.
For singular integral, we eliminate a between z = ā.x̄+ψ(ā)xn + an, zā = 0 and
zan = 0. But observe that zan = 1 and is never zero. Thus, singular integral does
not exist for PDE of type F(p) = 0. The general integral is found by choosing h
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such that h(ā) = an and eliminate ā between z = (ā,ψ(ā)) · x+h(ā) and zā = 0, i.e.
0 = x̄+ xnψ ′(ā)+h′(ā).

Example 2.33. Consider the PDE uxuy = c for some constant c ∈ R. Thus, z = ax+
dy+b is a complete integral if ad = c or d = c/a. Thus, u(x,y;a,b) = ax+ c

a y+b
is a complete integral.

Example 2.34. Consider the PDE u2
x + u2

y = uxuy. Thus, z = ax+ cy+ b is a com-

plete integral if a2 + c2 = ac or c = a±
√

a2−4a2

2 = a±ıa
√

3
2 . Thus, u(x,y;a,b) =

ax+ a±ıa
√

3
2 y+b is a complete integral.

Example 2.35. Consider the PDE u2
x + uy = 0. Thus, z = ax+ cy+ b is a complete

integral if c=−a2. Thus, u(x,y;a,b) = ax−a2y+b. We will show that the complete
integral φ(x,y,u,a,b) := u(x,y)−ax+ya2−b= 0 gives a solution to the given PDE.
To eliminate the parameters we differentiate φ with respect to both x and y variable
to obtain ux = a and uy =−a2 and eliminating a and b among them is precisely the
PDE.

Example 2.36. Consider the eikonal equation |∇u|= 1. Thus, z = a · x+b is a com-
plete integral if |a| = 1. The complete integral φ(x,u,a,b) := u(x;a,b)− a · x− b,
for all a ∈ S1(0) where S1(0) is the sphere of radius one centred at origin and b ∈R,
property is checked because on diferentiating φ with respect to x, we get the relation
∇u = a and |a|= 1.

Example 2.37. A complete integral of the eikonal equation |∇u(x,y)| = 1 in two

dimension, i.e.,
√

u2
x +u2

y = 1 is u(x,y;a,b) = (x,y) ·(cosa,sina)+b. Consider h≡
0, i.e. set b = 0, then u(x,y;a,h(a)) = (x,y) · (cosa,sina). Thus, solving for a in
Dau =−xsina+ ycosa = 0, we get a = arctan(y/x). Since

cos(arctan(z)) =
1√

1+ z2
and sin(arctan(z)) =

z√
1+ z2

,

we have the envelope v(x,y) =±
√

x2 + y2 for non-zero vectors is the general inte-
gral.

Remark 2.8. For any given f : Rn→ R, the Clairaut’s equation is given as x ·∇u+
f (∇u) = u. The motivation for the above form of nonlinear PDE F(p,z,x) := p ·
x− z+ f (p) = 0 is motivated as one possible case where the RHS of (2.11) is zero
which implies p are constants in the s variable. Using the form of the PDE and (2.12)
in (2.13), we get z(x;a,b) = a · x+ b is a solution to PDE provided f (a) = b, for
a∈Rn and b∈R. Thus, the complete integral is of the form z(x;a) = a ·x+ f (a). Set
φ(x,u,a) := u(x;a)−a ·x− f (a) = 0. To eliminate the parameters we differentiate φ

with respect to both each xi variable to obtain ∇u = a. Eliminating a in the complete
integral we get the required PDE.

Example 2.38. The Hamilton-Jacobi is a special case of the nonlinear equation
where F(x,z, p) = pn + H(x, p1, . . . , pn−1) where H is independent of z and pn.
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For any given H : Rn → R, the complete integral of the Hamilton-Jacobi equa-
tion ut +H(∇u) = 0 is φ(x, t,u,a,b) := u(x, t;a,b)−a ·x+ tH(a)−b for all a ∈Rn

and b ∈ R. On differentiating with respect to the variable (x, t), we get ∇u = a and
ut =−H(a).

Example 2.39. A complete integral of the Hamilton-Jacobi equation ut + |∇u|2 = 0
is u(x, t;a,b) = x · a− t|a|2 + b, where a ∈ Rn and b ∈ R. Consider h ≡ 0, then
u(x, t;a,h(a)) = x · a− t|a|2. Thus, solving for a in Dau = x− 2ta = 0, we get a =

φ(x, t) := x
2t . We get the envelope v(x, t) = |x|2

4t .

Example 2.40. The complete integral of the nonlinear PDE u2(1 + |∇u|2) = 1 is
u(x;a) =±(1−|x−a|2)1/2 with |x−a|< 1. Now, solving Dau =± x−a

(1−|x−a|2)1/2 = 0

for a, we get a = φ(x) := x. Thus, the envelope is v(x) =±1.

Example 2.41. Let Ω := {(x,y) ∈ R2 | x > 0}. Let Γ := {(0,y) | y ∈ R}. Consider
the fully nonlinear Cauchy problem{

uxuy = u(x,y) in Ω

u(0,y) = y2 on Γ .

The parametrisation of the initial curve is Γ (r) := (0,r) for all r ∈ R. We have
already verified that the data curve is non-characteristic except at (0,0) in Exam-
ple 2.31. The characteristic equations are

(
dx(r,s)

ds , dy(r,s)
ds

)
= (q(r,s), p(r,s)), (using(2.12))(

d p(r,s)
ds , dq(r,s)

ds

)
= (p(r,s),q(r,s)), (using(2.11))

dz(r,s)
ds = (p(r,s),q(r,s)) · (q(r,s), p(r,s)) = 2p(r,s)q(r,s) (using(2.13))

with initial conditions x(r,0) = 0,y(r,0) = r,z(r,0) = r2, p(r,0) = α(r) = r
2 and

q(r,0) = β (r) = 2r. Thus, on integrating, we get p(r,s) = (r/2)es and q(r,s) = 2res,
for all s ∈ R. Using (p,q), we solve for x to get x(r,s) = 2r(es− 1) and y(r,s) =
(r/2)(es +1). Solving for z, we get z(r,s) = r2e2s. Solving r and s in terms of x and
y, we get

r =
4y− x

4
and es =

x+4y
4y− x

.

Hence u(x,y) = z(r(x,y),s(x,y)) = (x+4y)2

16 .

Example 2.42. Let us consider the same non-linear PDE as in above example but
with a different datum curve and data, i.e.{

uxuy = u(x,y) in R2

u(x,1+ x) = x2 on Γ .

The parametrisation of the initial curve is Γ (r) := (r,1+ r) for all r ∈ R. We first
look for the functions α and β such that
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α(r)β (r) = r2 and 2r = α(r)+β (r).

Solving them, we get β (r) = r = α(r). Since F(p,q,z,x,y) = pq− z, we have

Fpγ
′
1−Fqγ

′
2(r) = q− p = β (r)−α(r) = r− r = 0, ∀r.

Hence, the given initial curve is characteristic. The characteristic equations are
(

dx(r,s)
ds , dy(r,s)

ds

)
= (q(r,s), p(r,s)), (using(2.12))(

d p(r,s)
ds , dq(r,s)

ds

)
= (p(r,s),q(r,s)), (using(2.11))

dz(r,s)
ds = (p(r,s),q(r,s)) · (q(r,s), p(r,s)) = 2p(r,s)q(r,s) (using(2.13)

with initial conditions x(r,0) = r, y(r,0) = 1+ r, z(r,0) = r2, p(r,0) = α(r) = r
and q(r,0) = β (r) = r. Thus, on integrating, we get p(r,s) = res and q(r,s) = res,
for all s ∈ R. Using (p,q), we solve for x to get x(r,s) = res and y(r,s) = res + 1.
Solving for z, we get z(r,s) = r2e2s. Note that there is no unique way of solving r
and s in terms of x and y. This is because the Jacobian is zero. In fact, we have three
possible representation of u, viz., u = x2, u = (y− 1)2 and u = x(y− 1). Of these
three possibilities, only u = x(y−1) satisfies the PDE.

Example 2.43. For any given λ ∈ R, consider the fully non-linear PDE{
u2

x +u2
y = 1 in R2

u(x,x) = λx on Γ .

The parametrisation of the initial curve is Γ (r) := (r,r) for all r ∈ R. We first look
for the functions α and β such that α2(r)+ β 2(r) = 1 and λ = α(r)+ β (r). We
can view α(r) = cosθ and β (r) = sinθ where θ is such that cosθ + sinθ = λ .
Thus, λ 2−1 = sin(2θ) or θ = 1

2 sin−1(λ 2−1). This imposes that |λ | ≤
√

2. Since
F(p,q,z,x,y) = p2 +q2−1, we have

Fpγ
′
1−Fqγ

′
2(r) = 2(p−q) = 2(cosθ − sinθ) = 0, ∀θ = π/4+ kπ,

where k = 0,1,2, . . .. Hence, the given initial curve is non-characteristic for θ 6=
π/4+ kπ for all k and cosθ + sinθ = λ , i.e. for all |λ | <

√
2. The characteristic

equations are
(

dx(r,s)
ds , dy(r,s)

ds

)
= (2p(r,s),2q(r,s)), (using(2.12))(

d p(r,s)
ds , dq(r,s)

ds

)
= (0,0), (using(2.11))

dz(r,s)
ds = (p(r,s),q(r,s)) · (2p(r,s),2q(r,s)) = 2(p2 +q2) = 2 (using(2.13))

with initial conditions x(r,0) = r, y(r,0) = r,z(r,0) = λ r, p(r,0) = cosθ and
q(r,0) = sinθ . Thus, on integrating, we get p(r,s) = cosθ and q(r,s) = sinθ . Using
(p,q), we solve for x to get x(r,s) = 2scosθ + r and y(r,s) = 2ssinθ + r. Solving
for z, we get z(r,s) = 2s+λ r. Solving r and s in terms of x and y, we get
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s =
x− y

2(cosθ − sinθ)
and r =

xsinθ − ycosθ

sinθ − cosθ
.

Therefore, the general solution is

u(x,y) =
x− y+λ (ycosθ − xsinθ)

cosθ − sinθ

=
x− y+(cosθ + sinθ)(ycosθ − xsinθ)

cosθ − sinθ

=
x(1− sinθ cosθ − sin2

θ)+ y(cos2 θ + sinθ cosθ −1)
cosθ − sinθ

= xcosθ + ysinθ .

Example 2.44. Consider the equation y(u2
x−u2

y)+uuy = 0 with u(2y,y) = 3y. Note
that F(p,q,z,x,y) = y(p2−q2)+ zq = 0. Thus the ODEs become

(dx,dy) = (2yp,z−2yq) and (d p,dq) =−(pq, p2).

Thus, dq
d p =

−p
q . On integrating, we get p2−q2 = a. Using the PDE, we get ya+uq=

0. Thus,

q =−ay
z

and p =±

√
a+

a2y2

z2 =±1
z

[
a(z2 +ay2)

] 1
2

Now, dz = (p,q) · (dx,dy) or zdz = (±
[
a(z2 +ay2)

] 1
2 ,−ay) · (dx,dy). Hence,

∓
√

adx = − 1√
z2 +ay2

(zdz+aydy) =− 1

2
√

z2 +ay2
d(z2 +ay2) =−d(

√
z2 +ay2)

∓
√

ax∓b = −
√

z2 +ay2

u2(x,y) = (b+ x
√

a)2−ay2.

Using the initial data, we get 9y2 = (b+2y
√

a)2−ay2 which is satisfied with b = 0
and a= 3. Thus, u(x,y)2 = 3(x2−y2). The solution is valid in the domain {|x|> |y|}.

Example 2.45. Find the characteristic strip of the equation F(p,q,z,x,y) := x2y2 pq−
xp− yq− z+1 = 0 passing through the initial data curve Γ (r) := (r,1,−r). Let us
compute

F2
p +F2

q = x4y4(p2 +q2)+(x2 + y2)−2x2y2(xq+ yp).

Thus the ODEs are (
dx(s)

ds
,

dy(s)
ds

)
= (x2y2q− x,x2y2 p− y),

(
d p(s)

ds
,

q(s)
ds

)
= (2p(1− xy2q),2q(1− x2yp)).

Thus,
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d p
p
,

dq
q

)
=−2

(
dx
x
,

dy
y

)
which gives p = ax−2 and q = by−2. Using this information in the ODE correspond-
ing to z, we get

dz = ax−2dx+by−2dy.

On integration, we get u(x,y) =−ax−1−by−1+c. Using this information in F = 0,
we get c = ab+1. Thus, u(x,y) =−ax−1−by−1+ab+1. INCOMPLETE!!! FIND
CONSTANTS USING INITIAL DATA.

Example 2.46. Let us compute a complete integral of the first order PDE uxuy =
u(x,y). The equation is of the form F(p,q,z,x) = pq− z. The characteristic equa-
tions are (using (2.12)) (

dx(s)
ds

,
dy(s)

ds

)
= (q(s), p(s)),

(using (2.11)) (
d p(s)

ds
,

dq(s)
ds

)
= (p(s),q(s)).

and (using (2.13))

dz(s)
ds

= (p(s),q(s)) · (q(s), p(s)) = 2p(s)q(s).

Thus, on integrating, we get p(s) = c1es and q(s) = c2es. Solving for z, we get

z(s) = c1c2e2s + c3.

Using (p,q), we solve for x to get x(s) = c2es +b and y(s) = c1es +a.Therefore,

u(x,y) = (y−a)(x−b)+ c3

is a complete integral for arbitrary constants a and b, if we choose c3 = 0.

Example 2.47. A complete integral of the nonlinear equation uxuy = u, considered
in Example 2.46, is u(x,y;a,b) = xy+ab+(a,b) · (x,y). Let h : R→ R be defined
as h(a) = a, then u(x,y;a,h(a)) = u(x,y;a) = xy+ a2 + a(x+ y). Solving for a in
Dau = 2a+x+y = 0 yields a = φ(x,y) := −(x+y)

2 . Therefore, the envelope v(x,y) =
u(x,y;φ(x,y)) =−(x− y)2/4.

Example 2.48. Let us find a different complete integral of the nonlinear PDE uxuy =
u. Note that F(p,q,z,x) = pq− z. Then the ODE(

dx(s)
ds

,
dy(s)

ds

)
= (q(s), p(s)),
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d p(s)

ds
,

dq(s)
ds

)
= (p(s),q(s)).

Thus, on integrating, we get p(s) = c1es and q(s) = c2es. Therefore, p/q = a. Using
this equation with pq = z, we get p =±√az and q =±

√
z/a. Now,

dz(s)
ds

= (p(s),q(s)) ·
(

dx(s)
ds

,
dy(s)

ds

)
= ±
√

az
dx(s)

ds
±
√

z/a
dy(s)

ds
1√
z

dz(s)
ds

= ±
(√

a
dx(s)

ds
+1/
√

a
dy(s)

ds

)
2
√

z = ±
(√

ax+ y/
√

a
)
+ c3.

Thus,

u(x,y) =
[

b+
1
2
(√

ax+ y/
√

a
)]2

is a complete integral, if we had chosen a > 0.

Note that previous two examples compute two different complete integral for
same equation. However, in both examples, no choice of a and b will give the zero
solution u≡ 0. Thus, u≡ 0 is called singular solution.

Example 2.49. Consider the equation xuxuy + yu2
y = 1 with u(x,0) = x/2. The

parametrisation of the initial curve is Γ (r) := (r,0) for all r ∈ R. We first look for
the functions α and β such that rα(r)β (r) = 1 and 1/2 = α(r). Solving them, we
get β (r) = 2/r. Since F(p,q,z,x,y) = xpq+ yq2−1, we have

Fpγ
′
1−Fqγ

′
2(r) = 2xq = 2rβ (r) = 4 6= 0, ∀r.

Hence, the given initial curve is non-characteristic. Thus the ODE
(

dx(s)
ds , dy(s)

ds

)
= (xq,xp+2yq),(

d p(s)
ds , dq(s)

ds

)
=−(pq,q2).

Thus, on integrating, we get p/q = a. Using the PDE, we get (xa+ y)q2 = 1. Thus,

q =± 1√
xa+ y

p =± a√
xa+ y

.

Now,
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dz(s)
ds

= (p(s),q(s)) ·
(

dx(s)
ds

,
dy(s)

ds

)
= ± 1√

xa+ y

(
a

dx(s)
ds

+
dy(s)

ds

)
u(x,y) = ±2

√
ax+ y+b.

Thus, (u(x,y)− b)2 = 4(ax+ y) is a complete integral. Using the initial data, we
get (r− 2b)2 = 16ar. Differentiating w.r.t r, we get r = 8a+ 2b and using in first
equation we get r = 4a and b = h(a) := −2a. Hence, (u+ 2a)2 = 4(ax+ y). Now
solving for a in Dau = 0, we get 4(u+ 2a) = 4x. Then a = φ(x,y,u) := (x− u)/2
and the solution is

x2 = 4
(

x−u
2

)
x+4y

which yields u(x,y) = x2+4y
2x .

Example 2.50. Consider the equation y(u2
x −u2

y)+uuy = 0 with u(r2,0) = 2r. Note
that F(p,q,z,x,y) = y(p2−q2)+zq = 0. As in example 2.44, we get u2(x,y) = (b+
x
√

a)2−ay2. Using the initial conditions, we get 4r2 = (b+r2√a)2. Differentiating
this w.r.t to r and solving for r, we get

r2 =
1√
a

(
2√
a
−b
)
.

Substituting this in the equation of r, we get b = 1/
√

a. This gives

u2 =

(
1√
a
+ x
√

a
)2

−ay2 =
1
a
(1+ xa)2−ay2.

Now solving for a in Dau = 0, we get

0 = 2
(

1√
a
+ x
√

a
)(
− 1

2a
√

a
+

x
2
√

a

)
− y2

y2 =

(
x2− 1

a2

)
a = φ(x,y) :=

1√
x2− y2

.

We choose the positive root above to keep a > 0 so that all roots above made sense.
Therefore,

u2(x,y) =
√

x2− y2

(
1+

x√
x2− y2

)2

− y2√
x2− y2

.
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Example 2.51. Let us find the complete integral, general solution and singular solu-
tion of the fully non-linear PDE u2

x +u2
y = 1+2u. Since F(p,q,z,x) = p2+q2−1−

2z, the ODEs are (
dx(s)

ds
,

dy(s)
ds

)
= (2p(s),2q(s)),(

d p(s)
ds

,
d p(s)

ds

)
= (2p,2q)

Thus, on dividing and integrating, we get p/q = a. Using the PDE, we get (1+
a2)q2 = 1+2z. Thus,

q =±
√

1+2z
1+a2 p =±a

√
1+2z
1+a2 .

Now,

dz(s)
ds

= (p(s),q(s)) ·
(

dx(s)
ds

,
dy(s)

ds

)
= ±

√
1+2z
1+a2

(
a

dx(s)
ds

+
dy(s)

ds

)
1√

1+2z
dz(s)

ds
= ± 1√

1+a2

(
a

dx(s)
ds

+
dy(s)

ds

)
√

1+2z = ± ax+ y√
1+a2

±b.

Thus,

u(x,y) =
1
2

(
ax+ y√
1+a2

+b
)2

− 1
2

is a complete integral. Note that no choice of a and b will give the constant solution
u =−1/2. Thus, u≡−1/2 is called singular solution. INCOMPLETE!!!!!!!

Exercise 2.6. (i) Find a complete integral of uuxuy = ux +uy.
(ii) Find a complete integral of u2

x +u2
y = xu.

(iii) Find a complete integral of x(u2
x +u2

y) = uux with u given on the curve

(a) u(2y,y) = 5y
(b) u(0,r2) = 2r

(iv) Find a complete integral of 4uux−u3
y = 0 with u given on the curve u(0,r)= 4r.

2.7 Analytic Solutions

In this section, we establish the existence of analytic solutions for first order system
of quasilinear PDE with all the initial data being analytic. Consider the system of m
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first order quasilinear PDE given as:{
ut(x, t) = ∑

n
j=1 A j(u)ux j in Rn+1

u(x,0) = g(x) on Rn×{0} (2.14)

where each A j(u) is a m×m matrix, u(x) = (u1, . . . ,um) and g(x) = (g1, . . . ,gm).

Theorem 2.6. Let g(0) = g0. If, for all j, the entries of the matrix A j are analytic at
g0 and g is analytic at 0 then there exists a unique local analytic solution u at (0,0)
of (2.14).

Proof. Without loss of generality we assume that g0 = 0. The proof employs the
method of power series due to the analyticity assumptions. The proof involves three
major steps: firstly compute the Taylor series of u at (0,0), secondly establish the
convergence of the Taylor series of u in a neighbourhood of (0,0) and finally to
show that the limit satisfies the system (2.14).

First step: By the analyticity hypotheses of A j and g, their respective Taylor
series around 0 converge to itself. Thus,

Aik
j (u) =

∞

∑
|β |=0

bik j
β

uβ and gi(x) =
∞

∑
|α|=0

ci
α xα .

Let us assume that the solution admits a power series expansion around (0,0), i.e.
ui(x, t) = ∑

∞

|α|+ j=0 ai
α, jx

α t j. We need to compute ai
α, j in order to identify u. For

j = 0 and α = 0, we have ai
0,0 = ui(0,0) = gi(0) = 0 for all i. For j = 0 and any α ,

the corresponding coefficients comes from ui(x,0). Since ui(x,0) = gi(x), for all i,
ai

α,0 = ci
α . Now, for j = 1 and α = 0, the corresponding Taylor coefficients comes

from ∂tui(0,0). The PDE gives that, for all i,

ui
t(x,0) =

n

∑
j=1

A j(g)gx j(x).

Evaluating above identity at x = 0, we get ai
0,1 = ∑

n
j=1 ∑

m
k=1 bik j

0 ck
e j

. Proceeding this
way we can compute all the Taylor coefficients of ui in terms of coefficients of Aik

j
and gi. For j = 1 and |α|= 1, differentiate the PDE with respect to x once and equate
coefficients. For j = 2 and |α|= 0, we differentiate the PDE once with respect to t
and evaluate at (0,0).

Second Step: Since A j are all analytic at 0, there exists constants M and R such
that its Taylor coefficients satisfy the estimate, for all i, j,k and β

|bik j
β
| ≤ M

R|β |
.

We define B(v) = M
1− v1+...+vm

R
and set the entries of the matrix B j(v) to be B(v), for

all j. By construction the matrix B j admits a power series, i.e.
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B(v) = M
∞

∑
k=0

(v1 + . . .+ vm)
k

Rk = M
∞

∑
|β |=0

|β |!
β !

vβ

R|β |
.

Therefore, by construction, the Taylor coefficients of A j are bounded by the Taylor
coefficients of B j.

Since gi are all analytic at 0, there exists constants M and R such that its Taylor
coefficients satisfy the estimate, for all i and α

|ci
α | ≤

M
R|α|

.

We define h(x) = M(x1+...+xn)

R(1− x1+...+xn
R )

and set the hi = h, for all i. Note that h(0) = 0. By

construction, hi admits a power series, i.e.

h(x) = M
∞

∑
k=0

(x1 + . . .+ xn)
k+1

Rk+1 = M
∞

∑
|α|=1

|α|!
α!

xα

R|α|
.

Therefore, by construction, the Taylor coefficients of gi are bounded by the Taylor
coefficients of hi.

We introduce another first order quasilinear problem{
vt(x, t) = ∑

n
j=1 B j(v)vx j in Rn+1

v(x,0) = h(x) on Rn×{0} (2.15)

Due to the choice of B j and h, we seek a solution v = (v1, . . . ,vm) such that vi = v
for all i. Then the system of PDE (2.15) reduces to the scalar PDE:{

vt(x, t) = mB(v)∑
n
j=1 vx j in Rn+1

v(x,0) = h(x) on Rn×{0}

Note that B(v) = M
1−mv

R
. Set z = x1 + . . .+ xn and w(z, t) := v(x, t). The the PDE

satisfied by w(z, t) is {
wt(z, t)−A(w)wz = 0 in R2

w(z,0) = G(z) on R×{0}

where A(w) = RMmn
R−mw and G(z) = Mz

R−z . We solve the above scalar quasilinear PDE
using the method of characteristics. Note that {(z,0,G(z)} is the known curve on
the solution surface of w. We parametrize the initial curve with the r-variable, i.e.,
{(r,0)}. The initial curve is non-characteristic because (A(w),1) · (0,1) = 1 6= 0.
The characteristic equations are:

dz(r,s)
ds

=−A(w),
dt(r,s)

ds
= 1, and

dw(r,s)
ds

= 0

with initial conditions,
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z(r,0) = r, t(r,0) = 0, and w(r,0) = G(r).

Solving the ODE corresponding to w, we get w(r,s) = c3(r) with initial conditions
w(r,0) = c3(r) = G(r). Thus, w(r,s) = G(r) = Mr

R−r . Using this in the ODE of z, we
get

dz(r,s)
ds

=−A(G(r)).

Solving the ODE’s, we get

z(r,s) =−A(G(r))s+ c1(r), t(r,s) = s+ c2(r)

with initial conditions

z(r,0) = c1(r) = r and t(r,0) = c2(r) = 0.

Therefore,
z(r,s) =−A(G(r))s+ r, and t(r,s) = s.

Solving r and s, in terms of z, t and w, we get s = t and r = z+A(G(r))t. Therefore,
w(z, t) = M(z+tA(w))

R−z−A(w)t is the solution in the implicit form. Observe that the projected
characteristic curves are given by z = G(r)t + r passing through (r,0) ∈ Γ and w is
constant along these curves. Thus, the characteristics curves do meet but there is a
neighbourhood of (0,0) where the curves do not meet and in this neighbourhood an
analytic solution w exists and in turn v exists. Further by the construction of v, the
Taylor series coefficients of u are bounded by v and, hence, the Taylor series of u
converges.

Third Step: In this step we claim that the limit of the convergent Taylor series of
u satisfies (2.14). We have shown that the Taylor series ∑

∞

|α|+ j=0 ai
α, jx

α t j converges,
say to ui. Let ui

k := ∑
k
|α|+ j=0 ai

α, jx
α t j be the partial sum of the Taylor series and

it uniformly converges to ui in a neighbourhood of (0,0). Similarly all the partial
derivative of ui

k with respect to (x, t) also uniformly converge to the respective partial
derivatives of ui. We claim that u = (u1, . . . ,um) satisfies (2.14). Consider

ut −
n

∑
j=1

A j(u)ux j = (ut(x, t)−∂tuk)−
n

∑
j=1

A j(u)
(
ux j −∂x j uk

)
+

(
∂tuk−

n

∑
j=1

A j(u)∂x j uk

)

The first and second term uniformly converge to zero. Now, the coefficients ai
α, j

were defined such that the third term and its derivatives with respect to x and t upto
order k vanish at (0,0). Thus the power series expansion of the third term contains
xα t j only for |α|+ j ≥ k+1, i.e. modulus of the third term is bounded by Crk+1 for
(x, t) ∈ Br(0). Thus, the third terms also converges uniformly to zero and u satisfies
(2.14).
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Remark 2.9. The natural choice of h(x)= Mz
1−z/R was ignored over the specific choice

made in the theorem. Of course, h(0) is now non-zero. Further, this choice will not
work because the resulting scalar quasilinear PDE satisfies by w(z, t) will be (after
normalizing constants){

wt(z, t)− 1
1−w wz = 0 in R2

w(z,0) = 1
1−z on R×{0}

This PDE does not behave well near z = 0 because w(0,0) = 1 and the coefficient
of wz is infinite at (0,0).

Remark 2.10. The result of Theorem 2.6 can be extended to the more general system
of m first order quasilinear PDE given as:{

ut(x, t) = ∑
n
j=1 A j(x, t,u)ux j +B(x, t,u) in Rn+1

u(x,0) = g(x) on Rn×{0} (2.16)

with analyticity assumptions on all the initial data.

Remark 2.11. The local solution is, in general, not a global solution because

(a) The domains of analyticity of initial data may not be the entire domain.
(b) Even if the initial data are entire the characteristic curves of the scalar quasilinear

PDE of w may intersect and the analyticity of the solution of majorant equation
(2.15) is not entire.

(c) The size of the analyticity neighbourhood depends on the constants M and R.

Recall that the result Theorem 2.6 was estbalished for a flat initial surface (hyper-
plane). However, the result could be generalised to non-characteristic hypersurfaces.

Theorem 2.7. Consider the first order system of linear PDE{
Lu(x) = f(x) in Rn

u(x) = g(x) on Γ
(2.17)

where L := ∑
n
j=1 A j(x)∂x j +B(x), A j and B are m×m matrices, the data and un-

known vectors are all m-tuples. If Γ is a non-characteristic analytic hypersurface
of Rn and all the initial data are analytic in a neighbourhood of x−0 then the PDE
admits a unique local analytic solution in neighbourhood of x0.

Proof. The idea of the proof is to flatten the hyperspace to a hyperplane and invoke
Theorem 2.6. Let {φ = 0} be the equation of Γ such that ∇φ 6= 0 on Γ . Without loss
of generality, let us assume φxn 6= 0. Define the flattening map (x′,xn) 7→ (x′,φ(x)).
Thus, the initial hypersurface is mapped to the hyperplane {t := φ(x) = 0}. By chain
rule, the operator L becomes

L :=
n−1

∑
j=1

A j∂x j +
n

∑
j=1

A jφx j ∂t .
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The non-characteristic condition on Γ implies that the coeeficient of ∂t , ∑
n
j=1 A jφx j ,

is invertible and the PDE (2.17) transforms to{
vt +

(
∑

n
j=1 A jφx j

)−1
∑

n−1
j=1 A jvx j =

(
∑

n
j=1 A jφx j

)−1
f in Rn−1

v(x′, t) = g(x′) on {t = 0}.

Since Γ is analytic φ is analytic in a neighbourhood of x0 and hence the coefficients
of the new PDE are all analytic and, by Theorem 2.6, there exists a local analytic
solution.

The Cauchy-Kowalevski theorem establishes the uniqueness of solutions in the
class of analytic functions. But there could be non-analytic solutions for analytic
data. The Holmgren’s result establishes the uniqueness in the C1 class of solutions
for linear system of first order PDE.

Theorem 2.8. If u ∈ C1(Rn+1) is a local solution at (0,0) of the linear system of
PDE {

ut(x, t) = ∑
n
j=1 A j(x, t)ux j in Rn+1

u(x,0) = 0 on Rn×{0}

where entries of A j are analytic in a neighbourhood of (0,0) then u≡ 0 in a neigh-
bourhood of (0,0).

Proof. The idea of the proof is to use the equivalence of the uniqueness of solution
of the above PDE is same as the existence of solution of the adjoint PDE and the
existence of the adjoint is a consequence of the Cauchy-Kowalevski result.

Choose a region Ω bounded by the hyperplane {t = 0} and some non-characteristic
hypersurface Γ with respect to L such that (0,0) ∈ ∂Ω := Γ ∪ {t = 0}. For any
polynomial p, define v as the solution of the L∗v = p in Ω with v = 0 on Γ where
(L∗v)i =−vi

t +∑
n
j=1(∑

n
k=1 Aik

j vk), the adjoint of L. The existence of v follows from
Theorem 2.6. Now, by integration by parts,∫

Ω

Lu ·v =
∫

Ω

ut ·v−
n

∑
i, j,k=1

∫
Ω

Aik
j uk

x j
vi

=
∫

Ω

L∗v ·u+
∫

∂Ω

(
u ·vνt −

n

∑
i, j,k=1

Aik
j uivkvνx j

)
.

The integral over ∂Ω vanishes because u vanishes on {t = 0} and v vanishes on Γ .
Further, Lu = 0 and L∗v = p. Thus, we have the identity

∫
Ω

pu = 0 for all polyno-
mial p. By Weierstrass theorem, choose a sequence of polynomial pn converging
uniformly to u. Thus, ∫

Ω

u2 = lim
n→∞

∫
Ω

upn = 0

and u≡ 0 in Ω .





Chapter 3
Classification of Higher Order based on
Characteristics

3.1 Characteristic Hypersurfaces for k-th Order Quasilinear
PDE

Definition 3.1. Let L := ∑|α|≤k aα(x)∂ α be the k-th order linear partial differential
operator defined in Ω . Then the principal part, denoted as Lp, of L is defined by

Lp := ∑
|α|=k

aα(x)∂ α in Ω

and the principal symbol p is defined by

p(x;ξ ) := ∑
|α|=k

aα(x)ξ α

for all x ∈Ω and ξ ∈ Rn.

Definition 3.2. Let L be the k-th order linear partial differential operator defined in
a neighbourhood of x0 ∈Rn and Γ be a smooth hypersurface containing x0. Then Γ

is said to be non-characteristic at x0 if

p(x0;ν) = ∑
|α|=k

aα(x0)ν
α(x0) 6= 0

where ν is the normal to Γ at x0. Otherwise, Γ is said to be characteristic at x0
with respect to L. If Γ is (non)characteristic at each of its point then Γ is said to be
(non)characteristic.

Theorem 3.1. For any f ∈C(Ω), Let u be a smooth solution to the k-th order linear
Cauchy problem∑|α|≤k aα(x)∂ α u = f in Ω

u = u0 on Γ

∂ i
ν u(x) = ui on Γ ∀i = {1,2, . . . ,k−1}.

67
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If the Γ is a non-characteristic hypersurface then it is possible to compute all order
partial derivatives of u on Γ in terms the initial data viz. the hypersurface Γ , the
initial conditions {ui} and the coefficients aα .

Proof. Since the given hyperspace can be flattened to a hyperplane, we shall given
the proof in two steps: first for the hyperplane {xn = 0} and then for any general
hypersurface.

First Step: Suppose Γ is a hyperplane {xn = 0} and the n-tuple is written as
x = (x′,xn) where x′ is the (n−1)-tuple. In this situation, the unit normal ν = en and
∂ i

ν u = ∂ i
xnu. Without loss of generality, let us compute all the derivatives ∂ α u(0),

for all α , at 0 ∈ Γ . Similar arguments extend to all other points of Γ . Let us assume
that the initial conditions {ui}k−1

i=0 are all smooth functions. Then ∂ α

x′ u(0) = ∂ α

x′ u0(0)
and ∂ α

x′ ∂
i
xnu(0) = ∂ α

x′ ui(0) for all 0 ≤ |α| < ∞, where α is a (n− 1)-tuple, and i =
1,2, . . . ,k− 1. Thus, all the derivates upto order k except ∂ k

xnu has been computed.
However, using the given PDE, we obtain

∂
k
xnu(0) =

−1
a(0,...,k)(0)

(
∑

α 6=(0,...,k)
aα(0)∂ α u(0)− f (0)

)

whenever
a(0,...,k)(0) 6= 0. (3.1)

The above condition is precisely the non-characteristic condition corresponding the
hyperplane. Thus, one has computed all partial derivatives of u, at 0 ∈ Γ , up to
order k in terms of the given data under the condition (3.1). In fact, one can continue
this process to compute any order derivative of u at 0 by differentiating the PDE as
many times as required, provided the data and solution are smooth enough. Since
the choice of 0, as a point of evaluation, is generic the arguments are valid for any
point on Γ .

Second Step: Now, let Γ be a general hyperspace given by the equation {φ = 0}
for a smooth function φ : Rn → R in a neighbourhood of x0 ∈ Γ with ∇φ 6= 0.
Without loss of generality, we assume φxn(x0) 6= 0. Then, by the implicit function
theorem, φ = 0 around x0 has the form φ(x) := xn−ψ(x′). Consider the map flat-
tening the hyperspace to hyperplane, i.e. (x′,xn) 7→ y := (x′,φ(x)), then its Jacobian
matrix is given by (

I(n−1)×(n−1) 0n−1
∇x′φ φxn

)
n×n

and its determinant at x0 is non-zero because φxn(x0) 6= 0. If v is such that u(x) =
v◦φ(x) then, using the multivariable chain rule, the PDE satisfied by v is

∑
|α|=k

aα(x)(∇φ)α
∂

k
ynv+ terms not involving ∂

k
ynv = f ◦φ

−1

and the initial conditions are given on the hyperplane {yn = 0}. Thus, the necessary
condition equivalent to (3.1) is
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∑
|α|=k

aα(x)(∇φ)α 6= 0.

Recall that ∇φ is parallel to the normal vector ν of the surface {φ = 0}, i.e. the
hypersurface Γ . This precisely is the motivation for the notion of non-characteristic
hypersurface.

Thus, a Cauchy problem is meaningful only if the hypersurface on which the
initial data is prescribed is non-characteristic. Otherwise the Cauchy problem may
be ill-posed! Note that the notion of non-characteristic hypersurface is dependent
on the differential operator (via its highest order coefficients aα ). It is not necessary
that a given hypersurface be non-characteristic to a given differential operator.

However, there are cases when any given hypersurface is non-characteristic to
the given differential operator.

Definition 3.3. Let L be the k-th order linear partial differential operator defined in
a neighbourhood of x0 ∈ Rn. Then L is elliptic at x0 if

p(x0;ξ ) = ∑
|α|=k

aα(x0)ξ
α(x0) 6= 0

for all non-zero ξ ∈ Rn. L is said to be elliptic in Ω if it is elliptic at every point of
Ω .

In other words, a linear differential operator is elliptic if every hypersurface is
non-characteristic. The Laplacian operator ∆ is elliptic because p(x0;ξ ) = |ξ |2 > 0
for all non-zero ξ ∈ Rn.

Remark 3.1. A first order semilinear differential operator with real coefficients is
never elliptic. Because if

Lu := a(x) ·∇u− f (x,u) in Ω

then p(x;ξ ) = a(x) ·ξ for all x ∈Ω . For instance, choosing ξ to be a vector normal
to a does not satisfy the ellipticity condition. Thus, L is never elliptic. However, a
first order linear differential operator with complex coefficients can be ellitpic. For
instance, choose a = ( 1

2 ,
ı
2 ).

The proof of Theorem 3.1 can be generalised to a k-th order quasilinear PDE mo-
tivating the following definition for the corresponding notion of non-characteristic
hyperspaces.

Definition 3.4. For given aα and f , let

Lu := ∑
|α|=k

aα(Dk−1u(x), . . . ,u(x),x)∂ α u+ f (Dk−1u(x), . . . ,u(x),x)

be the k-th order quasilinear partial differential operator defined in a neighbourhood
of x0 ∈ Rn and Γ be a smooth hypersurface containing x0. Then Γ is said to be
non-characteristic at x0 if
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∑
|α|=k

aα(Dk−1u0(x0), . . . ,u0(x0),x0)ν
α(x0) 6= 0

where ν(x0) is the normal to Γ at x0. Otherwise, Γ is said to be characteristic at x0
with respect to L. If Γ is (non)characteristic at each of its point then Γ is said to be
(non)characteristic.

In the linear case, the non-characteristic condition depended only on the initial
hypersurface Γ and the coefficients of the highest order partial derivatives. However,
in the quasilinear case, it also depends, in addition, on the initial data u0.

3.2 Cauchy Problem of Second Order PDE in Two Dimension

Let us elaborate the classification of second order PDE in the two dimension. Con-
sider the second order Cauchy problem in two variables (x,y)F

(
D2u(x,y),∇u(x,y),u(x,y),x,y

)
= 0 in Ω

u(x) = u0(x) on Γ

∂ν u(x) = u1(x) on Γ

(3.2)

where ν is the unit normal vector to the curve Γ and u0,u1 are known functions on
Γ . If the curve Γ is parametrised by s 7→ (x(s),y(s)) then the directional derivative
of u at any point on Γ , along the tangent vector, is u′(s) = uxx′(s)+ uyy′(s). But
u′(s) = u′0(s) on Γ . Thus, instead of the normal derivative, one can prescribe the
partial derivatives ux and uy on Γ and reformulate the Cauchy problem (3.2) as

F
(
D2u,∇u,u,x,y

)
= 0 in Ω

u(x,y) = u0(x,y) on Γ

ux(x,y) = u11(x,y) on Γ

uy(x,y) = u12(x,y) on Γ

satisfying the compatibility condition u′0(s) = u11x′(s)+u12y′(s). The compatibility
condition implies that among u0,u11,u12 only two can be assigned independently,
as expected for a second order equation. Now, consider the Cauchy problem for a
second order quasilinear PDE defined in Ω ⊂ R2,

Auxx +2Buxy +Cuyy = f (x,y,u,ux,uy) in Ω

u(x,y) = u0(x,y) on Γ

ux(x,y) = u11(x,y) on Γ

uy(x,y) = u12(x,y) on Γ .

(3.3)

where A,B,C and f may nonlinearly depend on its arguments (x,y,u,ux,uy) and the
initial data satisfies the compatibility condition u′0(s) = u11x′(s) + u12y′(s). Also,
one of the coefficients A,B or C is identically non-zero (else the PDE is not of
second order). By computing the second derivatives of u on Γ and considering uxx,
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uyy and uxy as unknowns, we have the system of three equations in three unknowns
on Γ ,

Auxx +2Buxy +Cuyy = f
x′(s)uxx +y′(s)uxy = u′11(s)

x′(s)uxy +y′(s)uyy = u′12(s).

This system of equation is solvable whenever the determinant of the coefficients are
non-zero, i.e., ∣∣∣∣∣∣

A 2B C
x′ y′ 0
0 x′ y′

∣∣∣∣∣∣ 6= 0.

Definition 3.5. We say a curve Γ ⊂ R2 is characteristic with respect to (3.3)) if

A(y′)2−2Bx′y′+C(x′)2 = 0.

where (x(s),y(s)) is a parametrisation of Γ .

3.3 Classification of Second order Quasilinear PDE

Definition 3.1 For any given A :Rn→Rn2
and f :Rn→R, the second order quasi-

linear partial differential operator is given as:

Lu := A(∇u,u,x) : D2u− f (∇u,u,x) (3.4)

where : indicates the dot product in Rn2
. A smooth hypersurface is non-characteristic

at x0 ∈ Γ with respect L if

n

∑
i, j=1

Ai j(∇u(x0),u(x0),x0)νi(x0)ν j(x0) 6= 0.

where ν(x0) is the normal vector of Γ at x0.

Example 3.1. Consider the (wave) operator ∂ 2
t − ∆ and the hypersurface {|x|2 =

t2} in Rn× (0,∞). We claim that this hypersurface is characteristic. Note that the
equation of the hypersurface is {φ(x, t) := |x|2− t2 = 0}. Then ∇φ = 2(x,−t) and
p(x0, t0;ξ ) =−|x0|2 + t2

0 = 0.

If {φ = 0} is the equation of a hypersurface Γ then the characteristic condition at
x0 means that ∇T φ(x0)A(x0)∇φ(x0) = 0. Since we seek smooth solutions then the
mixed derivatives of the solution are equal, thus the Hessian matrix D2u is symmet-
ric. Therefore, without loss generality, one may assume A is symmetric. Because
if A is not symmetric, one can replace A with its symmetric part As := 1

2 (A+At)

in L and L remains unchanged because A ·D2u = As ·D2u. The coefficient ma-
trix A(∇u(x),u(x),x) being a real symmetric matrix will admit n real eigenvalues
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(λ1(x), . . . ,λn(x)), at each x, i.e. there is a unitary matrix U(x) such that U−1AU is
the diagonal matrix with {λi} as entries. Then the characteristic condition becomes
the equation1

0 = ∇
T

φ(x0)A(x0)∇φ(x0) = ∇
T

φ(x0)UU−1A(x0)UU−1
∇φ(x0)

= [U−1
∇φ ]TU−1AU [U−1

∇φ ] =
n

∑
i=1

λiφ
2
wi

where w := Ux. Note that if one of the eigenvalues are zero, say λ j = 0, then
φ(x) = φ(x j) is a solution to the equation. Thus, the characteristic hypersurfaces are
hyperplanes x j = constant. In this situation the PDE is said to be of type parabolic.
If all the eigen values are non-zero and of the same sign then

0 = |λiφ
2
xi
| ≥ min

1≤i≤n
|λi||∇φ |2.

The above situation is a contradiction and corresponds to the non-existence of real
characteristic hypersurfaces. In this situation the PDE is said to be of type elliptic.

Definition 3.6. For each x, let P(x) and Z(x) denote the number of positive and zero
eigenvalues of A(∇u(x),u(x),x). We say the partial differential operator given in
(3.4) is hyperbolic at x ∈ Ω , if Z(x) = 0 and either P(x) = 1 or P(x) = n− 1. It is
elliptic, if Z(x) = 0 and either P(x) = n or P(x) = 0. If Z(x) = 0 and 1<P(x)< n−1
then the PDE is said to be ultra hyperbolic. It is parabolic if Z(x)> 0.

In the case of hyperbolic and ultra hyperbolic, all the eigenvalues are non-zero
with the positive and negative eigenvalues arranged as {λi}P

1 and {λi}n
P+1, respec-

tively. Then the characteristic condition becomes

P

∑
i=1

λiφ
2
xi
=

n

∑
j=P+1

|λ j|φ 2
x j
.

Thus, the family

φ±(r) =
P

∑
i=1

√
λiri±

∑
P
i=1 λ 2

i

∑
n
j=P+1 λ 2

j

n

∑
P+1

√
|λ j|r j

solves the characteristic condition. We have obtained two families of characteristic
hypersurfaces of the PDE, i.e. φ± = constant.

Remark 3.2. In the two dimensions, the hyperbolic second order PDE have two fam-
ilies of real characteristic curves, parabolic has one family of real characteristic
curves and elliptic have no real characteristic curves.

Observe that the elliptic case agrees with Definition 3.3 and corresponds to the
situation where every hypersurface is non-characteristic, i.e. there are no real char-
acteristics hypersurfaces.

1 The resulting equation is a first order PDE
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Definition 3.7. The operator L defined in (3.4) is said to be elliptic if the matrix
Ai j(x) is positive definite for each x, i.e.

0 < α(x)|ξ |2 ≤
n

∑
i, j=1

Ai j(x)ξiξ j ≤ β (x)|ξ |2 ∀ξ ∈ Rn.

The bounds α(x) and β (x) are minimum and maximum eigenvalues, respec-
tively.

Definition 3.8. If β/α is uniformly bounded in U then PDE is uniformly elliptic.
The interesting thing about uniformly elliptic equation is that they behave very sim-
ilar to linear elliptic equations.

Remark 3.3 (Two Dimension). If Γ is given by the parametrization (x,y) then ν :=
(−y′,x′) is the normal to Γ at each point and(

A B
B C

)(
−y′

x′

)
·
(
−y′

x′

)
= A(y′)2−2Bx′y′+C(x′)2 = 0.

If y = y(x) is a representation of the curve Γ (locally, if necessary), we have x(s) = s
and y(s) = y(s). Then the characteristic equation reduces as

A
(

dy
dx

)2

−2B
dy
dx

+C = 0.

Therefore, the characteristic curves of (3.3) are given by the graphs whose equation
is

dy
dx

=
B±
√

B2−AC
A

.

Thus, we have three situations depending on the sign of the discriminant d(x) :=
B2−AC. A second order quasilinear PDE in two dimension is of

(a) hyperbolic type at x if d(x)> 0,
(b) parabolic type at x if d(x) = 0 and
(c) elliptic type at x if d(x)< 0.

To compare the above classification with the general one given in Definition 3.6,
note that the second order coefficent matrix(

A B
B C

)
is symmetric and diagonalisable with eigenvalues, say, λ1(x,y) and λ2(x,y) for every
(x,y) ∈ Ω . Then, the discriminant of the diagonal matrix is d = −λ1λ2. Thus, the
PDE is of hyperbolic type at a point (x,y) if the eigen values have opposite sign. It
is ellipic if the eigenvalues have same sign and is parabolic if, at least, one of the
eigenvalue is zero.
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Example 3.2 (2D Wave Equation). For a given c ∈ R, uyy− c2uxx = 0 is hyperbolic.
Since A =−c2, B = 0 and C = 1, we have d = B2−AC = c2 > 0. The eigen values
of the coefficient matrix are 1,−c2 which have opposite sign. Since the equation is
hyperbolic, it admits two characteristic curves. Recall that the characteristic curves
are given by the equation

dy
dx

=
B±
√

B2−AC
A

=
±
√

c2

−c2 =
∓1
c
.

Thus, cy±x = a constant is the equation for the two characteristic curves. Note that
the characteristic curves y =∓x/c+y0 are boundary of two cones in R2 with vertex
at (0,y0).

Example 3.3 (Wave Equation). The wave equation utt −∆xu = f (x, t) for (x, t) ∈
Rn+1 is hyperbolic because the (n+1)× (n+1) second order coefficient matrix is

A :=
(
−I 0
0t 1

)
has no zero eigenvalue and exactly one positive eigenvalue, where I is the n×n iden-
tity matrix. The principal symbol associated to the wave operator is p(x, t;ξ ,τ) :=
τ2−|ξ |2. In two dimension p(x, t;ξ ,τ) = a constant represents a hyperbola. Hence,
the name hyperbolic! A hypersurface {φ(x, t) = 0} is characteristic to wave equa-
tion if A∇φ · ∇φ = 0. Thus, the hypersurface is such that φ 2

t = |∇xφ |2. Thus,
φ± := t± 1

n ∑
n
i=1 xi = a constant. The cone with vertex at (x0, t0), given by the equa-

tion {(x, t) | φ := |x−x0|2−(t− t0)2 = 0} satisfies A∇φ ·∇φ = 0. Hence, the family
cones is the characteristic curves for the above hyperbolic PDE called the charac-
teristic cones.

Example 3.4 (2D Heat Equation). For a given c ∈ R, uy − cuxx = 0 is parabolic.
Since A = −c, B = 0 and C = 0, thus d = B2−AC = 0. The eigen values of the
coefficient matrix are 0,−c has a zero eigenvalue. Since the PDE is of parabolic
type, it admits one characteristic curve. The characteristic curve is given by the
equation

dy
dx

=
B±
√

B2−AC
A

= 0.

Thus, y = a constant is the equation of the characteristic curve. i.e., any horizontal
line in R2 is a charateristic curve.

Example 3.5. The heat equation ut −∆xu = f (x, t) for (x, t) ∈ Rn+1 is parabolic be-
cause the (n+1)× (n+1) second order coefficient matrix is(

−I 0
0t 0

)
has one zero eigenvalue. The principal symbol associated to the heat operator
is p(x, t;ξ ,τ) := −|ξ |2. In two dimension p(x, t;ξ ,τ) = τ represents a parabola.
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Hence, the name parabolic! A hypersurface {φ(x, t) = 0} is characteristic to heat
equation if A∇φ ·∇φ = 0. Thus, the hypersurface is such that |∇xφ |2 = 0, i.e φ is
such that ∇xφ = 0 and φt 6= 0. For instance, φ := t = a constant is a characteristic
hypersurface.

Example 3.6 (2D Laplace equation). uxx + uyy = 0 is elliptic. Since A = 1, B = 0
and C = 1, thus d = B2−AC = −1 < 0. The eigen values of the coefficient matrix
are 1,1 which have same sign. Since the PDE is of elliptic type, it admits no real
characteristics.

Example 3.7. The Laplace equation ∆u = f (∇u,u,x) for x ∈ Rn is elliptic because
∆u = I ·D2u(x) where I is the n× n identity matrix. The eigen values are all posi-
tive. The principal symbol associated to the Laplacian ∆ is p(x;ξ ) := |ξ |2. In two
dimension p(x;ξ ) = a constant represents a ellipse. Hence, the name elliptic!

Example 3.8 (Velocity Potential Equation). In the equation (1−M2)uxx + uyy = 0,
A= (1−M2), B= 0 and C = 1. Then d =B2−AC =−(1−M2). The eigen values of
the coefficient matrix are 1−M2,1. Thus, for |M|> 1 (opposite sign), the equation
is hyperbolic (supersonic flow), for |M| = 1 (zero eigenvalue) it is parabolic (sonic
flow) and for |M|< 1 (same sign) it is elliptic (subsonic flow).

Note that the classification of PDE is dependent on its coefficients. Thus, for
constant coefficients the type of PDE remains unchanged throughout the region Ω .
However, for variable coefficients, the PDE may change its classification from re-
gion to region.

Example 3.9. An example is the Tricomi equation , uxx +xuyy = 0. The discriminant
of the Tricomi equation is d =−x. The eigenvalues are 1,x. Thus, tricomi equation
is hyperbolic when x < 0, elliptic when x > 0 and degenerately parabolic when
x = 0, i.e., y-axis. Such equations are called mixed type. The equation uxx+xuyy = 0
is of mixed type. In the region x > 0, the characteristic curves are y∓ 2x3/2/3 = a
constant.

Example 3.10. Consider the quasilinear PDE uxx − uuyy = 0. The discriminant is
d = u. The eigenvalues are 1,−u(x). It is hyperbolic for {u > 0}2, elliptic when
{u < 0} and parabolic when {u = 0}.

Example 3.11. Consider the quasilinear PDE

(c2−u2
x)uxx−2uxuyuxy +(c2−u2

y)uyy = 0

where c > 0. Then d = B2−AC = c2(u2
x +u2

y−c2) = c2(|∇u|2−c2). It is hyperbolic
if |∇u|> c, parabolic if |∇u|= c and elliptic if |∇u|< c.

Example 3.12. Consider the minimal surface equation

2 The notation {u > 0} means {x ∈Ω | u(x)> 0}
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∇ ·

(
∇u√

1+ |∇u|2

)
= f (x)

where the second order coefficients are

Ai j(x,z, p) = (1+ |p|2)−1/2
(

δi j−
pi p j

1+ |p|2

)
and

α(x,z, p) =
1

(1+ |p|2)3/2 β (x,z, p) =
1

(1+ |p|2)1/2 .

Thus, the equation is not uniformly elliptic.

The minimal surface equation and the capillary equation are not uniformly ellip-
tic.

Remark 3.4. The classification of a PDE, in terms of its characteristics, tells us the
right amount of Cauchy data that needs to be provided for gthe Cauchy problem to
be well-posed. Let us illustrate this in two dimensions, for simplicity. A hyperbolic
PDE, which has two families of real characteristics curves, requires as many initial
condition as the number of characteristics emanating from initial time (Say Ω ×
{0}) and as many boundary conditions as the number of characteristics that pass in
to the spatial boundary (Say ∂Ω × (0,T )). With similar logic, for parabolic PDE,
which has exactly one family of real characteristic curves, we need one boundary
condition at each point of the spatial boundary and one initial condition at initial
time. For elliptic PDE, which admits no real characteristic curves, we need one
boundary condition at each point of the spatial boundary. Observe that this is counter
intuitive for a second order elliptic PDE.

Remark 3.5 (Ill-Posedness of Elliptic Cauchy Problem). The non-existence of real
characteristic curves for an elliptic Cauchy problem makes them ill-posed (q.v. Ex-
ample 1.19 and Section 4.3). Consider the Cauchy problem{

utt(x, t)+uxx(x, t) = 0 in R× (0,∞)
u(x,0) = ut(x,0) = 0.

Observe that the PDE is elliptic in its domain. One solution is the trivial solution
u(x, t) = 0. Consider the Cauchy problem with a small change in data,utt(x, t)+uxx(x, t) = 0 in R× (0,∞)

u(x,0) = 0
ut(x,0) = ε sin

( x
ε

)
which has the unique solution uε(x, t) = ε2 sin(x/ε)sinh(t/ε). The solution of the
Cauchy problem is not stable because the data change is small, i.e.,

sup
x
{|uε

t (x,0)−ut(x,0)|}= ε sup
x
{|sin(x/ε)|}= ε
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and the solution change is not at all small, i.e.,

lim
t→∞

sup
x
{|uε(x, t)−u(x, t)|} = lim

t→∞
ε

2 |sinh(t/ε)|=+∞.

In fact, the solution will not converge in any reasonable metric.

Exercise 3.1. Classify the following second order PDE in terms of the number of
characteristics:

(a) 3uxx +uxy +2uyy = 0.
(b) uzz +uz +urr +

1
r uθ + c = 0.

(c) ut +βux +αuxx = 0.
(d) 4uxx + y2ux + xux +uyy +4uxy−4xy = 0.
(e) xuxx + xuxy + yuyy = 0.
(f) xuxx + yuxy + c = 0.
(g) x2yuxx + xyuxy− y2uyy = 0.
(h) sinxuxx +2cosxuxy + sinxuyy = 0.
(i) uxx +4uxy +5uyy +ux +2uy = 0.
(j) uxx−4uxy +4uyy +3ux +4u = 0.
(k) uxx +2uxy−3uyy +2ux +6uy = 0.
(l) (1+ x)uxx +2xyuxy− y2uyy = 0.

(m) 2uxx−4uxy +7uyy−u = 0.
(n) uxx−2cosxuxy− sin2 xuyy = 0.
(o) yuxx +2(x−1)uxy− (y+2)uyy = 0.
(p) yuxx +uxy− x2uyy−ux−u = 0.

Exercise 3.2. Classify the following second order PDE, in terms of the number of
characteristics, and find their characteristics, when it exists:

(a) uxx +(5+2y2)uxy +(1+ y2)(4+ y2)uyy = 0.
(b) yuxx +uyy = 0.
(c) yuxx = xuyy.
(d) uyy− xuxy + yux + xuy = 0.
(e) y2uxx +2xyuxy + x2uyy = 0.
(f) uxx +2xuxy +(1− y2)uyy = 0.

3.3.1 Invariance of Discriminant

The classification of second order semilinear PDE is based on the discriminant B2−
AC. In this section, we note that the classification is independent of the choice of
coordinate system (to represent a PDE). Consider the two-variable semilinear PDE

A(x,y)uxx +2B(x,y)uxy +C(x,y)uyy = D(x,y,u,ux,uy) (x,y) ∈Ω (3.5)
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where the variables (x,y,u,ux,uy) may appear non-linearly in D and Ω ⊂ R2. Also,
one of the coefficients A,B or C is identically non-zero (else the PDE is not of second
order). We shall observe how (3.5) changes under coordinate transformation.

Definition 3.9. For any PDE of the form (3.5) we define its discriminant as B2−AC.

Let T : R2→ R2 be the coordinate transformation with components T = (w,z),
where w,z : R2 → R. We assume that w(x,y), z(x,y) are such that w,z are both
continuous and twice differentiable w.r.t (x,y), and the Jacobian J of T is non-zero,

J =

∣∣∣∣wx wy
zx zy

∣∣∣∣ 6= 0.

We compute the derivatives of u in the new variable,

ux = uwwx +uzzx,

uy = uwwy +uzzy,

uxx = uwww2
x +2uwzwxzx +uzzz2

x +uwwxx +uzzxx

uyy = uwww2
y +2uwzwyzy +uzzz2

y +uwwyy +uzzyy

uxy = uwwwxwy +uwz(wxzy +wyzx)+uzzzxzy +uwwxy +uzzxy

Substituting above equations in (3.5), we get

a(w,z)uww +2b(w,z)uwz + c(w,z)uzz = d(w,z,u,uw,uz).

where D transforms in to d and

a(w,z) = Aw2
x +2Bwxwy +Cw2

y (3.6)
b(w,z) = Awxzx +B(wxzy +wyzx)+Cwyzy (3.7)

c(w,z) = Az2
x +2Bzxzy +Cz2

y . (3.8)

Note that the coefficients in the new coordinate system satisfy

b2−ac = (B2−AC)J2.

Since J 6= 0, we have J2 > 0. Thus, both b2− ac and B2−AC have the same sign.
Thus, the sign of the discriminant is invariant under coordinate transformation. All
the above arguments can be carried over to quasilinear and non-linear PDE.

3.3.2 Standard or Canonical Forms

The advantage of above classification helps us in reducing a given PDE into simple
forms. Given a PDE, one can compute the sign of the discriminant and depending
on its clasification we can choose a coordinate transformation (w,z) such that



3.3 Classification of Second order Quasilinear PDE 79

(i) For hyperbolic, a = c = 0 or b = 0 and a =−c.
(ii) For parabolic, c = b = 0 or a = b = 0. We conveniently choose c = b = 0

situation so that a 6= 0 (so that division by zero is avoided in the equation for
characteristic curves).

(iii) For elliptic, b = 0 and a = c.

If the given second order PDE (3.5) is such that A = C = 0, then (3.5) is of
hyperbolic type and a division by 2B (since B 6= 0) gives

uxy = D̃(x,y,u,ux,uy)

where D̃ = D/2B. The above form is the first standard form of second order hyper-
bolic equation. If we introduce the linear change of variable X = x+y and Y = x−y
in the first standard form, we get the second standard form of hyperbolic PDE

uXX −uYY = D̂(X ,Y,u,uX ,uY ).

If the given second order PDE (3.5) is such that A = B = 0, then (3.5) is of
parabolic type and a division by C (since C 6= 0) gives

uyy = D̃(x,y,u,ux,uy)

where D̃ = D/C. The above form is the standard form of second order parabolic
equation.

If the given second order PDE (3.5) is such that A =C and B = 0, then (3.5) is of
elliptic type and a division by A (since A 6= 0) gives

uxx +uyy = D̃(x,y,u,ux,uy)

where D̃ = D/A. The above form is the standard form of second order elliptic equa-
tion.

Note that the standard forms of the PDE is an expression with no mixed deriva-
tives.

3.3.3 Reduction to Standard Form

Consider the second order semilinear PDE (3.5) not in standard form. We look for
transformation w = w(x,y) and z = z(x,y), with non-vanishing Jacobian, such that
the reduced form is the standard form.

If B2−AC > 0, we have two characteristics. We are looking for the coordinate
system w and z such that a = c = 0. This implies from equation (3.6) and (3.8) that
we need to find w and z such that

wx

wy
=
−B±

√
B2−AC

A
=

zx

zy
.
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Therefore, we need to find w and z such that along the slopes of the characteristic
curves,

dy
dx

=
B±
√

B2−AC
A

=
−wx

wy
.

This means that, using the parametrisation of the characteristic curves, wxγ̇1(s)+
wyγ̇2(s) = 0 and ˙w(s) = 0. Similarly for z. Thus, w and z are chosen such that they
are constant on the characteristic curves.

The characteristic curves are found by solving

dy
dx

=
B±
√

B2−AC
A

and the coordinates are then chosen such that along the characteristic curve w(x,y)=

a constant and z(x,y) = a constant. Note that wxzy−wyzx =wyzy

(
2
A

√
B2−AC

)
6= 0.

Example 3.13. Let us reduce the PDE uxx− c2uyy = 0 to its canonical form. Note
that A = 1, B = 0, C = −c2 and B2−AC = c2 and the equation is hyperbolic. The
characteristic curves are given by the equation

dy
dx

=
B±
√

B2−AC
A

=±c.

Solving we get y∓ cx = a constant. Thus, w = y+ cx and z = y− cx. Now writing

uxx = uwww2
x +2uwzwxzx +uzzz2

x +uwwxx +uzzxx

= c2(uww−2uwz +uzz)

uyy = uwww2
y +2uwzwyzy +uzzz2

y +uwwyy +uzzyy

= uww +2uwz +uzz

−c2uyy = −c2(uww +2uwz +uzz)

Substituting into the given PDE, we get

0 = 4c2uwz

= uwz.

Example 3.14. Let us reduce the PDE uxx− x2yuyy = 0 given in the region {(x,y) |
x ∈ R,x 6= 0,y > 0} to its canonical form. Note that A = 1, B = 0, C = −x2y and
B2−AC = x2y. In the given region x2y > 0, hence the equation is hyperbolic. The
characteristic curves are given by the equation

dy
dx

=
B±
√

B2−AC
A

=±x
√

y.

Solving we get x2/2∓2
√

y= a constant. Thus, w= x2/2+2
√

y and z= x2/2−2
√

y.
Now writing
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ux = uwwx +uzzx = x(uw +uz)

uy = uwwy +uzzy =
1
√

y
(uw−uz)

uxx = uwww2
x +2uwzwxzx +uzzz2

x +uwwxx +uzzxx

= x2(uww +2uwz +uzz)+uw +uz

uyy = uwww2
y +2uwzwyzy +uzzz2

y +uwwyy +uzzyy

=
1
y
(uww−2uwz +uzz)−

1
2y
√

y
(uw−uz)

−x2yuyy = −x2(uww−2uwz +uzz)+
x2

2
√

y
(uw−uz)

Substituting into the given PDE, we get

0 = 4x2uwz +
2
√

y+ x2

2
√

y
uw +

2
√

y− x2

2
√

y
uz

= 8x2√yuwz +(x2 +2
√

y)uw +(2
√

y− x2)uz.

Note that w+ z = x2 and w− z = 4
√

y. Now, substituting x,y in terms of w,z, we get

0 = 2(w2− z2)uwz +

(
w+ z+

w− z
2

)
uw +

(
w− z

2
−w− z

)
uz

= uwz +

(
3w+ z

4(w2− z2)

)
uw−

(
w+3z

4(w2− z2)

)
uz.ut

Example 3.15. Let us reduce the PDE uxx + uxy− 2uyy + 1 = 0 given in the region
{(x,y) | 0≤ x ≤ 1,y > 0} to its canonical form. Note that A = 1, B = 1/2, C =−2
and B2−AC = 9/4 > 0. Hence the equation is hyperbolic. The characteristic curves
are given by the equation

dy
dx

=
B±
√

B2−AC
A

=
1
2
± 3

2
= 2 or −1.

Solving we get y− 2x = a constant and y+ x = a constant. Thus, w = y− 2x and
z = y+ x.

In the parabolic case, B2−AC = 0, we have a single characteristic. We are look-
ing for a coordinate system such that either b = c = 0.

Example 3.16. Let us reduce the PDE e2xuxx+2ex+yuxy+e2yuyy = 0 to its canonical
form. Note that A = e2x, B = ex+y, C = e2y and B2−AC = 0. The PDE is parabolic.
The characteristic curves are given by the equation

dy
dx

=
B
A
=

ey

ex .
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Solving, we get e−y− e−x = a constant. Thus, w = e−y− e−x. Now, we choose z
such that wxzy−wyzx 6= 0. For instance, z = x is one such choice. Then

ux = e−xuw +uz

uy = −e−yuw

uxx = e−2xuww +2e−xuwz +uzz− e−xuw

uyy = e−2yuww + e−yuw

uxy = −e−y(e−xuww−uwz)

Substituting into the given PDE, we get

exe−yuzz = (e−y− e−x)uw

Replacing x,y in terms of w,z gives

uzz =
w

1+wez uw.

Example 3.17. Let us reduce the PDE y2uxx− 2xyuxy + x2uyy =
1
xy (y

3ux + x3uy) to
its canonical form. Note that A = y2, B = −xy, C = x2 and B2−AC = 0. The PDE
is parabolic. The characteristic curves are given by the equation

dy
dx

=
B
A
=
−x
y
.

Solving, we get x2+y2 = a constant. Thus, w = x2+y2. Now, we choose z such that
wxzy−wyzx 6= 0. For instance, z = x is one such choice. Then

ux = 2xuw +uz

uy = 2yuw

In the elliptic case, B2−AC < 0, we have no real characteristics. Thus, we choose
w,z to be the real and imaginary part of the solution of the characteristic equation.

Example 3.18. Let us reduce the PDE x2uxx+y2uyy = 0 given in the region {(x,y)∈
R2 | x > 0,y > 0} to its canonical form. Note that A = x2, B = 0, C = y2 and B2−
AC =−x2y2 < 0. The PDE is elliptic. Solving the characteristic equation

dy
dx

=± iy
x

we get lnx± i lny = c. Let w = lnx and z = lny. Then
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ux = uw/x

uy = uz/y

uxx = −uw/x2 +uww/x2

uyy = −uz/y2 +uzz/y2

Substituting into the PDE, we get

uww +uzz = uw +uz.

Example 3.19. Let us reduce the PDE uxx +2uxy +5uyy = xux to its canonical form.
Note that A = 1, B = 1, C = 5 and B2−AC = −4 < 0. The PDE is elliptic. The
characteristic equation is

dy
dx

= 1±2i.

Solving we get x− y± i2x = c. Let w = x− y and z = 2x. Then

ux = uw +2uz

uy = −uw

uxx = uww +4uwz +4uzz

uyy = uww

uxy = −(uww +2uwz)

Substituting into the PDE, we get

uww +uzz = x(uw +2uz)/4.

Replacing x,y in terms of w,z gives

uww +uzz =
z
8
(uw +2uz).

Example 3.20. Let us reduce the PDE uxx+uxy+uyy = 0 to its canonical form. Note
that A = 1, B = 1/2, C = 1 and B2−AC =−3/4 < 0. The PDE is elliptic. Solving
the characteristic equation

dy
dx

=
1
2
± i

√
3

2

we get 2y = x± i
√

3x+ c. Let w = 2y− x and z =
√

3x.

Exercise 3.3. Rewrite the PDE in their canonical forms and solve them.

(a) uxx +2
√

3uxy +uyy = 0
(b) x2uxx−2xyuxy + y2uyy + xux + yuy = 0
(c) uxx− (2sinx)uxy− (cos2 x)uyy− (cosx)uy = 0
(d) uxx +4uxy +4uyy = 0





Chapter 4
The Laplacian

4.1 Historical Introduction

A field is a physical quantity associated to each point of space-time. A field can
be classified as a scalar field or vector field depending on whether the value of the
field at each point is a scalar or vector, respectively. For example, the gradient of
any function u, ∇u, is a vector field. Some well-known examples of field are New-
ton’s gravitational field, Coulomb’s electrostatic field and Maxwell’s electromag-
netic field. Given a vector field V , is there a scalar field u, called potential, such that
∇u = V ? In gravitation theory, the gravity potential is the potential energy per unit
mass, i.e., if E is the potential energy of an object with mass m, then u = E/m and
the potential associated with a mass distribution is the superposition of potentials of
point masses. The Newtonian gravitation potential can be computed to be

u(x) =
1

4π

∫
Ω

ρ(y)
|x− y|

dy

where ρ(y) is the density at y of a mass occupying the region Ω ⊂ R3. In 1782,
Laplace discovered that the Newton’s gravitational potential satisfies the equation:

∆u = 0 in R3 \Ω .

This is the reason the operator ∆ is called Laplacian. Later, in 1813, Poisson discov-
ered that on Ω the Newtonian potential satisfies the equation:

−∆u = ρ in Ω .

Inhomogeneous Laplace equations are called Poisson equations.
The equation obtained by Laplace is a consequence of the conservation laws.

Green (1828) and Gauss (1839) observed that the Laplace and Poisson equations can
be generalised to any scalar potential including electric and magnetic potentials. Let
u be a scalar potential such that the vector field V (x) := ∇u(x) exists. If V satisfies

85



86 4 The Laplacian∫
∂ω

V (x) ·ν(x)dσ = 0, for all closed surfaces ∂ω ⊂Ω and ν(x) is the unit outward
normal at x on ∂ω . Then, by Gauss divergence theorem (cf. (B.1)),∫

ω

∇ ·V dx = 0 ∀ω ⊂Ω .

Thus, ∇ ·V = div(V ) = 0 on Ω and hence ∆u = ∇ · (∇u) = ∇ ·V = 0 on Ω . A
function whose Laplacian is null in a region is called a harmonic function in that
region. Thus, any scalar potential is a harmonic function. The study of potentials,
in physics, is called Potential Theory and, in mathematics, it is called Harmonic
Analysis. Note that, for any potential u, its vector field V = ∇u is irrotational, i.e.,
curl(V ) = ∇×V = 0.

A general second order linear elliptic equation is of the form

n

∑
i, j=1

ai j(x)uxix j(x)+
n

∑
i=1

bi(x)uxi(x)+ c(x)u(x) = f (x)

where A(x) = ai j(x) is real, symmetric and positive definite n×n matrix. If A(x) is
a constant matrix (independent of x) then with a suitable transformation T one can
rewrite

n

∑
i, j=1

ai juxix j(x) = ∆v(x)

where v(x) := u(T x). We introduced (cf. Chapter 1) Laplacian to be the trace of
the Hessain matrix, ∆ := ∑

n
i=1

∂ 2

∂x2
i
. The Laplace operator usually appears in physical

models associated with dissipative effects (except wave equation). The importance
of Laplace operator can be realised by its appearance in various physical models.
For instance, the heat equation

∂

∂ t
−∆,

the wave equation
∂ 2

∂ t2 −∆,

or the Schrödinger’s equation

i
∂

∂ t
+∆.

4.2 Properties of Laplacian

In cartesian coordiantes, the n-dimensional Laplacian is given as

∆ :=
n

∑
i=1

∂ 2

∂x2
i
.
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Note that in one dimension (n = 1) ∆ = d2

dx2 .
Recall the definition of the function spaces Ck(Ω) in § 1.3. Let us set C(Ω) =

C0(Ω). The Laplacian is a linear operator from C2(Ω)→ C(Ω), i.e., ∆(u+ v) =
∆u+∆v and ∆(λu) = λ∆u for any constant λ ∈ R.

For any a ∈ Rn, the translation operator Ta : C(Ω) → C(Ω) is defined as
(Tau)(x) = u(x+ a). The Laplace operator commutes with the translation opera-
tor, i.e., ∆ ◦ Ta = Ta ◦∆. Because, for any u ∈ C2(Ω), (Tau)xi(x) = uxi(x+ a) and
(Tau)xixi(x) = uxixi(x+a). Thus, ∆(Tau)(x) = ∆u(x+a).

For any orthogonal1 n×n matrix O, the rotation operator RO : C(Ω)→C(Ω) is
defined as ROu(x) = u(Ox). The Laplace operator commutes with rotation operator,
i.e., ∆◦RO = RO ◦∆. Let y = Ox. Then, y j = ∑

n
i=1 O jixi and, by chain rule,

(ROu)xi =
n

∑
j=1

uy j

∂y j

∂xi
=

n

∑
j=1

uy j O ji.

Therefore, ∇xROu = Ot∇yu and

(∆◦RO)u(x) = ∇xROu ·∇x(ROu) = Ot
∇yu ·Ot

∇yu = OOt
∇yu ·∇yu = ∆yu.

But ∆yu = (∆u)(Ox) = (RO ◦∆)u(x). The invariance of Laplacian under rotation
implies that the class of all radial functions is mapped to itself. Recall that a radial
function is one which is constant on every sphere about the origin.

In polar coordinates (2 dimensions), the Laplacian is given as

∆ :=
1
r

∂

∂ r

(
r

∂

∂ r

)
+

1
r2

∂ 2

∂θ 2

where r is the magnitude component (0≤ r < ∞) and θ is the direction component
(0 ≤ θ < 2π). The direction component is also called the azimuth angle or polar
angle. This is easily seen by using the relation x = r cosθ and y = r sinθ . Then

∂x
∂ r

= cosθ ,
∂y
∂ r

= sinθ and
∂u
∂ r

= cosθ
∂u
∂x

+ sinθ
∂u
∂y

.

Also,
∂ 2u
∂ r2 = cos2

θ
∂ 2u
∂x2 + sin2

θ
∂ 2u
∂y2 +2cosθ sinθ

∂ 2u
∂x∂y

.

Similarly,

∂x
∂θ

=−r sinθ ,
∂y
∂θ

= r cosθ ,
∂u
∂θ

= r cosθ
∂u
∂y
− r sinθ

∂u
∂x

and
1
r2

∂ 2u
∂θ 2 = sin2

θ
∂ 2u
∂x2 + cos2

θ
∂ 2u
∂y2 −2cosθ sinθ

∂ 2u
∂x∂y

− 1
r

∂u
∂ r

.

1 O−1 = Ot
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Therefore,
∂ 2u
∂ r2 +

1
r2

∂ 2u
∂θ 2 =

∂ 2u
∂x2 +

∂ 2u
∂y2 −

1
r

∂u
∂ r

.

and, hence,

∆u =
∂ 2u
∂ r2 +

1
r2

∂ 2u
∂θ 2 +

1
r

∂u
∂ r

.

Further, in cylindrical coordinates (3 dimensions), the Laplacian is given as

∆ :=
1
r

∂

∂ r

(
r

∂

∂ r

)
+

1
r2

∂ 2

∂θ 2 +
∂ 2

∂ z2

where r ∈ [0,∞), θ ∈ [0,2π) and z ∈R. In spherical coordinates (3 dimensions), the
Laplacian is given as

∆ :=
1
r2

∂

∂ r

(
r2 ∂

∂ r

)
+

1
r2 sinφ

∂

∂φ

(
sinφ

∂

∂φ

)
+

1
r2 sin2

φ

∂ 2

∂θ 2

where r ∈ [0,∞), φ ∈ [0,π] (zenith angle or inclination) and θ ∈ [0,2π) (azimuth
angle).

Theorem 4.1. Let n ≥ 2 and u be a radial function, i.e., u(x) = v(r) where x ∈ Rn

and r = |x|, then

∆u(x) =
d2v(r)

dr2 +
(n−1)

r
dv(r)

dr
.

Proof. Note that

∂ r
∂xi

=
∂ |x|
∂xi

=
∂ (
√

x2
1 + . . .+ x2

n)

∂xi
=

1
2
(x2

1 + . . .+ x2
n)
−1/2(2xi) =

xi

r
.

Thus,
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∆u(x) =
n

∑
i=1

∂

∂xi

(
∂u(x)

∂xi

)
=

n

∑
i=1

∂

∂xi

(
dv(r)

dr
xi

r

)
=

n

∑
i=1

xi
∂

∂xi

(
1
r

dv(r)
dr

)
+

n
r

dv(r)
dr

=
n

∑
i=1

x2
i
r

d
dr

(
dv(r)

dr
1
r

)
+

n
r

dv(r)
dr

=
n

∑
i=1

x2
i
r

{
1
r

d2v(r)
dr2 −

1
r2

dv(r)
dr

}
+

n
r

dv(r)
dr

=
r2

r

{
1
r

d2v(r)
dr2 −

1
r2

dv(r)
dr

}
+

n
r

dv(r)
dr

=
d2v(r)

dr2 −
1
r

dv(r)
dr

+
n
r

dv(r)
dr

=
d2v(r)

dr2 +
(n−1)

r
dv(r)

dr
.

Hence the result proved.

More generally, the Laplacian in Rn may be written in polar coordinates as

∆ :=
∂ 2

∂ r2 +
n−1

r
∂

∂ r
+

1
r2 ∆Sn−1

where ∆Sn−1 is a second order differential operator in angular variables only. The an-
gular part of Laplacian is called the Laplace-Beltrami operator acting on Sn−1 (unit
sphere of Rn) with Riemannian metric induced by the standard Euclidean metric in
Rn.

4.3 Ill-Posedness of Cauchy Problem

Recall that for a second order Cauchy problem we need to know both u and its
normal derivative on a data curve Γ contained in Ω . However, the Cauchy problem
for Laplacian (more generally for elliptic equations) is not well-posed. In fact, the
Cauchy problem for Laplace equation on a bounded domain Ω is over-determined.

Example 4.1 (Hadamard). Consider the Cauchy problem for Laplace equation
uxx +uyy = 0
u(0,y) = cosky

k2

ux(0,y) = 0,

where k > 0 is an integer. It is easy to verify that there is a unique solution
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uk(x,y) =
cosh(kx)cos(ky)

k2

of the Cauchy problem. Note that for any x0 > 0,

|uk(x0,nπ/k)|= cosh(kx0)

k2 .

Since, as k → ∞, nπ/k → 0 and |uk(x0,nπ/k)| → ∞ the Cauchy problem is not
stable, and hence not well-posed.

Exercise 4.1. Show that the Cauchy problem for Laplace equation
uxx +uyy = 0
u(x,0) = 0
uy(x,0) = k−1 sinkx,

where k > 0, is not well-posed. (Hint: Compute explicit solution using separation
of variable. Note that, as k→ ∞, the Cauchy data tends to zero uniformly, but the
solution does not converge to zero for any y 6= 0. Therefore, a small change from zero
Cauchy data (with corresponding solution being zero) may induce bigger change in
the solution.)

This issue of ill-posedness of the Cauchy problem is very special to second or-
der elliptic equations. In general, any hyperbolic equation Cauchy problem is well-
posed, as long as the hyperbolicity is valid in the full neighbourhood of the data
curve.

Example 4.2. Consider the Cauchy problem for the second order hyperbolic equa-
tion  y2uxx− yuyy +

1
2 uy = 0 y > 0

u(x,0) = f (x)
uy(x,0) = g(x).

The general solution to this problem can be computed as

u(x,y) = F
(

x+
2
3

y3/2
)
+G

(
x− 2

3
y3/2

)
.

On y = 0 u(x,0) = F(x)+G(x) = f (x). Further,

uy(x,y) = y1/2F ′
(

x+
2
3

y3/2
)
− y1/2G′

(
x− 2

3
y3/2

)
and uy(x,0) = 0. Thus, the Cauchy problem has no solution unless g(x) = 0. If g≡ 0
then the solution is

u(x,y) = F
(

x+
2
3

y3/2
)
−F

(
x− 2

3
y3/2

)
+ f

(
x− 2

3
y3/2

)
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for arbitrary F ∈C2. Therefore, when g≡ 0 the solution is not unique. The Cauchy
problem is not well-posed because the equation is hyperbolic (B2−AC = y3) not in
the full neighbourhood of the data curve {y = 0}.

4.4 Boundary Conditions

Let Ω be a bounded open subset of Rn with boundary denoted as ∂Ω . To make the
over-determined Cauchy problem of an elliptic equation well-posed, it is reasonable
to specify one of the following conditions on the boundary ∂Ω :

(i) (Dirichlet condition) u = g;
(ii) (Neumann condition) ∇u · ν = g, where ν(x) is the unit outward normal of

x ∈ ∂Ω ;
(iii) (Robin condition) ∇u ·ν + cu = g for any c > 0.
(iv) (Mixed condition) u = g on Γ1 and ∇u ·ν = h on Γ2, where Γ1∪Γ2 = ∂Ω and

Γ1∩Γ2 = /0.

The elliptic equation with Neumann boundary condition naturally imposes a
compatibility condition. By Guass divergence theorem (cf. Corollary B.4), if u is
a solution of the Neumann problem then u satisfies, for every connected component
ω of Ω , ∫

ω

∆u =
∫

∂ω

∇u ·ν (Using GDT)

−
∫

ω

f =
∫

∂ω

g.

The second equality is called the compatibility condition. Thus, for an inhomoge-
neous Laplace equation with Neumann boundary condition, the given data f ,g must
necessarily satisfy the compatibility condition. Otherwise, the Neumann problem
does not make any sense.

The aim of this chapter is to solve, for any open bounded subset Ω ⊂ Rn,{
−∆u(x) = f (x) in Ω

one of the above inhomogeneous boudary condition on ∂Ω .

By the linearity of Laplacian, u = v+w where v is a solution of{
∆v(x) = 0 in Ω

one of the above inhomogeneous boudary condition on ∂Ω ,

and w is a solution of{
−∆w(x) = f (x) in Ω

one of the above homogeneous boudary condition on ∂Ω .
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Therefore, we shall solve for u by solving for v and w separately.

4.5 Dirichlet Principle

The Dirichlet principle (formulated, independently by Gauss, Lord Kelvin and
Dirichlet) states that the solution of the Dirichlet problem minimizes the correspond-
ing energy functional.

Let Ω be an open bounded subset of Rn with C1 boundary ∂Ω and let f : Ω →R
and g : ∂Ω → R be given. For convenience, recall the Dirichlet problem ((4.7)),{

−∆u = f in Ω

u = g on ∂Ω .

Any solution u of (4.7) is in V = {v ∈C2(Ω) | v = g on ∂Ω}. The energy func-
tional J : V → R is defined as

J(v) :=
1
2

∫
Ω

|∇v|2 dx−
∫

Ω

f vdx

Theorem 4.2 (Dirichlet’s principle). A C2(Ω) function u solves (4.7) iff u min-
imises the functional J on V , i.e.,

J(u)≤ J(v) ∀v ∈V.

Proof. Let u ∈C2(Ω) be a solution of (4.7). For any v ∈V , we multiply both sides
of (4.7) by u− v and integrating we get,∫

Ω

(−∆u)(u− v)dx =
∫

Ω

f (u− v)dx∫
Ω

∇u ·∇(u− v)dx =
∫

Ω

f (u− v)dx∫
Ω

(
|∇u|2− f u

)
dx =

∫
Ω

(∇u ·∇v− f v) dx

≤
∫

Ω

|∇u ·∇v|−
∫

Ω

f vdx

≤ 1
2

∫
Ω

(
|∇u|2 + |∇v|2

)
dx−

∫
Ω

f vdx

(since 2ab≤ a2 +b2 )
J(u) ≤ J(v).

Thus, u minimises J in V . Conversely, let u minimise J in V . Thus,
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J(u) ≤ J(v) ∀v ∈V

J(u) ≤ J(u+ tφ) (for any φ ∈C2(Ω) such that φ = 0 on ∂Ω )

0 ≤ 1
t
(J(u+ tφ)− J(u))

0 ≤ 1
t

(
1
2

∫
Ω

(
t2|∇φ |2 +2t∇φ ·∇u

)
dx− t

∫
Ω

f φ dx
)

Taking limit t→ 0 both sides, we get

0≤
∫

Ω

∇φ ·∇udx−
∫

Ω

f φ dx ∀φ ∈C2(Ω) s.t. φ = 0 on ∂Ω .

Choosing −φ in place of φ we get the reverse inequality, and we have equality in
the above. Thus,∫

Ω

∇u ·∇φ dx =
∫

Ω

f φ dx ∀φ ∈C2(Ω) s.t. φ = 0 on ∂Ω∫
Ω

(−∆u− f )φ dx = 0 ∀φ ∈C2(Ω) s.t. φ = 0 on ∂Ω .

Thus u solves (4.7).

4.6 Harmonic Functions

The one dimensional Laplace equation is an ODE ( d2

dx2 ) and is solvable with solu-
tions u(x) = ax+ b for some constants a and b. But in higher dimensions solving
Laplace equation is not so simple. For instance, a two dimensional Laplace equation

uxx +uyy = 0

has the trivial solution, u(x,y) = ax + by+ c, all one degree polynomials of two
variables. In addition, xy, x2− y2, x3− 3xy2, 3x2y− y3, ex siny and ex cosy are all
solutions to the two variable Laplace equation. In Rn, it is trivial to check that all
polynomials up to degree one, i.e.

∑
|α|≤1

aα xα

is a solution to ∆u = 0 in Rn. But we also have functions of higher degree and
functions not expressible in terms of elementary functions as solutions to Laplace
equation. For instance, note that u(x) = ∏

n
i=1 xi is a solution to ∆u = 0 in Rn.

Definition 4.1. Let Ω be an open subset of Rn. A function u ∈C2(Ω) is said to be
harmonic on Ω if ∆u(x) = 0 in Ω .



94 4 The Laplacian

We already remarked that every scalar potential is a harmonic function (cf. § ??).
Gauss was the first to deduce some important properties of harmonic functions and
thus laid the foundation for Potential theory and Harmonic Analysis. Due to the
linearity of ∆, sum of any finite number of harmonic functions is harmonic and a
scalar multiple of a harmonic function is harmonic. Moreover, harmonic functions
is the null-space (kernel) of the Laplace operator from C2(Ω) to C(Ω). Thus, we
denote the class of harmonic functions as N(∆).

In two dimension, one associates with a harmonic function u(x,y), a conjugate
harmonic function, v(x,y) defined as the solution of a first order system of PDE
called the Cauchy-Riemann equations,

ux(x,y) = vy(x,y) and uy(x,y) =−vx(x,y).

Harmonic functions and holomorphic functions (differentiable complex functions)
are related in the sense that, for any pair (u,v), harmonic and its conjugate, gives
a holomorphic function f (z) = u(x,y)+ iv(x,y) where z = x+ iy. Conversely, for
any holomorphic function f , its real part and imaginary part are conjugate harmonic
functions. This observation gives us more examples of harmonic functions, for in-
stance, since all complex polynomials f (z)= zm are holomorphic we have (using the
polar coordinates) u(r,θ) = rm cosmθ and v(r,θ) = rm sinmθ are harmonic func-
tions in R2 for all m ∈ N. Similarly, since f (z) = logz = lnr+ iθ is holomorphic in
certain region, we have u(r,θ) = lnr and v(r,θ) = θ are harmonic in R2 \ (0,0) and
R2 \{θ = 0}, respectively.

Exercise 4.2. Show that there are infinitely many linearly independent harmonic
functions in the vector space C2(R2).

4.6.1 Spherical Harmonics

A polynomial of degree k in n-variables is of the form

Pk(x) := ∑
|α|≤k

aα xα .

A polynomial P is said to be homogeneous of degree k if P(λx) = λ kP(x), for all
non-zero λ ∈ R. Note that a homogeneous polynomial of degree k will be of the
form

∑
|α|=k

aα xα .

The number of possible n-tuples α such that |α| = k is given by
(n+k−1

k

)
. Let

Hk(Rn) denote the set of all homogeneous harmonic polynomial of degree k in
n variables. The set Hk(Rn) forms a vector space and Hk(Rn)⊂ N(∆)⊂C2(Rn).
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4.6.1.1 Two Dimensions

Consider a general homogeneous polynomial

Pk(x,y) :=
k

∑
i=0

aixiyk−i

of degree k in R2 (two variables). Note that Pk contains k+1 coefficients2. Then

∆Pk(x,y) =
k

∑
i=2

aii(i−1)xi−2yk−i +
k−2

∑
i=0

ai(k− i)(k− i−1)xiyk−i−2

is a homogeneous polynomial of degree k−2 and, hence, contains k−1 coefficients.
If Pk ∈Hk(R2), i.e. ∆Pk(x,y) = 0, then all the k−1 coefficients should vanish. Thus,
we have k−1 equations relating the k+1 coefficients of Pk and, hence, Hk(R2) is
of dimension two (since k+ 1− (k− 1) = 2). Let us now find the basis of the two
dimensional space Hk(R2). In polar coordinates, Pk(r,θ) = rkQk(θ) where

Qk(θ) =
k

∑
i=0

ai(cosθ)i(sinθ)k−i.

Note that Qk is the restriction of Pk to S1 and are called spherical harmonics. If
Pk ∈Hk(R2) then, using the polar form of Laplacian, we get

rk−2 [Q′′k (θ)+ k2Qk(θ)
]
= 0.

Therefore, for all r > 0, Qk(θ) is a solution to the ODE

Q′′k (θ)+ k2Qk(θ) = 0.

Therefore, Qk(θ) =α coskθ +β sinkθ and Pk(r,θ) = rk(α coskθ +β sinkθ). Thus,
Pk is a linear combination rk coskθ and rk sinkθ . In fact, if we identify each vec-
tor (x,y) ∈ R2 with the complex number z = x + iy, then we have shown that
Re(zk), Im(zk) are the basis of Hk(R2). If we choose α1 and β1 such that β =
−α1 sinβ1 and α = α1 cosβ1, then we can rewrite the polynomial as

Pk(r,θ) = α1rk cos(kθ +β1).

Thus, we immediately see that the zero set of Pk(r,θ) in R2 will be a family of k
straight lines passing through origin such that between any two consecutive lines
the angle is same.

2
(k+1

k

)
= k+1
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4.6.1.2 Three Dimensions

Consider a general homogeneous polynomial

Pk(x) := ∑
|α|=k

aα xα

of degree k in R3 (three variables). Note that Pk contains
(k+2

k

)
= (k+2)(k+1)

2 co-
efficients. Then ∆Pk(x) is a homogeneous polynomial of degree k− 2 and, hence,
contains k(k−1)

2 coefficients. If Pk ∈ Hk(R3), i.e. ∆Pk(x) = 0, then all the k(k−1)
2

coefficients should vanish. Thus, we have k(k−1)
2 equations relating the (k+2)(k+1)

2
coefficients of Pk and, hence, Hk(R3) is of dimension

(k+2)(k+1)− k(k−1)
2

= 2k+1.

The basis of the 2k+1 dimensional space Hk(R3) is given in terms of the Legendre
functions which we shall describe now. In spherical coordinates, x = r sinφ cosθ ,
y = r sinφ sinθ and z = r cosφ . Thus, Pk(r,φ ,θ) = rkR(φ)Q(θ) where

R(φ)Q(θ) = ∑
|α|=k

aα(sinφ)α1+α2(cosφ)α3(cosθ)α1(sinθ)α2 .

The separated variable assumption above is not a issue because differential oper-
ator is linear. Note that RQ is the restriction of Pk to S2 and are called spherical
harmonics. If Pk ∈Hk(R2) then, using the spherical form of Laplacian, we get

rk−2
[

k(k+1)sin2
φ + sin2

φ
R′′(φ)
R(φ)

+ sinφ cosφ
R′(φ)
R(φ)

+
Q′′(θ)
Q(θ)

]
= 0.

Therefore, for all r > 0, we have equality

k(k+1)sin2
φ + sin2

φ
R′′(φ)
R(φ)

+ sinφ cosφ
R′(φ)
R(φ)

=−Q′′(θ)
Q(θ)

.

Since LHS is a function of φ and RHS is a function of θ they must be equal to some
constant λ . Then, we have to solve for the eigenvalue problem

−Q′′(θ) = λQ(θ)

where Q is 2π-periodic. This has the solution, for all m ∈ N∪ {0}, λ = m2 and
Qm(θ) = αm cosmθ +βm sinmθ . For λ = m2 we solve for R(φ) in

R′′(φ)+
cosφ

sinφ
R′(φ) = R(φ)

(
m2

sin2
φ
− k(k+1)

)
φ ∈ (0,φ).

Set w = cosφ . Then dw
dφ

=−sinφ .
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R′(φ) =−sinφ
dR
dw

and R′′(φ) = sin2
φ

d2R
dw2 − cosφ

dR
dw

In the new variable w, we get the Legendre equation

(1−w2)R′′(w)−2wR′(w) =
(

m2

1−w2 − k(k+1)
)

R(w) w ∈ [−1,1].

For each k ∈ N∪{0}, this has the Legendre polynomials, Rk,m(cosφ), as its solu-
tions. Therefore, in general,

Pk(r,φ ,θ) = rk(α cosmθ +β sinmθ)Rk,m(cosφ).

However, we are interested only those Rk,m which gives a polynomial of degree k in
R3. Thus, for m = 0,1, . . . ,k,

Rk,m(w) = (1−w2)m/2 dk+m

dwk+m (1−w2)k.

Note that, for each fixed k and all 1≤ m≤ k, the collection

{Rk,0(cosφ),cosmθRk,m(cosφ),sinmθRk,m(cosφ)} ⊂Hk(R3)

is 2k+1 linearly independent homogeneous harmonic polynomials of degree k and
forms a basis. Thus, each Pk is a linear combination of these basis elements.

The zero sets of Pk exhibit properties depending on m. For m = 0 the harmonic
polynomial Pk is a constant multiple of Rk,0(cosφ). Since Rk,0(w) has k distinct
zeros in [−1,1] arranged symmetrically about w = 0, there are k distince zeros of
Rk,0(cosφ) in (0,π) arranged symmetrically about π/2. Thus on S2, the unit sphere,
the function Rk,0(cosφ) vanishes on k circles circumscribed in the latitudinal direc-
tion. For k odd the circle along equator is also a zero set. The function Rk,0(cosφ)
and its constant multiples are called zonal harmonics.

If 0 < m < k, then the spherical harmonics is of the form

(α cosmθ +β sinmθ)sinm
φ

dk+m

dwk+m (1−w2)k.

If the first term is zero then tanmθ = −α/β . This corresponds to great circle
through the north pole and south pole of S2 and the angle between the planes con-
taining two consecutive great circle is π/m. The second term vanishes on φ = 0
and φ = π corresponding to the north and south pole, respectively. The third term
vanishes on k−m latitude circle. Thus, we have orthogonally intersecting family of
circles which form the zero set which are called tesseral harmonics.

If m = k then the spherical harmonics is of the form

(α coskθ +β sinkθ)sink
φ
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and it vanishes for φ = 0, φ = π or tankθ =−α/β . The first two cases corresponds
to the north and south pole, respectively, and the last case corresponds to great cir-
cles through the north pole and south pole of S2 and the angle between the planes
containing two consecutive great circle is π/k. Thus, the great circles divide the S2

in to 2k sectors and are called sectorial harmoics.

4.6.1.3 Higher Dimensions

Consider a general homogeneous polynomial

Pk(x) := ∑
|α|=k

aα xα

of degree k in Rn (n variables). Note that Pk contains
(n+k−1

k

)
coefficients. Then

∆Pk(x) is a homogeneous polynomial of degree k−2 and, hence, contains
(n+k−3

k−2

)
coefficients. If Pk ∈Hk(Rn), i.e. ∆Pk(x) = 0, then all the

(n+k−3
k−2

)
coefficients should

vanish. Thus, we have
(n+k−3

k−2

)
equations relating

(n+k−1
k

)
coefficients of Pk and,

hence, Hk(Rn) is of dimension

` :=
(

n+ k−1
k

)
−
(

n+ k−3
k−2

)
.

In polar form, Pk(r,θ) = rkQ(θ) where θ ∈ Sn−1 and if Pk(r,θ) ∈Hk(Rn) then

∆Pk =
∂ 2Pk

∂ r2 +
n−1

r
∂Pk

∂ r
+

1
r2 ∆Sn−1Pk = 0

where ∆Sn−1 is a second order differential operator in angular variables only called
the Laplace-Beltrami operator. Therefore, we have

rk−2 [∆Sn−1Q(θ)+ k(n+ k−2)Q(θ)] = 0

and for r > 0,
∆Sn−1Q(θ)+ k(n+ k−2)Q(θ) = 0.

4.6.2 Properties of Harmonic Functions

In this section we shall study properties of harmonic functions. We shall assume the
divergence theorems from multivariable calculus (cf. Appendix B). Also, note that if
u is a harmonic function on Ω then, by Gauss divergence theorem (cf. Theorem B.3),∫

∂Ω

∂u
∂ν

dσ = 0.
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Definition 4.2. Let Ω be an open subset of Rn and ωn =
2πn/2

Γ (n/2) (cf. Appendix C) be
the surface area of the unit sphere S1(0) of Rn.

(a) A function u ∈C(Ω) is said to satisfy the first mean value property (FMVP) in
Ω if

u(x) =
1

ωnrn−1

∫
Sr(x)

u(y)dσy for any Br(x)⊂Ω .

(b) A function u ∈C(Ω) is said to satisfy the second mean value property (SMVP)
in Ω if

u(x) =
n

ωnrn

∫
Br(x)

u(y)dy for any Br(x)⊂Ω .

Exercise 4.3. Show that u satisfies the FMVP iff

u(x) =
1

ωn

∫
S1(0)

u(x+ rz)dσz.

Similarly, u satisfies SMVP iff

u(x) =
n

ωn

∫
B1(0)

u(x+ rz)dz.

Exercise 4.4. Show that the FMVP and SMVP are equivalent. That is show that u
satisfies (a) iff u satisfies (b).

Owing to the above exercise we shall, henceforth, refer to the FMVP and SMVP
as just the mean value property (MVP).

We shall now prove a result on the smoothness of a function satisfying MVP.

Theorem 4.3. If u ∈C(Ω) satisfies the MVP in Ω , then u ∈C∞(Ω).

Proof. We first consider uε := ρε ∗u, the convolution of u with mollifiers, as intro-
duced in Theorem ??. where

Ωε := {x ∈Ω | dist(x,∂Ω)> ε}.

We shall now show that u = uε for all ε > 0, due to the MVP of u and the radial
nature of ρ . Let x ∈Ωε . Consider
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uε(x) =
∫

Ω

ρε(x− y)u(y)dy

=
∫

Bε (x)
ρε(x− y)u(y)dy (Since supp(ρε ) is in Bε(x))

=
∫

ε

0
ρε(r)

(∫
Sr(x)

u(y)dσy

)
dr (cf. Theorem C.1)

= u(x)ωn

∫
ε

0
ρε(r)rn−1 dr (Using MVP of u)

= u(x)
∫

ε

0
ρε(r)

(∫
Sr(0)

dσy

)
dr

= u(x)
∫

Bε (0)
ρε(y)dy = u(x).

Thus uε(x) = u(x) for all x ∈Ωε and for all ε > 0. Since uε ∈C∞(Ωε) for all ε > 0
(cf. Theorem ??), we have u ∈C∞(Ωε) for all ε > 0.

Theorem 4.4. Let u be a harmonic function on Ω . Then u satisfies the MVP in Ω .

Proof. Let Br(x)⊂Ω be any ball with centre at x ∈Ω and for some r > 0. For the
given harmonic function u, we set

M(u,x;r) :=
1

ωnrn−1

∫
Sr(x)

u(y)dσy.

Note that v is not defined at 0, since r > 0. We have from Exercise 4.3 that

M(u,x;r) =
1

ωn

∫
S1(0)

u(x+ rz)dσz.

Now, differentiating both sides w.r.t r, we get

dM(u,x;r)
dr

=
1

ωn

∫
S1(0)

∇u(x+ rz) · zdσz

=
1

ωnrn−1

∫
Sr(x)

∇u(y) · (y− x)
r

dσy

Since |x−y|= r, by setting ν := (y−x)/r as the unit vector, and applying the Gauss
divergence theorem along with the fact that u is harmonic, we get

dM(u,x;r)
dr

=
1

ωnrn−1

∫
Sr(x)

∇u(y) ·ν dσy =
1

ωnrn−1

∫
Br(x)

∆u(y)dy = 0.

Thus, v is a constant function of r > 0 and hence

M(u,x;r) = M(u,x;ε) ∀ε > 0.

Moreover, since M is continuous (constant function), we have
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M(u,x;r) = lim
ε→0

M(u,x;ε)

= lim
ε→0

1
ωn

∫
S1(0)

u(x+ εz)dσz

=
1

ωn

∫
S1(0)

lim
ε→0

u(x+ εz)dσz (u is continuous on S1(0))

=
1

ωn

∫
S1(0)

u(x)dσz

= u(x) (Since ωn is the surface area of S1(0)).

Thus, u satisfies FMVP and, hence, SMVP.

Corollary 4.1. If u is harmonic on Ω , then u ∈C∞(Ω).

The above corollary is a easy consequence of Theorem 4.4 and Theorem 4.3. We
shall now prove that any function satisfying MVP is harmonic.

Theorem 4.5. If u ∈C(Ω) satisfies the MVP in Ω , then u is harmonic in Ω .

Proof. Since u satisfies MVP, by Theorem 4.3, u ∈C∞(Ω). Thus, ∆u makes sense.
Now, suppose u is not harmonic in Ω , then there is a x ∈ Ω such that ∆u(x) 6= 0.
Without loss of generality, let’s say ∆u(x) > 0. Moreover, since ∆u is continuous
there is a s > 0 such that, for all y ∈ Bs(x), ∆u(y) > 0. As done previously, we set
for r > 0 such that Br(x)⊂Ω ,

M(u,x;r) :=
1

ωnrn−1

∫
Sr(x)

u(y)dσy.

Since u satisifes MVP, we have M(u,x;r) = u(x) for all r > 0. Thus, M is a constant
function in r and M′(u,x;r) = 0. But, at r = s,

0 =
dM(u,x;s)

dr
=

1
ωnrn−1

∫
Bs(x)

∆u(y)dy > 0

is a contradiction. Therefore, u is harmonic in Ω .

Above results leads us to conclude that a function is harmonic iff it satisfies the
MVP.

Exercise 4.5. If um is a sequence of harmonic functions in Ω converging to u uni-
formly on compact subsets of Ω , then show that u is harmonic in Ω .

Theorem 4.6 (Strong Maximum Principle). Let Ω be an open, connected (do-
main) subset of Rn. Let u be harmonic in Ω and S := supy∈Ω

u(y). Then

u(x)< S ∀x ∈Ω

or u≡ S is constant in Ω .
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Proof. We define a subset X of Ω as follows,

X := {x ∈Ω | u(x) = S}.

If X = /0, we have u(x) < S for all x ∈ Ω . Suppose X 6= /0. Then X is closed subset
of Ω , since u is continuous. Now, for any x ∈ X , by MVP

u(x) =
n

ωnrn

∫
Br(x)

u(y)dy for every r such that Br(x)⊂Ω .

Thus, we have
S = u(x) =

n
ωnrn

∫
Br(x)

u(y)dy≤ S

Hence equality will hold above only when u(y) = S for all y ∈ Br(x). Thus, we have
shown that for any x ∈ X , we have Br(x) ⊂ X . Therefore, X is open. Since Ω is
connected, the only open and closed subsets are /0 or Ω . Since X was assumed to be
non-empty, we should have X = Ω . Thus, u≡ S is constant in Ω .

Corollary 4.2 (Weak maximum Principle). Let Ω be an open, bounded subset of
Rn. Let u ∈C(Ω) be harmonic in Ω . Then

max
y∈Ω

u(y) = max
y∈∂Ω

u(y).

Proof. Let S := maxy∈Ω
u(y). If there is a x ∈ Ω such that u(x) = S, then u ≡ S

is constant on the connected component of Ω containing x. Thus, u = S on the
boundary of the connected component which is a part of ∂Ω .

Proof (Aliter). Since ∂Ω ⊂Ω , we have max∂Ω u≤max
Ω

u. It only remains to prove
the other equality. For the given harmonic function u and for a fixed ε > 0, we set
vε(x) = u(x)+ ε|x|2, for each x ∈ Ω . For each x ∈ Ω , ∆vε = ∆u+2nε > 0. Recall
that3 if a function v attains local maximum at a point x∈Ω , then in each direction its
second order partial derivative vxixi(x)≤ 0, for all i = 1,2, . . . ,n. Therefore ∆v(x)≤
0. Thus, we argue that vε does not attain (even a local) maximum in Ω . But vε has
to have a maximum in Ω , hence it should be attained at some point x? ∈ ∂Ω , on the
boundary. For all x ∈Ω ,

u(x)≤ vε(x)≤ vε(x?) = u(x?)+ ε|x?|2 ≤ max
x∈∂Ω

u(x)+ ε max
x∈∂Ω

|x|2.

The above inequality is true for all ε > 0. Thus, u(x)≤maxx∈∂Ω u(x), for all x ∈Ω .
Therefore, max

Ω
u≤maxx∈∂Ω u(x). and hence we have equality.

Theorem 4.7 (Estimates on derivatives). If u is harmonic in Ω , then

|Dα u(x)| ≤ Ck

rn+k ‖u‖1,Br(x) ∀Br(x)⊂Ω and each |α|= k

3 v ∈C2(a,b) has a local maximum at x ∈ (a,b) then v′(x) = 0 and v′′(x)≤ 0
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where the constants C0 =
n

ωn
and Ck =C0(2n+1nk)k for k = 1,2, . . ..

Proof. We prove the result by induction on k. Let k = 0. Since u is harmonic, by
SMVP we have, for any Br(x)⊂Ω ,

|u(x)| = n
ωnrn

∣∣∣∣∫Br(x)
u(y)dy

∣∣∣∣
≤ n

ωnrn

∫
Br(x)
|u(y)|dy

=
n

ωnrn ‖u‖1,Br(x) =
C0

rn ‖u‖1,Br(x).

Now, let k = 1. Observe that if u is harmonic then by differentiating the Laplace
equation and using the equality of mixed derivatives, we have uxi := ∂u

∂xi
is harmoic,

for all i = 1,2, . . . ,n. Now, by the SMVP of uxi , we have

|uxi(x)| =
n2n

ωnrn

∣∣∣∣∣
∫

Br/2(x)
uxi(y)dy

∣∣∣∣∣
=

n2n

ωnrn

∣∣∣∣∣
∫

Sr/2(x)
uνi dσy

∣∣∣∣∣ (by Gauss-Green theorem)

≤ 2n
r
‖u‖∞,Sr/2(x).

Thus, it now remains to estimate ‖u‖∞,Sr/2(x). Let z ∈ Sr/2(x), then

Br/2(z)⊂ Br(x)⊂Ω .

But, using k = 0 result, we have

|u(z)| ≤ C02n

rn ‖u‖1,Br/2(z) ≤
C02n

rn ‖u‖1,Br(x).

Therefore, ‖u‖∞,Sr/2(x) ≤
C02n

rn ‖u‖1,Br(x) and using this in the estimate of uxi , we get

|uxi(x)| ≤
C0n2n+1

rn+1 ‖u‖1,Br(x).

Hence
|Dα u(x)| ≤ C1

rn+1 ‖u‖1,Br(x) for |α|= 1.

Let now k ≥ 2 and α be a multi-index such that |α| = k. We assume the induction
hypothesis that the estimate to be proved is true for k− 1. Note that Dα u = ∂Dβ u

∂xi
for some i ∈ {1,2, . . . ,n} and |β |= k−1. Moreover, if u is harmonic then by differ-
entiating the Laplace equation and using the equality of mixed derivatives, we have
∂Dβ u

∂xi
is harmoic for i = 1,2, . . . ,n. Thus, following an earlier argument, we have
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|Dα u(x)|=

∣∣∣∣∣∂Dβ u(x)
∂xi

∣∣∣∣∣ = nkn

ωnrn

∣∣∣∣∣
∫

Br/k(x)

∂Dβ u(y)
∂xi

dy

∣∣∣∣∣
=

nkn

ωnrn

∣∣∣∣∣
∫

Sr/k(x)
Dβ uνi dσy

∣∣∣∣∣
≤ nk

r
‖Dβ u‖∞,Sr/k(x).

It now only remains to estimate ‖Dβ u‖∞,Sr/k(x). Let z ∈ Sr/k(x), then B(k−1)r/k(z)⊂
Br(x)⊂Ω . But, using induction hypothesis for k−1, we have

|Dβ u(z)| ≤ Ck−1kn+k−1

((k−1)r)n+k−1 ‖u‖1,B(k−1)r/k(z) ≤
Ck−1kn+k−1

((k−1)r)n+k−1 ‖u‖1,Br(x).

Therefore, using the above estimate for Dα u, we get

|Dα u(x)| ≤ Ck−1nkn+k

(k−1)n+k−1rn+k ‖u‖1,Br(x)

=
C02(n+1)(k−1)nk(k−1)k−1kn+k

(k−1)n+k−1rn+k ‖u‖1,Br(x)

=
C0(2n+1nk)k

rn+k

(
k

k−1

)n( 1
2n+1

)
‖u‖1,Br(x)

=
C0(2n+1nk)k

rn+k

(
k

2(k−1)

)n(1
2

)
‖u‖1,Br(x)

≤ Ck

rn+k ‖u‖1,Br(x) since
(

k
2(k−1)

)n(1
2

)
≤ 1.

Hence
|Dα u(x)| ≤ Ck

rn+k ‖u‖1,Br(x) for |α|= k,∀k ≥ 2.

Theorem 4.8 (Liouville’s Theorem). If u is bounded and harmonic on Rn, then u
is constant.

Proof. For any x ∈ Rn and r > 0, we have the estimate on the first derivative as,

|∇u(x)| ≤ C1

rn+1 ‖u‖1,Br(x)

=
2n+1n

ωnrn+1 ‖u‖1,Br(x)

≤ 2n+1n
ωnrn+1 ‖u‖∞,Rnωnrn

=
2n+1

r
‖u‖∞,Rn → 0 as r→ ∞.
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Thus, ∇u≡ 0 in Rn and hence u is constant.

Exercise 4.6. Show that if u is harmonic in Ω , then u is analytic in Ω . (Hint: Use
the estimates on derivatives with Stirling’s formula and Taylor expansion).

We end our discussion on the properties of harmonic function with Harnack in-
equality. The Harnack inequality states that non-negative harmonic functions cannot
be very large or very small at any point without being so everywhere in a compact
set containing that point.

Theorem 4.9 (Harnack’s Inequality). For each connected open subset ω ⊂⊂ Ω ,
there exists a constant C > 0 (depending only on ω and independent of u) such that

sup
x∈ω

u(x)≤C inf
x∈ω

u(x)

for all non-negative harmonic functions in Ω . In particular, for all non-negative
harmonic functions and x,y ∈ ω ,

1
C

u(y)≤ u(x)≤Cu(y).

Proof. Set r := 1
4 dist(ω,∂Ω). Let x,y ∈ ω such that |x− y|< r. By SMVP,

u(x) =
n

ωn2nrn

∫
B2r(x)

u(z)dz

≥ n
ωn2nrn

∫
Br(y)

u(z)dz =
1
2n u(y).

Thus, 1/2nu(y) ≤ u(x). Interchanging the role of x and y, we get 1/2nu(x) ≤ u(y).
Thus, 1/2nu(y)≤ u(x)≤ 2nu(y) for all x,y ∈ ω such that |x− y| ≤ r.

Now, let x,y ∈ ω . Since ω is compact and connected in Ω , we can pick points
x = x0,x1, . . . ,xm = y such that ∪m

i=0Bi ⊃ω , where Bi := Br/2(xi) and are sorted such
that Bi∩Bi+1 6= /0, for i = 0,2, . . . ,m−1. Hence, note that |xi+1−xi| ≤ r. Therefore,

u(x) = u(x0)≥
1
2n u(x1)≥

1
22n u(x2)≥ . . .≥ 1

2mn u(xm) =
1

2mn u(y).

Interchanging the role of x and y, we get 1/2mnu(x)≤ u(y). Thus, C can be chosen
to be 2mn and the choice of m depends on ω .

The non-negative hypothesis is crucial because for a general harmonic function
with infu < 0 and supu > 0, the harnack’s inequality is trivially false!

4.6.3 Existence and Uniqueness of Solution

A consequence of the maximum principle is the uniqueness of the harmonic func-
tions.
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Theorem 4.10 (Uniqueness of Harmonic Functions). Let Ω be an open, bounded
subset of Rn. Let u1,u2 ∈C2(Ω)∩C(Ω) be harmonic in Ω such that u1 = u2 on ∂Ω ,
then u1 = u2 in Ω .

Proof. Note that u1−u2 is a harmonic function and hence, by weak maximum prin-
ciple, should attain its maximum on ∂Ω . But u1−u2 = 0 on ∂Ω . Thus u1−u2 ≤ 0
in Ω . Now, repeat the argument for u2−u1, we get u2−u1 ≤ 0 in Ω . Thus, we get
u1−u2 = 0 in Ω .

Let u ∈C2(Ω)∩C(Ω) be a solution of the Dirichlet problem{
∆u(x) = 0 x ∈Ω

u(x) = g(x) x ∈ ∂Ω .
(4.1)

By the strong maximum principle (cf. Theorem 4.6), if Ω is connected and g ≥ 0
and g(x)> 0 for some x ∈ ∂Ω then u(x)> 0 for all x ∈Ω .

Theorem 4.11. Let Ω be an open bounded connected subset of Rn and g ∈C(∂Ω).
Then the Dirichlet problem (4.1) has atmost one solution u ∈C2(Ω)∩C(Ω). More-
over, if u1 and u2 are solution to the Dirichlet problem corresponding to g1 and g2
in C(∂Ω), respectively, then

(a) (Comparison) g1 ≥ g2 on ∂Ω and g1(x0)> g2(x0) for some x ∈ ∂Ω implies that
u1 > u2 in Ω .

(b) (Stability) |u1(x)−u2(x)| ≤maxy∈∂Ω |g1(y)−g2(y)| for all x ∈Ω .

Proof. The fact that there is atmost one solution to the Dirichlet problem follows
from the Theorem 4.10. Let w = u1−u2. Then w is harmonic.

(a) Note that w = g1− g2 ≥ 0 on ∂Ω . Since g1(x0) > g2(x0) for some x0 ∈ ∂Ω ,
then w(x)> 0 for all x ∈ ∂Ω . This proves the comparison result.

(b) Again, by maximum principle, we have

±w(x)≤ max
y∈∂Ω

|g1(y)−g2(y)|∀x ∈Ω .

This proves the stability result.

We remark that the uniqueness result is not true for unbounded domains.

Example 4.3. Consider the problem (4.1) with g ≡ 0 in the domain Ω = {x ∈ Rn |
|x|> 1}. Obviously, u = 0 is a solution. But we also have a non-trivial solution

u(x) =

{
ln |x| n = 2
|x|2−n−1 n≥ 3.

Example 4.4. Consider the problem (4.1) with g ≡ 0 in the domain Ω = {x ∈ Rn |
xn > 0}. Obviously, u = 0 is a solution. But we also have a non-trivial solution
u(x) = xn.
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We have shown above that if a solution exists for (4.1) then it is unique (cf.
Theorem 4.10). So the question that remains to be answered is on the existence
of solution of (4.1), for any given domain Ω . In the modern theory, there are three
different methods to address this question of existence, viz., Perron’s Method, Layer
Potential (Integral Equations) and L2 methods.

Definition 4.3. We say a function w ∈ C(Ω) is a barrier at x0 ∈ ∂Ω if there is a
neighbourhood U of x0 such that

1. w is superharmonic in Ω ∩U
2. w > 0 in (Ω ∩U)\{x0} and w(x0) = 0.

Definition 4.4. Any point on ∂Ω is said to be regular (w.r.t Laplacian) if there exists
a barrier at that point.

A necessary and sufficient condition for the existence of solution to (4.1) is given
by the following result:

Theorem 4.12 (Perron’s method). The Dirichlet problem (4.1) is solvable for any
arbitrary bounded domain Ω and for any arbitrary g on ∂Ω iff all the points in ∂Ω

are regular.

Proof. One way is obvious. If (4.1) is solvable and x0 ∈ ∂Ω . Then, the solution to{
∆w = 0 in Ω

w = g on ∂Ω ,

where g(x) = |x− x0|, is a barrier function at x0. Thus, any x0 ∈ ∂Ω is a regular
point. The converse is proved using the Perron’s method for subharmonic functions.

Definition 4.5. A bounded domain Ω ⊂ Rn is said to satisfy the exterior sphere
condition if for every point x0 ∈ ∂Ω there is a ball B := BR(y) such that B∩Ω = x0.

Lemma 4.1. If Ω satisfies the exterior sphere condition then all boundary points of
Ω are regular.

Proof. For any x0 ∈ ∂Ω , we define the barrier function at x0 ∈ ∂Ω as

w(x) =

{
R2−n−|x− y|2−n for n≥ 3

ln
(
|x−y|

R

)
for n = 2.

Theorem 4.13. Any bounded domain with C2 boundary satisfies the exterior sphere
condition.

Definition 4.6. A bounded domain Ω ⊂ Rn is said to satisfy the exterior cone con-
dition if for every point x0 ∈ ∂Ω there is a finite right circular cone K with vertex at
x0 such that K∩Ω = x0.
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Exercise 4.7. Any domain satisfying the exterior sphere condition also satisfies the
exterior cone condition.

Exercise 4.8. Every bounded Lipschitz domain satisfies the exterior cone condition.

Lemma 4.2. If Ω satisfies the exterior cone condition then all boundary points of
Ω are regular.

Example 4.5 (Non-existence of Solutions). In 1912, Lebesgue gave an example of a
domain on which the classical Dirichlet problem is not solvable. The domain is

Ω := {(x,y,z) ∈ R3 | r2 + z2 < 1;r > e−1/2z for z > 0}.

Note that Ω is the unit ball in R3 with a sharp inward cusp, called Lebesgue spine,
at the origin (0,0,0). The origin is a not regular point of Ω .

Example 4.6. There are domains with inward cusps for which the classical problem
is solvable. For instance, consider

Ω := {(x,y,z) ∈ R3 | r2 + z2 < 1;r > z2k for z > 0},

for any positive integer k. The proof of this fact involves the theory of capacities.

Remark 4.1 (Characterizing regular points). The Wiener’s criterion gives the nec-
essary and sufficient condition for the regularity of the boundary points. For n ≥ 3
and a fixed λ ∈ (0,1), the Wiener’s criterion states that a point x0 ∈ ∂Ω is regular
iff the series

∞

∑
i=0

Ci

λ i(n−2)

diverges, where Ci := cap2{x /∈Ω | |x− x0| ≤ λ i}.

Remark 4.2 (Neumann Boundary Condition). The Neumann problem is stated as
follows: Given f : Ω → R and g : ∂Ω → R, find u : Ω → R such that{

−∆u = f in Ω
∂u
∂ν

= g on ∂Ω
(4.2)

where ∂u
∂ν

:= ∇u ·ν and ν = (ν1, . . . ,νn) is the outward pointing unit normal vector
field of ∂Ω . Thus, the boundary imposed is called the Neumann boundary condition.
The solution of a Neumann problem is not necessarily unique. If u is any solution
of (4.2), then u+ c for any constant c is also a solution of (4.2). More generally, for
any v such that v is constant on the connected components of Ω , u+ v is a solution
of (4.2).
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4.6.4 Domains with Simple Geometry

The discussion in the previous section tells us that one can expect solution to the
Dirichlet on domains whose boundary is regular. In this section, we give examples
of domains for which the solution can be computed.

The method of separation of variables was introduced by d’Alembert (1747)
and Euler (1748) for the wave equation. This technique was also employed by
Laplace (1782) and Legendre (1782) while studying the Laplace equation and also
by Fourier while studying the heat equation. The motivation behind the “separation
of variable” technique will be highlighted while studying wave equation.

Theorem 4.14 (2D Rectangle). Let Ω = {(x,y) ∈R2 | 0 < x < a and 0 < y < b} be
a rectangle in R2. Let g : ∂Ω→R which vanishes on three sides of the rectangle, i.e.,
g(0,y) = g(x,0) = g(a,y) = 0 and g(x,b) = h(x) where h is a continuous function
h(0) = h(a) = 0. Then there is a unique solution to (4.1) on this rectangle with given
boundary value g.

Proof. We begin by looking for solution u(x,y) whose variables are separated, i.e.,
u(x,y) = v(x)w(y). Substituting this form of u in the Laplace equation, we get

v′′(x)w(y)+ v(x)w′′(y) = 0.

Hence
v′′(x)
v(x)

=−w′′(y)
w(y)

.

Since LHS is function of x and RHS is function y, they must equal a constant, say
λ . Thus,

v′′(x)
v(x)

=−w′′(y)
w(y)

= λ .

Using the boundary condition on u, u(0,y) = g(0,y) = g(a,y) = u(a,y) = 0, we
get v(0)w(y) = v(a)w(y) = 0. If w ≡ 0, then u ≡ 0 which is not a solution to (4.1).
Hence, w 6≡ 0 and v(0) = v(a) = 0. Thus, we need to solve,{

v′′(x) = λv(x), x ∈ (0,a)
v(0) = v(a) = 0,

the eigen value problem for the second order differential operator. Note that the λ

can be either zero, positive or negative.
If λ = 0, then v′′= 0 and the general solution is v(x)=αx+β , for some constants

α and β . Since v(0) = 0, we get β = 0, and v(a) = 0 and a 6= 0 implies that α = 0.
Thus, v≡ 0 and hence u≡ 0. But, this can not be a solution to (4.1).

If λ > 0, then v(x) = αe
√

λx +βe−
√

λx. Equivalently,

v(x) = c1 cosh(
√

λx)+ c2 sinh(
√

λx)
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such that α = (c1+c2)/2 and β = (c1−c2)/2. Using the boundary condition v(0) =
0, we get c1 = 0 and hence

v(x) = c2 sinh(
√

λx).

Now using v(a) = 0, we have c2 sinh
√

λa = 0. Thus, c2 = 0 and v(x) = 0. We
have seen this cannot be a solution.

If λ < 0, then set ω =
√
−λ . We need to solve{

v′′(x)+ω2v(x) = 0 x ∈ (0,a)
v(0) = v(a) = 0. (4.3)

The general solution is

v(x) = α cos(ωx)+β sin(ωx).

Using the boundary condition v(0) = 0, we get α = 0 and hence v(x) = β sin(ωx).
Now using v(a) = 0, we have β sinωa = 0. Thus, either β = 0 or sinωa = 0. But
β = 0 does not yield a solution. Hence ωa= kπ or ω = kπ/a, for all non-zero k∈Z.
Hence, for each k ∈ N, there is a solution (vk,λk) for (4.3), with

vk(x) = βk sin
(

kπx
a

)
,

for some constant βk and λk = −(kπ/a)2. We now solve w corresponding to each
λk. For each k ∈ N, we solve for wk in the ODE{

w′′k (y) =
( kπ

a

)2
wk(y), y ∈ (0,b)

w(0) = 0.

Thus, wk(y) = ck sinh(kπy/a). Therefore, for each k ∈ N,

uk = δk sin
(

kπx
a

)
sinh

(
kπy

a

)
is a solution to (4.1). The general solution is of the form (principle of superposition)
(convergence?)

u(x,y) =
∞

∑
k=1

δk sin
(

kπx
a

)
sinh

(
kπy

a

)
.

The constant δk are obtained by using the boundary condition u(x,b) = h(x) which
yields

h(x) = u(x,b) =
∞

∑
k=1

δk sinh
(

kπb
a

)
sin
(

kπx
a

)
.

Since h(0)= h(a)= 0, the function h admits a Fourier Sine series. Thus δk sinh
( kπb

a

)
is the k-th Fourier sine coefficient of h, i.e.,
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δk =

(
sinh

(
kπb

a

))−1 2
a

∫ a

0
h(x)sin

(
kπx

a

)
.

Theorem 4.15 (2D Disk). Let Ω = {(x,y)∈R2 | x2+y2 < R2} be the disk of radius
R in R2. Let g : ∂Ω → R is a continuous function. Then there is a unique solution
to (4.1) on the unit disk with given boundary value g.

Proof. Given the nature of the domain, we shall use the Laplace operator in polar
coordinates,

∆ :=
1
r

∂

∂ r

(
r

∂

∂ r

)
+

1
r2

∂ 2

∂θ 2

where r is the magnitude component and θ is the direction component. Then ∂Ω

is the circle of radius one. Then, solving for u(x,y) in the Dirichlet problem is to
equivalent to finding U(r,θ) : Ω → R such that

1
r

∂

∂ r

(
r ∂U

∂ r

)
+ 1

r2
∂ 2U
∂θ 2 = 0 in Ω

U(r,θ +2π) =U(r,θ) in Ω

U(R,θ) = G(θ) on ∂Ω

(4.4)

where U(r,θ) = u(r cosθ ,r sinθ), G : [0,2π)→ R is G(θ) = g(cosθ ,sinθ). Note
that both U and G are 2π periodic w.r.t θ . We will look for solution U(r,θ) whose
variables can be separated, i.e., U(r,θ) = v(r)w(θ) with both v and w non-zero.
Substituting it in the polar form of Laplacian, we get

w
r

d
dr

(
r

dv
dr

)
+

v
r2

d2w
dθ 2 = 0

and hence
−r
v

d
dr

(
r

dv
dr

)
=

1
w

(
d2w
dθ 2

)
.

Since LHS is a function of r and RHS is a function of θ , they must equal a constant,
say λ . We need to solve the eigen value problem,{

w′′(θ)−λw(θ) = 0 θ ∈ R
w(θ +2π) = w(θ) ∀θ .

Note that the λ can be either zero, positive or negative. If λ = 0, then w′′ = 0 and
the general solution is w(θ) = αθ + β , for some constants α and β . Using the
periodicity of w,

αθ +β = w(θ) = w(θ +2π) = αθ +2απ +β

implies that α = 0. Thus, the pair λ = 0 and w(θ) = β is a solution. If λ > 0, then

w(θ) = αe
√

λθ +βe−
√

λθ .
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If either of α and β is non-zero, then w(θ)→±∞ as θ → ∞, which contradicts the
periodicity of w. Thus, α = β = 0 and w≡ 0, which cannot be a solution. If λ < 0,
then set ω =

√
−λ and the equation becomes{

w′′(θ)+ω2w(θ) = 0 θ ∈ R
w(θ +2π) = w(θ) ∀θ

Its general solution is

w(θ) = α cos(ωθ)+β sin(ωθ).

Using the periodicity of w, we get ω = k where k is an integer. For each k ∈ N, we
have the solution (wk,λk) where

λk =−k2 and wk(θ) = αk cos(kθ)+βk sin(kθ).

For the λk’s, we solve for vk, for each k = 0,1,2, . . .,

r
d
dr

(
r

dvk

dr

)
= k2vk.

For k = 0, we get v0(r) = α lnr+β . But lnr blows up as r→ 0, but any solution U
and, hence v, on the closed unit disk (compact subset) has to be bounded. Thus, we
must have the α = 0. Hence v0 ≡ β . For k ∈ N, we need to solve for vk in

r
d
dr

(
r

dvk

dr

)
= k2vk.

Use the change of variable r = es. Then es ds
dr = 1 and d

dr = d
ds

ds
dr = 1

es
d
ds . Hence

r d
dr =

d
ds . vk(es) = αeks +βe−ks. vk(r) = αrk +β r−k. Since r−k blows up as r→ 0,

we must have β = 0. Thus, vk = αrk. Therefore, for each k = 0,1,2, . . .,

Uk(r,θ) = akrk cos(kθ)+bkrk sin(kθ).

The general solution is

U(r,θ) =
a0

2
+

∞

∑
k=1

(
akrk cos(kθ)+bkrk sin(kθ)

)
.

To find the constants, we must use U(R,θ) = G(θ). If G ∈C1[0,2π], then G admits
Fourier series expansion. Therefore,

G(θ) =
a0

2
+

∞

∑
k=1

[
Rkak cos(kθ)+Rkbk sin(kθ)

]
where

ak =
1

Rkπ

∫
π

−π

G(θ)cos(kθ)dθ ,
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bk =
1

Rkπ

∫
π

−π

G(θ)sin(kθ)dθ .

Using this in the formula for U and the uniform convergence of Fourier series, we
get

U(r,θ) =
1
π

∫
π

−π

G(η)

[
1
2
+

∞

∑
k=1

( r
R

)k
(coskη coskθ + sinkη sinkθ)

]
dη

=
1
π

∫
π

−π

G(η)

[
1
2
+

∞

∑
k=1

( r
R

)k
cosk(η−θ)

]
dη .

Using the relation

∞

∑
k=1

( r
R

)k
cosk(η−θ) = Re

[
∞

∑
k=1

( r
R

ei(η−θ)
)k
]
= Re

[
r
R ei(η−θ)

1− r
R ei(η−θ)

]

=
R2− rRcos(η−θ)

R2 + r2−2rRcos(η−θ)
−1

=
rRcos(η−θ)− r2

R2 + r2−2rRcos(η−θ)

in U(r,θ) we get

U(r,θ) =
R2− r2

2π

∫
π

−π

G(η)

R2 + r2−2rRcos(η−θ)
dη .

Note that the formula derived above for U(r,θ) can be rewritten in Cartesian
coordinates and will have the form

u(x) =
R2−|x|2

2πR

∫
SR(0)

g(y)
|x− y|2

dy.

This can be easily seen, by setting y = R(x1
0 cosη + x2

0 sinη), we get dy = Rdη

and |x− y|2 = R2 + r2− 2rRcos(η − θ). This is called the Poisson formula. More
generally, the unique solution to the Dirichlet problem on a ball of radius R centred
at x0 in Rn is given by Poisson formula

u(x) =
R2−|x− x0|2

ωnR

∫
SR(x0)

g(y)
|x− y|n

dy.

We will derive this general form later (cf. (4.12)).

Theorem 4.16 (3D Sphere). Let Ω = {(x,y,z) ∈ R3 | x2 + y2 + z2 < 1} be the unit
sphere in R3. Let g : ∂Ω → R is a continuous function. Then there is a unique
solution to (4.1) on the unit sphere with given boundary value g.

Proof. Given the nature of domain, the Laplace operator in spherical coordinates,
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∆ :=
1
r2

∂

∂ r

(
r2 ∂

∂ r

)
+

1
r2 sinφ

∂

∂φ

(
sinφ

∂

∂φ

)
+

1
r2 sin2

φ

∂ 2

∂θ 2 .

where r is the magnitude component, φ is the inclination (zenith or elevation) in
the vertical plane and θ is the azimuth angle (in the direction in horizontal plane).
Solving for u in (4.1) is equivalent to finding U(r,φ ,θ) : Ω → R such that

1
r2

∂

∂ r

(
r2 ∂U

∂ r

)
+ 1

r2 sinφ

∂

∂φ

(
sinφ

∂U
∂φ

)
+ 1

r2 sin2 φ

∂ 2U
∂θ 2 = 0 in Ω

U(1,φ ,θ) = G(φ ,θ) on ∂Ω

(4.5)

where U(r,φ ,θ) and G(φ ,θ) are appropriate spherical coordinate function corre-
sponding to u and g. We will look for solution U(r,φ ,θ) whose variables can be
separated, i.e., U(r,φ ,θ) = v(r)w(φ)z(θ) with v,w and z non-zero. Substituting it
in the spherical form of Laplacian, we get

wz
r2

d
dr

(
r2 dv

dr

)
+

vz
r2 sinφ

d
dφ

(
sinφ

dw
dφ

)
+

vw
r2 sin2

φ

d2z
dθ 2 = 0

and hence

1
v

d
dr

(
r2 dv

dr

)
=
−1

wsinφ

d
dφ

(
sinφ

dw
dφ

)
− 1

zsin2
φ

d2z
dθ 2 .

Since LHS is a function of r and RHS is a function of (φ ,θ), they must equal a
constant, say λ . If Azimuthal symmetry is present then z(θ) is constant and hence
dz
dθ

= 0. We need to solve for w,

sinφw′′(φ)+ cosφw′(φ)+λ sinφw(φ) = 0, φ ∈ (0,π)

Set x = cosφ . Then dx
dφ

=−sinφ .

w′(φ) =−sinφ
dw
dx

and w′′(φ) = sin2
φ

d2w
dx2 − cosφ

dw
dx

In the new variable x, we get the Legendre equation

(1− x2)w′′(x)−2xw′(x)+λw(x) = 0 x ∈ [−1,1].

We have already seen that this is a singular problem (while studying S-L problems).
For each k ∈ N∪{0}, we have the solution (wk,λk) where

λk = k(k+1) and wk(φ) = Pk(cosφ).

For the λk’s, we solve for vk, for each k = 0,1,2, . . .,
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d
dr

(
r2 dvk

dr

)
= k(k+1)vk.

For k = 0, we get v0(r) = −α/r + β . But 1/r blows up as r→ 0 and U must be
bounded in the closed sphere. Thus, we must have the α = 0. Hence v0 ≡ β . For
k ∈ N, we need to solve for vk in

d
dr

(
r2 dvk

dr

)
= k(k+1)vk.

Use the change of variable r = es. Then es ds
dr = 1 and d

dr = d
ds

ds
dr = 1

es
d
ds . Hence

r d
dr = d

ds . Solving for m in the quadratic equation m2 +m = k(k+ 1). m1 = k and
m2 =−k−1. vk(es) = αeks +βe(−k−1)s. vk(r) = αrk +β r−k−1. Since r−k−1 blows
up as r→ 0, we must have β = 0. Thus, vk = αrk. Therefore, for each k = 0,1,2, . . .,

Uk(r,φ ,θ) = akrkPk(cosφ).

The general solution is

U(r,φ ,θ) =
∞

∑
k=0

akrkPk(cosφ).

Since we have azimuthal symmetry, G(φ ,θ) = G(φ). To find the constants, we use
U(1,φ ,θ) = G(φ), hence

G(φ) =
∞

∑
k=0

akPk(cosφ).

Using the orthogonality of Pk, we have

ak =
2k+1

2

∫
π

0
G(φ)Pk(cosφ)sinφ dφ .

4.7 Poisson Equation

In this section, we solve the inhomogeneous Laplace equation (called Poisson equa-
tion) with homogeneous Dirichlet boundary conditions. The Poisson equation is the
problem of finding u satisfying

−∆u = f in Rn, (4.6)

for any given f ∈C(Rn). Recall the notion of convolution of functions detailed in
Appendix ??. We have already used this notion while deriving the C∞ properties of
harmonic functions. The property of convolution is that the differential operator can
be accumulated on either side of the convolution operation. Let’s assume the exis-
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tence of a “function” δ which is the identity of the convolution (binary) operation,
i.e., f ∗δ = f . Suppose there is a function K such that ∆K = δ , then u := f ∗K is a
solution of (4.6) because ∆u = f ∗∆K = f .

Definition 4.7. A function K is said to be the fundamental solution of ∆ if ∆K is the
identity with respect to the convolution operation.

We caution that the above definition is not mathematically precise because the
notion of δ is not precise. If a fundamental solution K exists, then f ∗∆K = f , for
all f ∈ C(Rn). In particular, one can choose f ≡ 1. Thus, the necessary condition
for a fundamental solution, K, is 1∗∆K = 1, i.e.,∫

Rn
∆K(x)dx = 1.

Equivalently, the necessary condition for K is

lim
r→∞

∫
Br(0)

∆K(x)dx = 1,

which by Gauss divergence theorem implies that

lim
r→∞

∫
Sr(0)

∇K(y) ·ν(y)dσy = 1.

4.7.1 Fundamental Solution of Laplacian

The invariance of Laplacian under rotation motivates us to look for a radial funda-
mental solution. Recall how Laplacian treats radial functions (cf. Proposition 4.1)
and, consequently, we have

Corollary 4.3. The function u(x) = ax+ b solves ∆u = 0 in R. For n ≥ 2, if u is a
radial function on Rn then ∆u = 0 on Rn \{0} iff

u(x) =

{
a+b ln |x| if n = 2,
a+ b

2−n |x|
2−n if n≥ 3

where a,b are some constants.

Proof. For radial functions u(x) = v(r) where r = |x|. Observe that ∆u(x) = 0 iff
v′′(r)+ (n−1)

r v′(r) = 0. Now, integrating both sides w.r.t r, we get

v′′(r)
v′(r)

=
(1−n)

r
lnv′(r) = (1−n) lnr+ lnb

v′(r) = br(1−n)
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Integration both sides, once again, yields

v(r) =

{
b lnr+a if n = 2

b
2−n r2−n +a if n 6= 2.

The reason to choose the domain of the Laplacian as Rn \ {0} is because the
operator involves a ‘r’ in the denominator. However, for one dimensional case we
can let zero to be on the domain of Laplacian, since for n = 1, the Laplace operator
is unchanged. Thus, for n = 1, u(x) = a+bx is a harmonic function in Rn.

Note that as r→ 0, v(r)→∞. Thus, u has a singularity at 0. In fact, for any given
vector x0 ∈ Rn, ∆u(x− x0) = 0 for all x ∈ Rn \{x0}. We shall choose a,b such that
for every sphere Sr(0) about the origin, we have∫

Sr(0)
v′(r)dσ = 1.

Thus,

1 =
∫

Sr(0)
v′(r)dσ =

{
b
r (2πr) for n = 2
br1−n(rn−1ωn) for n≥ 3.

This is possible only for the choice

b =

{
1

2π
for n = 2

1
ωn

for n≥ 3.

The constant a can be chosen arbitrarly, but to keep things simple, we choose a≡ 0
for n ≥ 2. For convention sake, we shall add minus (“−”) sign (notice the minus
sign in (4.6)).

Definition 4.8. For any fixed x0 ∈ Rn We say K(x0,x), defined as

K(x0,x) :=

{
− 1

2π
ln |x− x0| (n = 2)

|x−x0|2−n

ωn(n−2) (n≥ 3),

is the fundamental solution of ∆ at any given x0 ∈ Rn.

We end this section by emphasising that the notion of fundamental solution has
a precise definition in terms of the Dirac measure. The Dirac measure, at a point
x ∈ Rn, is defined as,

δx(E) =

{
1 if x ∈ E
0 if x /∈ E

for all measurable subsets E of the measure space Rn. The Dirac measure has the
property that ∫

E
dδx = 1
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if x ∈ E and zero if x /∈ E. Also, for any integrable function f ,∫
Rn

f (y)dδx = f (x).

In this new set-up a fundamental solution K(x0, ·) can be defined as the solution
corresponding to δx0 , i.e.,

−∆K(x0,x) = δx0 in Rn.

Note that the above equation, as such, makes no sense because the RHS is a set-
function taking subsets of Rn as arguments, whereas K is a function on Rn. To give
meaning to above equation, one needs to view δx as a distribution (introduced by
L. Schwartz) and the equation should be interpreted in the distributional derivative
sense. The Dirac measure is the distributional limit of the sequence of mollifiers, ρε ,
in the space of distributions.

4.7.2 Existence and Uniqueness of Solution

In this section, we shall give a formula for the solution of the Poisson equation (4.6)
in Rn in terms of the fundamental solution.

Theorem 4.17. For any given f ∈ C2
c (Rn), u := K ∗ f is a solution to the Poisson

equation (4.6).

Proof. By the property of convolution (cf. proof of Theorem ??), we know that
Dα u(x) = (K ∗Dα f )(x) for all |α| ≤ 2. Since f ∈ C2

c (Rn), we have u ∈ C2(Rn).
The difficulty arises due to the singularity of K at the origin. Consider, for any fixed
m > 0,
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∆u(x) =
∫
Rn

K(y)∆x f (x− y)dy

=
∫

Bm(0)
K(y)∆x f (x− y)dy+

∫
Rn\Bm(0)

K(y)∆x f (x− y)dy

=
∫

Bm(0)
K(y)∆x f (x− y)dy+

∫
Rn\Bm(0)

K(y)∆y f (x− y)dy

=
∫

Bm(0)
K(y)∆x f (x− y)dy+

∫
Sm(0)

K(y)∇y f (x− y) ·ν dσy

−
∫
Rn\Bm(0)

∇yK(y) ·∇y f (x− y)dy (By Corollary B.4)

=
∫

Bm(0)
K(y)∆x f (x− y)dy+

∫
Sm(0)

K(y)∇y f (x− y) ·ν dσy

+
∫
Rn\Bm(0)

∆yK(y) f (x− y)dy

−
∫

Sm(0)
f (x− y)∇yK(y) ·ν dσy (By Corollary B.4).

Therefore,

∆u(x) =
∫

Bm(0)
K(y)∆x f (x− y)dy+

∫
Sm(0)

K(y)∇y f (x− y) ·ν dσy

−
∫

Sm(0)
f (x− y)∇yK(y) ·ν dσy

= Im(x)+ Jm(x)+Km(x).

But, due to the compact support of f , we have

|Im(x)| ≤ ‖D2 f‖∞,Rn

∫
Bm(0)

|K(y)|dy.

Thus, for n = 2,

|Im(x)| ≤
m2

2

(
1
2
+ | lnm|

)
‖D2 f‖∞,Rn

and for n≥ 3, we have

|Im(x)| ≤
m2

2(n−2)
‖D2 f‖∞,Rn .

Hence, as m→ 0, |Im(x)| → 0. Similarly,

|Jm(x)| ≤
∫

Sm(0)
|K(y)∇y f (x− y) ·ν |dσy

≤ ‖∇ f‖∞,Rn

∫
Sm(0)
|K(y)|dσy.
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Thus, for n = 2,
|Jm(x)| ≤ m| lnm|‖∇ f‖∞,Rn

and for n≥ 3, we have

|Jm(x)| ≤
m

(n−2)
‖∇ f‖∞,Rn .

Hence, as m→ 0, |Jm(x)| → 0. Now, to tackle the last term Km(x), we note that
a simple computation yields that ∇yK(y) = −1

ωn|y|n y. Since we are in the m radius
sphere |y|= m. Also the unit vector ν outside of Sm(0), as a boundary of Rn \Bm(0),
is given by −y/|y|=−y/m. Therefore,

∇yK(y) ·ν =
1

ωnmn+1 y · y = 1
ωnmn−1 .

Km(x) = −
∫

Sm(0)
f (x− y)∇yK(y) ·ν dσy

=
−1

ωnmn−1

∫
Sm(0)

f (x− y)dσy

=
−1

ωnmn−1

∫
Sm(x)

f (y)dσy

Since f is continuous, for every ε > 0, there is a δ > 0 such that | f (x)− f (y)| < ε

whenever |x− y|< δ . When m→ 0, we can choose m such that m < δ and for this
m, we see that Now, consider

|Km(x)− (− f (x))| =
∣∣∣∣ f (x)− 1

ωnmn−1

∫
Sm(x)

f (y)dσy

∣∣∣∣
=

1
ωnmn−1

∫
Sm(x)
| f (x)− f (y)|dσy < ε.

Thus, as m→ 0, Km(x)→− f (x). Hence, u solves (4.6).

Remark 4.3. Notice that in the proof above, we have used the Green’s identity even-
though our domain is not bounded (which is a hypothesis for Green’s identity). This
can be justified by taking a ball bigger than Bm(0) and working in the annular region,
and later letting the bigger ball approach all of Rn.

A natural question at this juncture is: Is every solution of the Poisson equation
(4.6) of the form K ∗ f . We answer this question in the following theorem.

Theorem 4.18. Let f ∈ C2
c (Rn) and n ≥ 3. If u is a solution of (4.6) and u is

bounded, then u has the form u(x) = (K ∗ f )(x) +C, for any x ∈ Rn, where C is
some constant.
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Proof. We know that (cf. Theorem 4.17) u′(x) :=(K∗ f )(x) solves (4.6), the Poisson
equation in Rn. Moreover, u′ is bounded for n ≥ 3, since K(x)→ 0 as |x| → ∞ and
f has compact support in Rn. Also, since u is given to be a bounded solution of
(4.6), v := u−u′ is a bounded harmonic function. Hence, by Liouville’s theorem, v
is constant. Therefore u = u′+C, for some constant C.

We turn our attention to studying Poisson equation in proper subsets of Rn. Let
Ω be an open bounded subset of Rn with C1 boundary ∂Ω .

Theorem 4.19 (Uniqueness). Let Ω be an open bounded subset of Rn. For the Pois-
son equation ∆u = f with one of Dirichlet, Robin or Mixed conditions on ∂Ω , there
exists at most one solution u ∈C2(Ω)∩C1(Ω). In the Neumann problem two solu-
tions differ by a constant.

Proof. Let u and v be solutions of the Poisson equation with same boundary condi-
tions on ∂Ω . Then w := u− v is a harmonic function, ∆w = 0, with homogeneous
boundary condition on ∂Ω . By Green’s identity B.4, we have∫

Ω

|∇w|2 dx =
∫

∂Ω

w(∇w ·ν)dσ .

For the Drichlet, Neumann and Mixed case, the RHS is zero. For the Robin condi-
tion the RHS is negative,∫

∂Ω

w(∇w ·ν)dσ =−c
∫

∂Ω

w2 dσ ≤ 0.

Thus, in all the four boundary conditions∫
Ω

|∇w|2 dx≤ 0

and ∇w = 0. Therefore, w = u− v is constant in the connected components of Ω .
In the case of Dirichlet, mixed and Robin the constant has to be zero, by Maximum
principle4. Thus, u = v in these three cases.

Lemma 4.3. Let f be bounded and locally Hölder continuous5 with exponent γ ≤ 1
in Ω . Then u := K ∗ f ∈C2(Ω), −∆u = f in Ω .

Theorem 4.20 (Existence). Let Ω be a bounded domain with all boundary points
being regular w.r.t Laplacian. The classical Dirichlet problem{

−∆u = f in Ω

u = g on ∂Ω
(4.7)

is solvable (hence, uniquely) for any bounded, locally Hölder continuous function f
in Ω and continuous function g on ∂Ω .
4 or, simply, from the fact that a non-zero c will contradict the continuous extension of w to bound-
ary.
5 Hölder continuous in each compact subset of Ω
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Proof. Recall that K is a fundamental solution of −∆. Set w(x) := f ∗K in Rn then
−∆w = f . Set v = u−w. Then (4.7) is solvable iff{

−∆v = 0 in Ω

v = g−w on ∂Ω

is solvable. The equation for v is solvable by Theorem 4.12.

4.7.3 Green’s Function

The fundamental solution was defined for entire Rn. The Green’s function is an
analogue of fundamental solution for proper subsets of Rn. Thus, we shall now
attempt to solve the Poisson equation on a proper open subset Ω of Rn. This is
done via the Green’s function. For any x ∈ Ω , choose m > 0 such that Bm(x) ⊂ Ω .
Set Ωm := Ω \Bm(x). By applying the second identity of Corollary B.4, for any
u ∈C2(Ω) and vx(y) = K(y− x), where K is the fundamental solution on Rn \{x},
on the domain Ωm, we get∫

Ωm

u(y)∆yvx(y)dy−
∫

Ωm

vx(y)∆yu(y)dy =
∫

∂Ωm

(
u(y)

∂vx

∂ν
− vx(y)

∂u
∂ν

)
dσy

−
∫

Ωm

vx(y)∆yu(y)dy =
∫

∂Ωm

(
u(y)

∂vx

∂ν
− vx(y)

∂u
∂ν

)
dσy

−
∫

Ω

vx(y)∆yu(y)dy+
∫

Bm(x)
vx(y)∆yu(y)dy =

∫
∂Ω

(
u(y)

∂vx

∂ν
− vx(y)

∂u
∂ν

)
dσy

+
∫

Sm(x)

(
u

∂vx

∂ν
− vx

∂u
∂ν

)
dσy∫

Bm(x)
vx(y)∆yu(y)dy−

∫
Sm(x)

u(y)
∂vx

∂ν
(y)dσy

+
∫

Sm(x)
vx(y)

∂u(y)
∂ν

dσy =
∫

∂Ω

(
u(y)

∂vx

∂ν
− vx(y)

∂u
∂ν

)
dσy

+
∫

Ω

vx(y)∆yu(y)dy.

Thus,

Im(x)+Km(x)+ Jm(x) =
∫

∂Ω

(
u(y)

∂K
∂ν

(y− x)−K(y− x)
∂u(y)

∂ν

)
dσy

+
∫

Ω

K(y− x)∆yu(y)dy.

The LHS is handled exactly as in the proof of Theorem 4.17, since u is a continuous
function on the compact set Ω and is bounded. We repeat the arguments below for
completeness sake. Consider the term Im.
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|Im(x)| ≤ ‖D2u‖∞,Ω

∫
Bm(x)

|K(y− x)|dy.

Thus,

|Im(x)| ≤

{
m2

2

( 1
2 + | lnm|

)
‖D2u‖∞,Ω for n = 2

m2

2(n−2)‖D
2u‖∞,Ω for n≥ 3.

Hence, as m→ 0, |Im(x)| → 0. Next, consider the term Km(x). Note that ∇yK(y−
x) = −1

ωn|y−x|n (y− x). Since we are in the m radius sphere |y− x| = m. Also the unit
vector ν inside of Sm(x), as a boundary of Ω \Bm(x), is given by−(y−x)/|y−x|=
−(y− x)/m. Therefore,

∇yK(y− x) ·ν =
1

ωnmn+1 (y− x) · (y− x) =
1

ωnmn−1 .

Thus,

Km(x) = −
∫

Sm(x)
u(y)∇yK(y− x) ·ν dσy

=
−1

ωnmn−1

∫
Sm(x)

u(y)dσy

Since u is continuous, for every ε > 0, there is a δ > 0 such that |u(x)− u(y)| < ε

whenever |x− y|< δ . When m→ 0, we can choose m such that m < δ and for this
m, we see that Now, consider

|Km(x)− (−u(x))| =
∣∣∣∣u(x)− 1

ωnmn−1

∫
Sm(x)

u(y)dσy

∣∣∣∣
=

1
ωnmn−1

∫
Sm(x)
|u(x)−u(y)|dσy < ε.

Thus, as m→ 0, Km(x)→−u(x). Finally, we consider the term Jm(x),

|Jm(x)| ≤
∫

Sm(x)
|K(y− x)∇yu(y) ·ν |dσy

≤ ‖∇yu‖∞,Ω

∫
Sm(x)
|K(y− x)|dσy.

Thus, for n = 2,

|Jm(x)| ≤

{
m| lnm|‖∇yu‖∞,Ω for n = 2
|Jm(x)| ≤ m

(n−2)‖∇yu‖∞,Ω for n≥ 3.

Hence, as m→ 0, |Jm(x)| → 0. Therefore, letting m→ 0, we have the identity
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u(x)=
∫

∂Ω

(
K(y− x)

∂u(y)
∂ν

−u(y)
∂K
∂ν

(y− x)
)

dσy−
∫

Ω

K(y−x)∆yu(y)dy (4.8)

For the Dirichlet problem, ∆u is known in Ω and u is known on ∂Ω . Thus,
(4.8) gives an expression for the solution u, provided we know the normal derivative
∂u(y)

∂ν
along ∂Ω . But this quantity is usually an unknown for Dirichlet problem.

Thus, we wish to rewrite (4.8) such that the knowledge of the normal derivative is
not necessary. To do so, we introduce a function ψx(y), for a fixed x ∈ Ω , as the
solution of the boundary-value problem,{

∆ψx(y) = 0 in Ω

ψx(y) = K(y− x) on ∂Ω .
(4.9)

Now applying the second identity of Corollary B.4 for any u∈C2(Ω) and v(y) =
ψx(y), we get ∫

∂Ω

(
u

∂ψx

∂ν
−ψx

∂u
∂ν

)
dσy =

∫
Ω

(u∆yψx−ψx∆yu) dy.

Therefore, substituting the following identity∫
∂Ω

K(y− x)
∂u(y)

∂ν
dσy =

∫
Ω

ψx(y)∆yu(y)dy+
∫

∂Ω

u(y)
∂ψx(y)

∂ν
dσy

in (4.8), we get

u(x) =
∫

Ω

(ψx(y)−K(y− x))∆yudy+
∫

∂Ω

u∇(ψx(y)−K(y− x)) ·ν dσy.

The identity above motivates the definition of what is called the Green’s function.

Definition 4.9. For any given open subset Ω ⊂ Rn and x,y ∈Ω such that x 6= y, we
define the Green’s function as

G(x,y) := ψx(y)−K(y− x).

Rewriting (4.8) in terms of Green’s function,we get

u(x) =
∫

Ω

G(x,y)∆yu(y)dy+
∫

∂Ω

u(y)
∂G(x,y)

∂ν
dσy.

Thus, in the arguments above, we have proved the following theorem.

Theorem 4.21. Let Ω be a bounded open subset of Rn with C1 boundary. Also,
given f ∈ C(Ω) and g ∈ C(Ω). If u ∈ C2(Ω) solves the Dirichlet problem (4.7),
then u has the representation

u(x) =−
∫

Ω

G(x,y) f (y)dy+
∫

∂Ω

g(y)
∂G(x,y)

∂ν
dσy. (4.10)
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Observe that we have solved the Dirichlet problem (4.7) provided we know the
Green’s function. The construction of Green’s function depends on the construction
of ψx for every x∈Ω . In other words, (4.7) is solved if we can solve (4.9). However,
computing ψx is usually possible when Ω has simple geometry. We shall identify
two simple cases of Ω , half-space and ball, where we shall explicitly compute G.

The Green’s function is the analogue of the fundamental solution K for the
boundary value problem. This is clear by observing that, for a fixed x ∈Ω , G satis-
fies (informally) the equation,{

−∆G(x, ·) = δx in Ω

G(x, ·) = 0 on ∂Ω ,

where δx is the Dirac measure at x.

Theorem 4.22. For all x,y ∈Ω such that x 6= y, we have G(x,y) = G(y,x), i.e., G is
symmetric in x and y.

Proof. Let us fix x,y ∈ Ω . For a fixed m > 0, set Ωm = Ω \ (Bm(x)∪Bm(y)) and
applying Green’s identity for v(·) := G(x, ·) and w(·) := G(y, ·), we get∫

∂Ωm

(
v(z)

∂w(z)
∂ν

−w(z)
∂v(z)

∂ν

)
dσz =

∫
Ωm

v(z)∆zw(z)dz

−
∫

Ωm

w(z)∆zv(z)dz∫
∂Ωm

(
v(z)

∂w(z)
∂ν

−w(z)
∂v(z)

∂ν

)
dσz = 0∫

Sm(x)

(
v

∂w
∂ν
−w

∂v
∂ν

)
dσz =

∫
Sm(y)

(
w

∂v
∂ν
− v

∂w
∂ν

)
dσz

Jm(x)+Km(x) = Jm(y)+Km(y).

|Jm(x)| ≤
∫

Sm(x)
|v(z)∇zw(z) ·ν |dσz

≤ ‖∇w‖∞,Ω

∫
Sm(x)
|v(z)|dσz

= ‖∇w‖∞,Ω

∫
Sm(x)
|ψx(z)−K(z− x)|dσz.

Thus, for n = 2,

|Jm(x)| ≤
(
2πm‖ψx‖∞,Ω +m| lnm|

)
‖∇w‖∞,Ω

and for n≥ 3, we have

|Jm(x)| ≤
(

ωnmn−1‖ψx‖∞,Ω +
m

(n−2)

)
‖∇w‖∞,Ω .
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Hence, as m→ 0, |Jm(x)| → 0. Now, consider the term Km(x),

Km(x) = −
∫

Sm(x)
w(z)

∂v(z)
∂ν

dσz

=
∫

Sm(x)
w(z)

∂K
∂ν

(z− x)dσz−
∫

Sm(x)
w(z)

∂ψx(z)
∂ν

dσz.

The second term goes to zero by taking the sup-norm outside the integral. To tackle
the first term, we note that ∇zK(z− x) = −1

ωn|z−x|n (z− x). Since we are in the m
radius sphere |z− x|= m. Also the unit vector ν outside of Sm(x), as a boundary of
Ω \Bm(x), is given by −(z− x)/|z− x|=−(z− x)/m. Therefore,

∇zK(z− x) ·ν =
1

ωnmn+1 (z− x) · (z− x) =
1

ωnmn−1 .

∫
Sm(x)

w(z)∇zK(z− x) ·ν dσz =
1

ωnmn−1

∫
Sm(x)

w(z)dσz

Since w is continuous in Ω \{y}, for every ε > 0, there is a δ > 0 such that |w(z)−
w(x)| < ε whenever |x− z| < δ . When m→ 0, we can choose m such that m < δ

and for this m, we see that Now, consider∣∣∣∣ 1
ωnmn−1

∫
Sm(x)

w(z)dσz−w(x)
∣∣∣∣
=

1
ωnmn−1

∫
Sm(x)
|w(z)−w(x)|dσz < ε.

Thus, as m→ 0, Km(x)→ w(x). Arguing similarly, for Jm(y) and Km(y), we get
G(y,x) = G(x,y).

Remark 4.4. In two dimensions, the Green’s function has a nice connection with
conformal mapping. Let w = f (z) be a conformal mapping from an open domain
(connected) Ω ⊂ R2 onto the interior of the unit circle. The Green’s function of Ω

is

G(z,z0) =
1

2π
ln

∣∣∣∣∣1− f (z) f (z0)

f (z)− f (z0)

∣∣∣∣∣
where z = x1 + ix2 and z0 = y1 + iy2.

4.7.4 Green’s Function for half-space

In this section, we shall compute explicitly the Green’s function for positive half-
space. Thus, we shall have
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Rn
+ = {x = (x1,x2, . . . ,xn) ∈ Rn | xn > 0}

and
∂Rn

+ = {x = (x1,x2, . . . ,xn} ∈ Rn | xn = 0}.

To compute the Green’s function, we shall use the method of reflection. The re-
flection technique ensures that the points on the boundary (along which the reflec-
tion is done) remains unchanged to respect the imposed Dirichlet condition.

Definition 4.10. For any x = (x1,x2, . . . ,xn) ∈ Rn
+, we define its reflection along its

boundary Rn−1 as x? = (x1,x2, . . . ,−xn).

It is obvious from the above definition that, for any y ∈ ∂Rn
+, |y− x?| = |y− x|.

Given a fixed x ∈ Rn
+, we need to find a harmonic function ψx in Rn

+, as in (4.9).
But K(·−x) is harmonic in Rn

+ \{x}. Thus, we use the method of reflection to shift
the singularity of K from Rn

+ to the negative half-space and define

ψx(y) = K(y− x?).

By definition, ψx is harmonic in Rn
+ and on the boundary ψx(y) = K(y− x). There-

fore, we define the Green’s function to be G(x,y) = K(y− x?)−K(y− x), for all
x,y ∈ Rn

+ and x 6= y. It now only remains to compute the normal derivative of G.
Recall that ∇yK(y− x) = −1

ωn|y−x|n (y− x). Thus,

∇yG(x,y) =
−1
ωn

(
y− x?

|y− x?|n
− y− x
|y− x|n

)
Therefore, when y ∈ ∂Rn

+, we have

∇yG(x,y) =
−1

ωn|y− x|n
(x− x?).

Since the outward unit normal of ∂Rn
+ is ν = (0,0, . . . ,0,−1), we get

∇yG(x,y) ·ν =
2xn

ωn|y− x|n
.

Definition 4.11. For all x ∈ Rn
+ and y ∈ ∂Rn

+, the map

P(x,y) :=
2xn

ωn|y− x|n

is called the Poisson kernel for Rn
+.

Now substituing for G in (4.10), we get the Poisson formula for u,

u(x) =
∫
Rn
+

[K(y− x)−K(y− x?)] f (y)dy+
2xn

ωn

∫
∂Rn

+

g(y)
|y− x|n

dσy. (4.11)
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It now remains to show that the u as defined above is, indeed, a solution of (4.7) for
Rn
+.

Exercise 4.9. Let f ∈ C(Rn
+) be given. Let g ∈ C(Rn−1) be bounded. Then u as

given in (4.11) is in C2(Rn
+) and solves (4.7).

4.7.5 Green’s Function for a disk

In this section, we shall compute explicitly the Green’s function for a ball of radius
r > 0 and centred at a ∈ Rn, Br(a). As usual, we denote the surface of the disk as
Sr(a), the circle of radius r centred at a. We, once again, use the method of reflection
but, this time reflected along the boundary of the disk.

Definition 4.12. For any x ∈Rn \{a}, we define its reflection along the circle Sr(a)

as x? = r2(x−a)
|x−a|2 +a.

The idea behind reflection is clear for the unit disk, i.e., when a = 0 and r = 1,
as x? = x

|x|2 . The above definition is just the shift of origin to a and dilating the unit
disk by r.

Now, for any y ∈ Sr(a) and x 6= a, consider

|y− x?|2 = |y−a|2−2(y−a) · (x?−a)+ |x?−a|2

= r2−2r2(y−a) ·
(

x−a
|x−a|2

)
+

∣∣∣∣ r2(x−a)
|x−a|2

∣∣∣∣2
=

r2

|x−a|2
(|x−a|2−2(y−a) · (x−a)+ r2)

=
r2

|x−a|2
(|x−a|2−2(y−a) · (x−a)+ |y−a|2)

=
r2

|x−a|2
|y− x|2

Therefore, |x−a|
r |y−x?|= |y−x| for all y ∈ Sr(a). For each fixed x ∈ Br(a), we need

to find a harmonic function ψx in Br(a) solving (4.9). Since K(·− x) is harmonic in
Br(a)\{x}, we use the method of reflection to shift the singularity of K at x to the
complement of Br(a). Thus, we define

ψx(y) = K
(
|x−a|

r
(y− x?)

)
x 6= a.

For n ≥ 3, K
(
|x−a|

r (y− x?)
)
= |x−a|2−n

r2−n K(y− x?). Thus, for n ≥ 3, ψx solves (4.9),
for x 6= a. For n = 2,
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K
(
|x−a|

r
(y− x?)

)
=
−1
2π

ln
(
|x−a|

r

)
+K(y− x?).

Hence ψx solves (4.9) for n = 2. Note that we are yet to identify a harmonic function
ψa corresponding to x = a. We do this by setting ψa to be the constant function

ψa(y) :=

{
− 1

2π
lnr (n = 2)

r2−n

ωn(n−2) (n≥ 3).

Thus, ψa is harmonic and solves (4.9) for x = a. Therefore, we define the Green’s
function to be

G(x,y) := K
(
|x−a|

r
(y− x?)

)
−K(y− x) ∀x,y ∈ Br(a),x 6= a and x 6= y

and

G(a,y) :=

− 1
2π

ln
(

r
|y−a|

)
(n = 2)

1
ωn(n−2)

(
r2−n−|y−a|2−n

)
(n≥ 3).

We shall now compute the normal derivative of G. Recall that

∇yK(y− x) =
−1

ωn|y− x|n
(y− x)

and one can compute ∇yK
(
|x−a|

r (y− x?)
)
= −|x−a|2−n

r2−nωn|y−x?|n (y− x?). Therefore,

∇yG(x,y) =
−1
ωn

[
|x−a|2−n(y− x?)

r2−n|y− x?|n
− y− x
|y− x|n

]
.

If y ∈ Sr(a), we have

∇yG(x,y) =
−1

ωn|y− x|n

[
|x−a|2

r2 (y− x?)− (y− x)
]

=
−1

ωn|y− x|n

[
|x−a|2

r2 −1
]
(y−a)

Since the outward unit normal at any point y ∈ Sr(a) is 1
r (y−a), we have

∇yG(x,y) ·ν =
−1

ωn|y− x|n

[
|x−a|2

r2 −1
] n

∑
i=1

1
r
(yi−ai)

2

=
−r

ωn|y− x|n

[
|x−a|2

r2 −1
]
.

Definition 4.13. For all x ∈ Br(a) and y ∈ Sr(a), the map
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P(x,y) :=
r2−|x−a|2

rωn|y− x|n

is called the Poisson kernel for Br(a).

Now substituing for G in (4.10), we get the Poisson formula for u,

u(x) =−
∫

Br(a)
G(x,y) f (y)dy+

r2−|x−a|2

rωn

∫
Sr(a)

g(y)
|y− x|n

dσy. (4.12)

It now remains to show that the u as defined above is, indeed, a solution of (4.7) for
Br(a).

Exercise 4.10. Let f ∈C(Br(a)) be given. Let g ∈C(Sr(a)) be bounded. Then u as
given in (4.12) is in C2(Br(a)) and solves (4.7).



Chapter 5
Wave Equation

The first PDE was introduced in 1752 by d’Alembert as a model to study vibrating
strings. He introduced the one dimensional wave equation

∂ 2u(x, t)
∂ t2 =

∂ 2u(x, t)
∂x2 .

This was generalised to
∂ 2u(x, t)

∂ t2 = ∆u(x, t),

where ∆ = ∑
n
i=1

∂ 2

∂x2
i
, for n = 2 and n = 3, respectively, by Euler (1759) and D.

Bernoulli (1762).

Remark 5.1 (Time Reversibility). The wave equation is invariant under the trans-
formation t 7→ −t, i.e., if u(x, t) is a solution to the wave equation for t ≥ 0, then
û(x, t) := u(x,τ) is a solution of the wave equation for t < 0 and τ := −t > 0, be-
cause dτ/dt =−1, ut(x, t) =−uτ(x,τ). This means that wave equation is reversible
in time and do not distinguish between past and future.

5.1 Duhamel’s Principle

We shall denote ∆ as the Laplacian w.r.t. the space variable. The Cauchy initial
value problem in higher dimensions is (∂ 2

t − c2∆)u = f (x, t) in Rn× (0,∞)
u(x,0) = g(x) in Rn

ut(x,0) = h(x) in Rn.
(5.1)

Due to the linearity of the wave operator, any solution u = v+w+ z where v,w and
z are, respectively, solutions of

131



132 5 Wave Equation (∂ 2
t − c2∆)v = 0 in Rn× (0,∞)

v(x,0) = g(x) in Rn

vt(x,0) = 0 in Rn,
(5.2)

 (∂ 2
t − c2∆)w = 0 in Rn× (0,∞)

w(x,0) = 0 in Rn

wt(x,0) = h(x) in Rn
(5.3)

and  (∂ 2
t − c2∆)z = f (x, t) in Rn× (0,∞)

z(x,0) = 0 in Rn

zt(x,0) = 0 in Rn.
(5.4)

Theorem 5.1 (Duhamel’s Principle). Let wh be a solution to (5.3). Then

v(x, t) = wg
t (x, t)

and
z(x, t) =

∫ t

0
w fs(x, t− s)ds,

where fs = f (·,s), are solutions to (5.2) and (5.4).

Proof. Since wg solves (5.3) with h = g, we have

(∂ 2
t − c2

∆)v = (∂ 2
t − c2

∆)wg
t (x, t) =

∂

∂ t
[(∂ 2

t − c2
∆)wg] = 0

on Rn× (0,∞). Further, v(x,0) = wg
t (x,0) = g(x) in Rn and vt(x,0) = wg

tt(x,0) =
c2∆wg(x,0)= 0. Thus, v solves (5.2). Now, let w fs(x, t), for 0< s≤ t, be the solution
of (5.3) with h(·) = f (·,s). Then, by Leibniz integral rule (cf. Theorem A.1), we
have

zt(x, t) = w ft (x,0)+
∫ t

0
w fs

t (x, t− s)ds =
∫ t

0
w fs

t (x, t− s)ds

and

ztt(x, t) = w ft
t (x,0)+

∫ t

0
w fs

tt (x, t− s)ds

= f (x, t)+ c2
∆

∫ t

0
w fs(x, t− s)ds

= f (x, t)+ c2
∆z.

Therefore, z solves (5.4).

The Duhamel’s principle can be viewed as a generalization of the method of
variations of constants in ODE. Owing to the above theorem it is enough to solve
for w in (5.3). To do so, we shall employ the method of spherical means which
reduces such problem to one dimensional framework.
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5.2 Cauchy Problem for Domains with Boundary

We have already elaborated on the way to choose boundary conditions (q.v. Sec-
tion 2.3.3 and Remark 3.4). In view of those discussions, let Ω be an open subset of
Rn with a non-empty boundary ∂Ω . The Cauchy problem for wave equation

utt(x, t)−∆u(x, t) = 0 in Ω × (0,T )
u(x,0) = g(x) in Ω ×{0}

ut(x,0) = h(x) in Ω ×{0}

is well-posed if we choose to specify one of the following conditions on ∂Ω× [0,T ):

(i) (Dirichlet condition) u(x, t) = h(x, t);
(ii) (Neumann condition) ∇xu(x, t) ·ν(x) = h(x, t), where ν(x) is the unit outward

normal of (x, t) ∈ ∂Ω × (0,T );
(iii) (Robin condition) ∇xu(x, t) ·ν + cu(x, t) = h(x, t) for any c > 0.
(iv) (Mixed condition) u(x, t) = h(x, t) on Γ1 and ∇xu(x, t) ·ν = h(x, t) on Γ2, where

Γ1∪Γ2 = ∂Ω × (0,T ) and Γ1∩Γ2 = /0.

Theorem 5.2 (At most one solution). For any open connected subset Ω ⊆Rn, there
exists at most one solution u ∈C2(Ω × (0,T )) of the wave equation

(∂ 2
t −∆)u = f (x, t) in Ω × (0,T ]

u(x,0) = g(x) in Ω ×{0}
ut(x,0) = h(x) in Ω ×{0}
u(x, t) = φ(x, t) in ∂Ω × [0,T ).

(5.5)

Proof. If u and v are two solutions of the above wave equations then, by linearity,
we have w := u− v is a solution of the homogeneous wave equation

(∂ 2
t −∆)w = 0 in Ω × (0,T ]

w(x,0) = 0 in Ω ×{0}
wt(x,0) = 0 in Ω ×{0}
w(x, t) = 0 in ∂Ω × [0,T ).

Multiplying wt both sides of the PDE and integrate over Ω , for each t ∈ (0,T ] to
obtain

0 =
∫

Ω

(wttwt −wt∆w)dx

=
1
2

∫
Ω

d
dt
(w2

t )dx+
∫

Ω

∇w ·∇wt dx+
∫

∂Ω

wt(∇w ·ν)dσ

=
1
2

d
dt

∫
Ω

(w2
t )dx+

1
2

d
dt

∫
Ω

|∇w|2 dx

=
d
dt

[
1
2

∫
Ω

(
w2

t + |∇w|2
)

dx
]
=:

d
dt

E(t).
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Thus, E is a constant function in time. Since E(0) = 0 = E(T ), we have E ≡ 0,
which implies that wt = 0 = ∇w in Ω × (0,T ]. Hence, w is constant zero function,
from Cauchy data, and u = v.

5.3 One Dimensional Wave Equation

The one dimensional wave equation is the first ever partial differential equation
(PDE) to be studied, introduced in 1752 by d’Alembert as a model to study vibrating
strings. He introduced the one dimensional wave equation

∂ 2u(x, t)
∂ t2 =

∂ 2u(x, t)
∂x2 .

d’Alembert used the travelling wave technique to solve the wave equation. In this
chapter, we shall explain the technique of d’Alembert and also give the standing
wave technique which motivates the idea of separation of variable, and in turn, the
evolution of Fourier series. The one dimension wave equation can also describe the
propogation of sound waves in tubes. The wave equations were generalised to two
and three dimensions by Euler (1759) and D. Bernoulli (1762), respectively.

5.3.1 Derivation

Let us consider a homogeneous string of length L, stretched along the x-axis, with
one end fixed at x = 0 and the other end fixed at x = L. We assume that the string
is free to move only in the vertical direction. Let ρ > 0 denote the density of the
string and T > 0 denote the coefficient of tension of the string. Let u(x, t) denote the
vertical displacement of the string at the point x and time t.

We shall imagine the string of length L as system of N objects, for N suffi-
ciently large. Think of N objects sitting on the string L at equidistant (uniformly
distributed). The position of the n-th object on the string is given by xn = nL/N. One
can think of the vibrating string as the harmonic oscillator of N objects governed by
the tension on the string (which behaves like the spring). Let yn(t) = u(xn, t) denote
the displacement of the object xn at time t. The distance between any two succes-
sive objects is h = xn+1− xn = L/N. Then mass of each of the N object is mass
of the string divided by N. Since mass of the string is ρ ×L, mass of each of the
object xn, n = 1,2, . . . ,N, is ρh. Thus, by Newton’s second law, ρhy′′n(t) is same as
the force acting on the n-th object. The force on xn is coming both from left (xn−1)
and right (xn+1) side. The force from left and right is given as T (yn−1− yn)/h and
T (yn+1− yn)/h, respectively. Therefore,
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ρhy′′n(t) =
T
h
{yn+1(t)+ yn−1(t)−2yn(t)}

=
T
h
{u(xn +h, t)+u(xn−h, t)−2u(xn, t)}

y′′n(t) =
T
ρ

(
u(xn +h, t)+u(xn−h, t)−2u(xn, t)

h2

)
Note that assuming u is twice differentiable w.r.t the x variable, the term on RHS

is same as

T
ρ

1
h

(
u(xn +h, t)−u(xn, t)

h
+

u(xn−h, t)−u(xn, t)
h

)
which converges to the second partial derivative of u w.r.t x as h→ 0. The h→ 0 is
the limit case of the N objects we started with. Therefore the vibrating string system
is governed by the equation

∂ 2u
∂ t2 =

T
ρ

∂ 2u
∂x2

where T is the tension and ρ is the density of the string. Equivalently,

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 (5.6)

where c2 = T/ρ , c > 0, on x ∈ (0,L) and t > 0.

Remark 5.2. The wave equation (5.6) can be rewritten as

uzz = uww in (w,z) ∈ (0,L)× (0,∞).

under a new coordinate system (w,z). Set w = x/a and z = t/b, where a and b
will be chosen appropriately. Then, wx = 1/a and zt = 1/b. Therefore, ux = uw/a,
ut = uz/b, a2uxx = uww and b2utt = uzz. Choosing a = 1 and b = 1/c. One may, in
fact choose coordinate such that the string is fixed between (0,π). Choosing a= L/π

and b = L/cπ makes the domain (0,π).

5.3.2 Travelling Waves

Consider the wave equation utt = c2uxx on R× (0,∞), describing the vibration of an
infinite string. We have already seen in Section 3.3 that the equation is hyperbolic
and has the two characteristics x± ct= a constant. Introduce the new coordinates
w = x+ct, z = x−ct and set u(w,z) = u(x, t). Thus, we have the following relations,
using chain rule:
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ux = uwwx +uzzx = uw +uz

ut = uwwt +uzzt = c(uw−uz)

uxx = uww +2uzw +uzz

utt = c2(uww−2uzw +uzz)

In the new coordinates, the wave equation satisfies uwz = 0. Integrating1 this twice,
we have u(w,z)=F(w)+G(z), for some arbitrary functions F and G. Thus, u(x, t)=
F(x+ ct)+G(x− ct) is a general solution of the wave equation.

Consider the case where G is chosen to be zero function. Then u(x, t) = F(x+ct)
solves the wave equation. At t = 0, the solution is simply the graph of F and at t = t0
the solution is the graph of F with origin translated to the left by ct0. Similarly,
choosing F = 0 and G = F , we have u(x, t) = F(x− ct) also solves wave equation
and at time t is the translation to the right of the graph of F by ct. This motivates the
name “travelling waves” and “wave equation”. The graph of F is shifted to right or
left with a speed of c.

Now that we have derived the general form of the solution of wave equation, we
return to understand the physical system of a vibrating infinite string. The initial
shape (position at initial time t = 0) of the string is given as u(x,0) = g(x), where
the graph of g on R2 describes the shape of the string. Since we need one more data
to identify the arbitrary functions, we also prescribe the initial velocity of the string,
ut(x,0) = h(x).

Remark 5.3. Another interesting property that follows from the general solution is
that for any four points A,B,C and D that form a parallelogram bounded by charac-
teristic curves in R×R+, u(A)+u(C) = u(B)+u(D) because u(A) = F(α)+G(β ),
u(C) = F(γ)+G(δ ), u(B) = F(α)+G(δ ) and u(D) = F(γ)+G(β ) (see fig 5.1).

x

t

α γ

A

B

C

D

βδ

Fig. 5.1 Parallelogram Property

Theorem 5.3 (Infinite Length). Given u0 ∈ C2(R) and u1 ∈ C1(R), there is a
unique C2 solution u of the Cauchy initial value problem (IVP) of the wave equation,

1 We are assuming the function is integrable, which may be false



5.3 One Dimensional Wave Equation 137utt(x, t)− c2uxx(x, t) = 0 in R× (0,∞)
u(x,0) = u0(x) in R

ut(x,0) = u1(x) in R,
(5.7)

which is given by the d’Alembert’s formula

u(x, t) =
1
2
(u0(x+ ct)+u0(x− ct))+

1
2c

∫ x+ct

x−ct
u1(y)dy. (5.8)

Proof. The general solution is u(x, t) = F(x+ ct)+G(x− ct) with F,G ∈ C2(R).
Using the initial position we get

F(x)+G(x) = u0(x).

Thus, u0 should be C2(R). Now, ut(x, t) = c(F ′(w)−G′(z)) and putting t = 0, we
get

F ′(x)−G′(x) =
1
c

u1(x).

Thus, u1 should be C1(R). Now solving for F ′ and G′, we get 2F ′(x) = u′0(x)+
u1(x)/c. Similarly, 2G′(x) = u′0(x)−u1(x)/c. Integrating2 both these equations, we
get

F(x) =
1
2

(
u0(x)+

1
c

∫ x

0
u1(y)dy

)
+F(0)− u0(0)

2

and

G(x) =
1
2

(
u0(x)−

1
c

∫ x

0
u1(y)dy

)
+G(0)− u0(0)

2
.

Since F(x)+G(x) = u0(x), we get F(0)+G(0)−u0(0) = 0. Therefore, the solution
to the wave equation is given by (5.8).

Proof (Aliter). Let us derive the d’Alembert’s formula in an alternate way. Note that
the wave equation can be factored as(

∂

∂ t
+ c

∂

∂x

)(
∂

∂ t
− c

∂

∂x

)
u = utt − c2uxx = 0.

We set v(x, t) =
(

∂

∂ t − c ∂

∂x

)
u(x, t) and hence

vt(x, t)+ cvx(x, t) = 0 in R× (0,∞).

and v(x,0) = ut(x,0)− cux(x,0) = u1(x)− cu′0(x). Notice that v is solution to the
homogeneous linear transport equation (cf. (2.8)), and is given by

v(x, t) = u1(x− ct)− cu′0(x− ct).

2 assuming they are integrable and the integral of their derivatives is itself
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Using v in the original equation, we get the inhomogeneous linear transport equa-
tion,

ut(x, t)− cux(x, t) = u1(x− ct)− cu′0(x− ct)

with u(x,0) = u0(x) whose solution is (cf. (2.9))

u(x, t) = u0(x+ ct)+
∫ t

0

[
u1(x+ ct−2cs)− cu′0(x+ ct−2cs)

]
ds.

Thus,

u(x, t) = u0(x+ ct)+
−1
2c

∫ x−ct

x+ct

[
u1(y)− cu′0(y)

]
dy

= u0(x+ ct)+
1
2c

∫ x+ct

x−ct

(
u1(y)− cu′0(y)

)
dy

= u0(x+ ct)+
1
2
(u0(x− ct)−u0(x+ ct))

+
1
2c

∫ x+ct

x−ct
u1(y)dy

=
1
2
[u0(x− ct)+u0(x+ ct)]+

1
2c

∫ x+ct

x−ct
u1(y)dy

The solution to the Cauchy Problem 5.7 is unique which follows from the unique-
ness of the transport equation. A useful observation from the d’Alembert’s formula
is that the regularity of u is same as the regularity of its initial value u0. Note that
the solution u(x, t) depends only on the interval [x− ct,x+ ct], called the domain of
dependence for (x, t) because u0 takes values only on the end-points of this interval
and u1 takes values between this interval. The two characteristic curves that pass
through (x, t) intersects x-axis at x− ct and x+ ct, respectively, the endpoints of the
domain of dependence (see fig 5.2).

x

t

(x− ct,0)

(x, t)

(x+ ct,0)

Fig. 5.2 Domain of Dependence

Conversely, given a point p on the initial curve x-axis, the region of the xt-plane
where the values of u depend on the value of u0(p) and u1(p) is the cone with vertex
at p and is called the range of influence. The range of influence is the region bounded
by the two characteristic curves intersecting at p (see fig 5.3).
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x

t

p

Fig. 5.3 Range of Influence

If the initial data u0 and u1 are supported in the interval Bx0(R) then the solution
u at (x, t) is supported in the region Bx0(R+ ct). Consequently, if u0 and u1 have
compact support then the solution u has compact support in R for all time t > 0.
This phenomenon is called the finite speed of propagation.

Theorem 5.4 (Inhomogeneous). Given u0 ∈ C2(R), u1 ∈ C1(R) and f ∈ C1(R×
[0,∞), there is a unique C2 solution u of the inhomogeneous Cauchy initial value
problem (IVP) of the wave equation,utt(x, t)− c2uxx(x, t) = f (x, t) in R× (0,∞)

u(x,0) = u0(x) in R
ut(x,0) = u1(x) in R,

(5.9)

given by the formula

1
2
[u0(x+ ct)+u0(x− ct)]+

1
2c

[∫ x+ct

x−ct
u1(y)dy+

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f (y,s)dyds

]
.

Proof. Fix (x, t) ∈ R×R+. Consider the open triangle in R×R+ with vertices
(x, t),(x− ct,0) and (x+ ct,0), and denote it by T (x, t). Thus,

T (x, t) := {(y,s) ∈ R× (0, t) | |y− x|< c(t− s)}.

The boundary of the triangle ∂T (x, t) consists of three parts

T0 := {(y,0) | x− ct < y < x+ ct},

T+ := {(y,s) ∈ R× (0, t) | y+ cs = x+ ct}

and
T− := {(y,s) ∈ R× (0, t) | y− cs = x− ct}.

Integrating both sides of the wave equation in the Triangle T (x, t) and using Gauss
divergence theorem (cf. (B.1)), we get
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T (x,t)

f ((y,s)dyds =
∫

T (x,t)

[
utt(y,s)− c2uxx(y,s)

]
dyds

=
∫

T (x,t)
div(−c2ux,ut)(y,s)dyds

=
∫

∂T (x,t)

[
utν2− c2uxν1

]
dσ

=
∫

T0

[
utν2− c2uxν1

]
dσ +

∫
T+

[
utν2− c2uxν1

]
dσ

+
∫

T−

[
utν2− c2uxν1

]
dσ

The parametrisation (with orientation) of T0 is (x− ct + 2cs,0), T+ is (x+ ct−
cs,s) and T− is (x− cs, t − s) with tangent vectors of T+ and T− is (−c,1) and
(−c,−1), respectively. The unit outward normal at each point of the boundary
∂T (x, t) is given by ν = (ν1,ν2) defined as

ν(y,s) =


(0,−1) (y,s) ∈ T0

1√
1+c2

(1,c) (y,s) ∈ T+
1√

1+c2
(−1,c) (y,s) ∈ T−.

Using the normal vector informations, we get∫
T (x,t)

f ((y,s)dyds = −
∫ x+ct

x−ct
ut(y,0)dy+

c√
1+ c2

∫
T+

[ut − cux] dσ

+
c√

1+ c2

∫
T−

[ut + cux] dσ

Note that the second and third integral are the directional derivatives of u along the
tangential direction (−c,1) and reverse oriented tangential direction (c,1) integrated
on the line T+ and T−, respectively. Thus, the line integrals can be written in its
parametrised integral form. Therefore, we have
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0

∫ x+c(t−s)

x−c(t−s)
f (y,s)dyds = −

∫ x+ct

x−ct
u1(y)dy

+
c√

1+ c2

∫ t

0
u′(x+ ct− cs,s)

√
c2 +1ds

− c√
1+ c2

∫ t

0
u′(x− cs, t− s)

√
c2 +1ds

= −
∫ x+ct

x−ct
u1(y)dy+ c[u(x, t)−u(x+ ct,0)]

+c[u(x, t)−u(x− ct,0)]

u(x, t) =
1
2
[u0(x+ ct)+u0(x− ct)]

+
1
2c

[∫ x+ct

x−ct
u1(y)dy+

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f (y,s)dyds

]
.

Proof (Aliter). We introduce a new function v defined as v(x, t)= ut(x, t) and rewrite
(5.9) as

U ′(x, t)+AU(x, t) = F(x, t)

where U = (u,v), F = (0, f ) and

A =

(
0 −1

c2 ∂ 2

∂x2 0

)

with the initial condition G(x) := U(x,0) = (u0(x),u1(x)). The solution U(x, t) is
given as (cf. Appendix ??)

U(x, t) = S(t)G(x)+
∫ t

0
S(t− s)F(s)ds

where S(t) is a solution operator of the homogeneous system of first order PDE.
Therefore, by d’Alembert’s formula,

S(t)(u0,u1) =

( 1
2 [u0(x+ ct)+u0(x− ct)]+ 1

2c
∫ x+ct

x−ct u1(y)dy
c
2 [u
′
0(x+ ct)−u′0(x− ct)]+ 1

2 [u1(x+ ct)+u1(x− ct)]

)
and, hence, u(x, t) has the required represenation.

Theorem 5.5 (Dirichlet Condition). Given u0 ∈ C2[0,∞), u1 ∈ C1[0,∞) and u2 ∈
C2(0,∞), there is a unique C2 solution u of the homogeneous Cauchy initial value
problem (IVP) of the wave equation,

utt(x, t)− c2uxx(x, t) = 0 in (0,∞)× (0,∞)
u(x,0) = u0(x) in [0,∞)

ut(x,0) = u1(x) in [0,∞)
u(0, t) = u2(t) in (0,∞),

(5.10)
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where u0,u1,u2 satisfies the compatibility condition

u2(0) = u0(0),u′2(0) = u1(0),u′′2(0) = u′′0(0).

Proof. If u2 ≡ 0, i.e. the case of homogeneous Dirichlet conditions, then we can
extend u0 and u1 as an odd function on (−∞,∞) by setting, for i = 0,1,

ũi(x) =

{
ui(x) x≥ 0
−ui(−x) x < 0.

Then, we have a unique solution ũ ∈C2(R× (0,∞)) solving the Cauchy problem of
wave equation in the upper half-plane R× (0,∞). But note that v(x, t) :=−ũ(−x, t)
is also a solution to the Cauchy problem of wave equation in R× (0,∞). By unique-
ness of the Cauchy problem of wave equation, we obtain that ũ is an odd function
in the first variable, i.e. ũ(x, t) = −ũ(−x, t). Thus, ũ(0, t) = 0 and the restriction of
ũ to (0,∞)× (0,∞) is a solution to the homogeneous Dirichlet problem of wave
equation.

More generally, when u2 is not necessarily the constant zero function, then the
line ct = x divides the domain (0,∞)× (0,∞) in to two domains

Ωr := {(x, t) | x > ct > 0} and Ω` := {(x, t) | 0 < x < ct}.

For (x, t) ∈Ωr, the solution is

Ur(x, t) :=
1
2
(u0(x− ct)+u0(x+ ct))+

1
2c

∫ x+ct

x−ct
u1(y)dy.

On the line x = ct, we get

χ(x) :=Ur(x,x/c) =
1
2
(u0(0)+u0(2x))+

1
2c

∫ 2x

0
u1(y)dy.

Let U` be the solution in Ω` of ∂ 2
t U`(x, t)− c2∂ 2

x U`(x, t) = 0 in Ω`

U`(x,x/c) = χ(x) in {x = ct}
U`(0, t) = u2(t) in (0,∞).

Fix A := (x, t) ∈ Ω`. One of the characteristic curve through A intersects t-axis at
B := (0, t − x/c). The other characteristic curve intersects the line ct = x at C :=
1
2 (ct+x, t+x/c). The characteristic curve through B intersects ct = x at D := 1

2 (ct−
x, t− x/c). The four points form a parallelogram in Ω`. Therefore, by Remark 5.3,
we have

U`(x, t)+U`

(
1
2
(ct− x, t− x/c)

)
=U`(0, t− x/c)+U`

(
1
2
(ct + x, t + x/c)

)
.
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Thus,

U`(x, t) = u2(t− x/c)+χ

(
1
2
(ct + x)

)
−χ

(
1
2
(ct− x)

)
= u2(t− x/c)+

1
2
[u0(0)+u0(ct + x)]+

1
2c

∫ ct+x

0
u1(y)dy

−1
2
[u0(0)+u0(ct− x)]− 1

2c

∫ ct−x

0
u1(y)dy

and

U`(x, t) = u2(t− x/c)+
1
2
[u0(ct + x)−u0(ct− x)]+

1
2c

∫ ct+x

ct−x
u1(y)dy.

By setting

u(x, t) =

{
Ur(x, t) for x≥ ct ≥ 0
U`(x, t) for 0≤ x≤ ct.

(5.11)

The compatibility condition on u0,u1 and u2 implies that all derivatives of u are
continuous across the line ct = x. Thus, u is a solution to (5.10).

Corollary 5.1 (Dirichlet Condition). Given u0 ∈C2[0,L], u1 ∈C1[0,L] and u2,u3 ∈
C2(0,∞), there is a unique C2-solution u of the homogeneous Cauchy initial value
problem of the wave equation,

utt(x, t)− c2uxx(x, t) = 0 in (0,L)× (0,∞)
u(x,0) = u0(x) in [0,L]

ut(x,0) = u1(x) in [0,L]
u(0, t) = u2(t) in (0,∞)
u(L, t) = u3(t) in (0,∞),

(5.12)

where u0,u1,u2,u3 satisfies the compatibility condition

u2(0) = u0(0),= u′2(0) = u1(0),u′′2(0) = u′′0(0)

and
u3(L) = u0(0),u′3(0) = u1(L),u′′3(0) = u′′0(L).

Proof. We first consider the case u2 = u3≡ 0, i.e. the case of homogeneous Dirichlet
conditions. We extend u0 and u1 as an odd function on [−L,L] and extend it to all
of R as a 2L-periodic function. The extended initial data u0 and u1 are in C2(R) and
C1(R), respectively. Thus, we have a unique solution u∈C2(R×(0,∞)) solving the
Cauchy problem for wave equation in R× (0,∞). But note that v(x, t) = −u(−x, t)
is also a solution to the Cauchy problem in R× (0,∞). By uniqueness, u(x, t) =
−u(−x, t) for all (x, t) ∈ R×R+ and u(0, t) = 0. Similarly, w(x, t) = −u(2L− x, t)
is also a solution to the Cauchy problem in R× (0,∞). Thus, u(x, t) =−u(2L−x, t)
which implies u(L, t) = 0. Thus, the restriction of u to (0,L)× (0,∞) is a required
solution to the homogeneous Dirichlet case.
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Consider the lines ct = x and ct = −x+ cL, then we will obtain u in the four
regions as v1, v2, v3 and v4. Then follow the idea similar to the proof in above
theorem.

Theorem 5.6 (Neumann Condition). Given u0 ∈C2[0,∞), u1 ∈C1[0,∞) and u2 ∈
C2(0,∞), there is a unique C2 solution u of the homogeneous Cauchy initial value
problem (IVP) of the wave equation,

utt(x, t)− c2uxx(x, t) = 0 in (0,∞)× (0,∞)
u(x,0) = u0(x) in [0,∞)

ut(x,0) = u1(x) in [0,∞)
ux(0, t) = u2(t) in (0,∞),

(5.13)

where u0,u1,u2 satisfies the compatibility condition

u′0(0) = u2(0),u′′0(0) = u′2(0),u1(0) = u′2(0).

Corollary 5.2 (Neumann Condition). Given u0 ∈C2[0,L], u1 ∈C1[0,L] and u2,u3 ∈
C2(0,∞), there is a unique C2-solution u of the homogeneous Cauchy initial value
problem of the wave equation,

utt(x, t)− c2uxx(x, t) = 0 in (0,L)× (0,∞)
u(x,0) = u0(x) in [0,L]

ut(x,0) = u1(x) in [0,L]
ux(0, t) = u2(t) in (0,∞)
ux(L, t) = u3(t) in (0,∞),

(5.14)

where u0,u1,u2,u3 satisfies the compatibility condition

u′0(0) = u2(0),u′′0(0) = u′2(0),u1(0) = u′2(0)

and
u′0(L) = u3(0),u′′0(L) = u′3(0),u1(L) = u′3(0).

5.3.3 Standing Waves: Separation of Variable

Recall the set-up of the vibrating string given by the equation utt = c2uxx. Initially
at time t, let us say the string has the shape of the graph of v, i.e., u(x,0) = v(x).
The snapshot of the vibrating string at each time are called the “standing waves”.
The shape of the string at time t0 can be thought of as some factor (depending
on time) of v. This observation motivates the idea of “separation of variable”, i.e.,
u(x, t) = v(x)w(t), where w(t) is the factor depending on time, which scales v at
time t to fit with the shape of u(x, t).

The fact that endpoints are fixed is given by the boundary condition
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u(0, t) = u(L, t) = 0.

We are also given the initial position u(x,0) = u0(x) (at time t = 0) and initial ve-
locity of the string at time t = 0, ut(x,0) = u1(x). Given u0,u1 : [0,L]→R such that
u0(0) = u0(L) = 0 and u1(0) = u1(L), we need to solve the initial value problem
(5.12) with u2 = u3 ≡ 0.

Let us seek for solutions u(x, t) whose variables can be separated. Let u(x, t) =
v(x)w(t). Differentiating and substituting in the wave equation, we get

v(x)w′′(t) = c2v′′(x)w(t)

Hence
w′′(t)
c2w(t)

=
v′′(x)
v(x)

.

Since RHS is a function of x and LHS is a function t, they must equal a constant,
say λ . Thus,

v′′(x)
v(x)

=
w′′(t)
c2w(t)

= λ .

Using the boundary condition u(0, t) = u(L, t) = 0, we get

v(0)w(t) = v(L)w(t) = 0.

If w ≡ 0, then u ≡ 0 and this cannot be a solution to (5.12). Hence, w 6≡ 0 and
v(0) = v(L) = 0. Thus, we need to solve the eigen value problem for the second
order differential operator. {

v′′(x) = λv(x), x ∈ (0,L)
v(0) = v(L) = 0,

Note that the λ can be either zero, positive or negative. If λ = 0, then v′′ = 0 and the
general solution is v(x) = αx+β , for some constants α and β . Since v(0) = 0, we
get β = 0, and v(L) = 0 and L 6= 0 implies that α = 0. Thus, v≡ 0 and hence u≡ 0.
But, this cannot be a solution to (5.12).

If λ > 0, then v(x) = αe
√

λx +βe−
√

λx. Equivalently,

v(x) = c1 cosh(
√

λx)+ c2 sinh(
√

λx)

such that α = (c1+c2)/2 and β = (c1−c2)/2. Using the boundary condition v(0) =
0, we get c1 = 0 and hence

v(x) = c2 sinh(
√

λx).

Now using v(L) = 0, we have c2 sinh
√

λL = 0. Thus, c2 = 0 and v(x) = 0. We have
seen this cannot be a solution.

Finally, if λ < 0, then set ω =
√
−λ . We need to solve the simple harmonic

oscillator problem
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v′′(x)+ω2v(x) = 0 x ∈ (0,L)

v(0) = v(L) = 0.

The general solution is

v(x) = α cos(ωx)+β sin(ωx).

Using v(0) = 0, we get α = 0 and hence v(x) = β sin(ωx). Now using v(L) = 0, we
have β sinωL = 0. Thus, either β = 0 or sinωL = 0. But β = 0 does not yield a
solution. Hence ωL = kπ or ω = kπ/L, for all non-zero k ∈ Z. Since ω > 0, we can
consider only k ∈ N. Hence, for each k ∈ N, there is a solution (vk,λk) for the eigen
value problem with

vk(x) = βk sin
(

kπx
L

)
,

for some constant bk and λk = −(kπ/L)2. It now remains to solve w for each of
these λk. For each k ∈ N, we solve for wk in the ODE

w′′k (t)+(ckπ/L)2wk(t) = 0.

The general solution is

wk(t) = ak cos
(

ckπt
L

)
+bk sin

(
ckπt

L

)
.

For each k ∈ N, we have

uk(x, t) =
[

ak cos
(

ckπt
L

)
+bk sin

(
ckπt

L

)]
sin
(

kπx
L

)
for some constants ak and bk. The situation corresponding to k = 1 is called the
fundamental mode and the frequency of the fundamental mode is

c
√
−λ1

2π
=

1
2π

cπ

L
=

c
2L

=

√
T/ρ

2L
.

The frequency of higher modes are integer multiples of the fundamental frequency.
Note that the frequency of the vibration is related to eigenvalues of the second order
differential operator.

The general solution of (5.12), by principle of superposition, is

u(x, t) =
∞

∑
k=1

[
ak cos

(
ckπt

L

)
+bk sin

(
ckπt

L

)]
sin
(

kπx
L

)
.

Note that the solution is expressed as series, which raises the question of con-
vergence of the series. Another concern is whether all solutions of (5.12) have this
form. We ignore these two concerns at this moment.

Since we know the initial position of the string as the graph of u0, we get
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u0(x) = u(x,0) =
∞

∑
k=1

ak sin
(

kπx
L

)
.

This expression is again troubling and rises the question: Can any arbitrary function
u0 be expressed as an infinite sum of trigonometric functions? Answering this ques-
tion led to the study of “Fourier series”. Let us also, as usual, ignore this concern
for time being. Then, can we find the the constants ak with knowledge of u0. By
multiplying sin

( lπx
L

)
both sides of the expression of u0 and integrating from 0 to L,

we get

∫ L

0
u0(x)sin

(
lπx
L

)
dx =

∫ L

0

[
∞

∑
k=1

ak sin
(

kπx
L

)]
sin
(

lπx
L

)
dx

=
∞

∑
k=1

ak

∫ L

0
sin
(

kπx
L

)
sin
(

lπx
L

)
dx

Therefore, the constants ak are given as

ak =
2
L

∫ L

0
u0(x)sin

(
kπx
L

)
.

Finally, by differentiating u w.r.t t, we get

ut(x, t) =
∞

∑
k=1

ckπ

L

[
bk cos

ckπt
L
−ak sin

ckπt
L

]
sin
(

kπx
L

)
.

Employing similar arguments and using ut(x,0) = u1(x), we get

u1(x) = ut(x,0) =
∞

∑
k=1

bkkcπ

L
sin
(

kπx
L

)
and hence

bk =
2

kcπ

∫ L

0
u1(x)sin

(
kπx
L

)
.

5.4 Method of Spherical Means

More generally, in this section we solve for v+w which is the solution to the wave
equation  (∂ 2

t − c2∆)u = 0 in Rn× (0,∞)
u(x,0) = g(x) in Rn

ut(x,0) = h(x) in Rn.
(5.15)

For a fixed x ∈ Rn and t ∈ (0,∞), the spherical mean of a u ∈ C2(Rn× (0,∞)),
denoted as M(u,x; ·, t) : (0,∞)→ R, is defiend as
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M(u,x;r, t) :=
1

ωnrn−1

∫
Sr(x)

u(y, t)dσy

where ωn is the surface area of the unit sphere in Rn, i.e. ωn = 2πn/2

Γ (n/2) (cf. Ap-
pendix C). Equivalently, after setting z = (y− x)/r,

M(u,x;r, t) :=
1

ωn

∫
S1(0)

u(x+ rz, t)dσz.

We note from the above form of M(u,x;r, t) that M(u,x; ·, t) can be extended as an
even function to the negative real line. Thus, M(u,x; ·, t) is defined for all r ∈R with
M(u,x;0, t) = u(x, t). Then

Mr(u,x;r, t) =
1

ωn

∫
S1(0)

n

∑
i=1

uyi(x+ rz, t)zi dσz

=
1

ωnrn−1

∫
Sr(x)

∇yu(y, t) · zdσy

=
1

ωnrn−1

∫
Br(x)

∆yu(y, t)dy.

If u(x, t) is a solution to (5.15) then

rn−1Mr(u,x;r, t) =
1

c2ωn

∫
Br(x)

utt(y, t)dy

=
1

c2ωn

∫ r

0

∫
Ss(x)

utt(y, t)dσy ds

d
dr

(
rn−1Mr(u,x;r, t)

)
=

1
c2ωn

∫
Sr(x)

utt(y, t)dσy

=
rn−1

c2 ∂
2
t

(
1

ωnrn−1

∫
Sr(x)

u(y, t)dσy

)
=

rn−1

c2 Mtt .

Thus, the spherical means of u satisfies the one space variable PDE

r1−n d
dr

(rn−1Mr) = c−2Mtt

or
Mrr +

n−1
r

Mr = c−2Mtt ,

called the Euler-Poisson-Darboux equation, a one dimensional hyperbolic equation.
Also, if u(x, t) is a solution to (5.15) then using the initial condition, we get

G(x;r) := M(u,x;r,0) =
1

ωnrn−1

∫
Sr(x)

g(y)dσy

and
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H(x;r) := Mt(u,x;r,0) =
1

ωnrn−1

∫
Sr(x)

h(y)dσy.

In the following results, we shall illustrate solving the Euler-Poisson-Darboux
equation in three and two dimensions. For higher dimensions solving E-P-D equa-
tion is tedious.

Theorem 5.7 (Three dimensions). Given g ∈C3(R3) and h ∈C2(R3) there exists
a unique solution u ∈C2(R3× [0,∞)) of (5.15) given by the Poisson’s formula

u(x, t) =
1

4πc2

[
∂

∂ t

(
1
t

∫
Sct (x)

g(y)dσy

)
+

1
t

∫
Sct (x)

h(y)dσy

]
.

Proof. For the Euclidean dimension three, the Euler-Poisson-Darboux equation can
be rewritten as c2(rM)rr = (rM)tt . Thus, rM is a solution to the one dimensional
Cauchy problem

c2(rM)rr(u,x;r, t) = (rM)tt(u,x;r, t) in (0,∞)× (0,∞)
rM(u,x;r,0) = rG(x;r) on (0,∞)
rMt(u,x;r,0) = rH(x;r) on (0,∞)
rM(u,x;0, t) = 0 on (0,∞).

By (5.11), for 0 < r < ct, we have the formula

rM(u,x;r, t) =
1
2
((r+ ct)G(x;r+ ct)− (ct− r)G(x;ct− r))+

1
2c

∫ ct+r

ct−r
yH(x;y)dy.

Using the Leibniz intergal rule (cf. Theorem A.1), we can rewrite above formula as

rM(u,x;r, t) =
1
2c

[
∂t

(∫ ct+r

ct−r
yG(x;y)dy

)
+
∫ ct+r

ct−r
yH(x;y)dy

]
.

Then

u(x, t) = lim
r→0

M(u,x;r, t) = lim
r→0

rM(u,x;r, t)
r

= lim
r→0

rM(u,x;r, t)−0M(u,x;0, t)
r

= ∂r(rM(u,x;r, t)) |r=0

=
1
2c

∂t [(ct + r)G(x;ct + r)+(ct− r)G(x;ct− r)] |r=0

+
1
2c

[(ct + r)H(x;ct + r)+(ct− r)H(x;ct− r)] |r=0

= ∂t [tG(x;ct)]+ [tH(x;ct)] .

Using the expression for G and H in terms of g and h, respectively, and the ω3 = 4π ,
we get the required formula.

The domain of dependence of (x, t0) for the three dimensional wave equation is
the boundary of the three dimensional sphere with radius ct.
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The Hadamard’s method of descent is the technique of finding a solution of the
two dimensional wave equation using the three dimensional wave equation.

Theorem 5.8 (Method of Descent). Given g ∈C3(R2) and h ∈C2(R2) there exists
a unique solution u ∈C2(R2× [0,∞) of (5.15) given by the Poisson’s formula

1
2πc

[
∂

∂ t

(∫
Bct (x,y)

g(ξ ,η)√
c2t2−ρ2

dξ dη

)
+
∫

Bct (x,y)

h(ξ ,η)

c2t2−ρ2 dξ dη

]

where
ρ =

√
(ξ − x)2 +(η− y)2.

Proof. Let v be a solution of (5.15) in two dimensions with g ∈ C3(R2) and h ∈
C2(R2). Then

u(x,y,z, t) := v(x,y, t)

is solution to (5.15) in three dimensions where g and h are given independent of
z. Since u(x,y,z, t) = u(x,y,0, t)+ zuz(x,y,εz, t) for 0 < ε < 1 and uz = 0, we have
v(x,y, t) = u(x,y,0, t). Therefore, using the poisson formula in three dimensions, we
get

v(x,y, t) =
1

4πc2

[
∂

∂ t

(
1
t

∫
Sct (x,y,0)

g(ξ ,η ,ζ )dσ

)
+

1
t

∫
Sct (x,y,0)

h(ξ ,η ,ζ )dσ

]
.

Recall that g and h are independent of ζ , therefore g(ξ ,η ,ζ ) = g(ξ ,η) and
h(ξ ,η ,ζ )= h(ξ ,η). The sphere can be parametrised as th deformation of each point
of the two dimensional disk Bct(x,y), i.e., the upper and lower hemi-sphere, denoted
by S+ and S−, are given by the set of all ζ such that ζ =

√
c2t2− (ξ − x)2− (η− y)2

and ζ = −
√

c2t2− (ξ − x)2− (η− y)2, respectively. The surface element (mea-
sure) becomes

dσ =
(

1+ζ
2
ξ
+ζ

2
η

)1/2
dξ dη =

ct
ζ

dξ dη

with the positive sign applying when ζ > 0 in S+ and negative sign applying when
ζ < 0 in S−. Set ρ =

√
(ξ − x)2 +(η− y)2. We obtain the formula for the solution

by observing that∫
Sct (x,y,0)

dσ =
∫

S+
+
∫

S−
= 2

∫
S+

dσ = 2
∫

Bct(x,y)
ct
ζ

dξ dη .

In the two dimensions, the domain of dependence is the entire disk Bct0(x0,y0) in
contrast to three dimensions which had only the boundary of the sphere as domain
of dependence.
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5.4.1 Odd Dimension

One can copy the idea of three dimension to any odd dimension, if we rewrite the
Euler-Poisson-Darboux equation in approriate form.

Exercise 5.1. If n is odd, show that the correct form of M that satisfies the one
dimensional wave equation is(

1
r

∂

∂ r

) n−3
2
(rn−2M(r, t)).

For instance, when n = 5, r2Mr +3rM satisfies the one dimensional wave equation.

We have already noted that the solution at a given point is determined by the
value of intial data in a subset of the initial hypersurface. Consequently, changing
initial value outside the domain of dependence does not change values of solutions.

Also, it takes time for the initial data to make influence. Suppose g and h have
their support in Br(x0). Then the support of u(·, t) is contained in ∪y∈Br(x0)Bt(y) =
Br+ct(x0). The support of u spreads at a finite speed and is called the finite speed
propagation.

5.4.2 Inhomogeneous Wave equation

We have already derived in Theorem 5.1 the formula for inhomogeneous equation
(5.4).

Theorem 5.9. For any f ∈C1, the solution u(x, t) of (5.4) is given as

u(x, t) =


1
2c
∫ t

0

(∫ x+c(t−s)
x−c(t−s) f (y,s)dy

)
ds n = 1

1
4πc
∫ t

0

(∫
Bc(t−s)(x)

f (y,s)√
c2(t−s)2−r2

dy
)

ds n = 2

1
4πc2

∫
Bct (x)

f (y,t− |x−y|
c )

|x−y| dy n = 3.

Proof. The Poisson’s formula corresponding to the three dimension case gives the
formula for

w fs(x, t− s) =
1

4πc2(t− s)

∫
Sc(t−s)(x)

f (y,s)dσy.

and
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u(x, t) =
∫ t

0
w fs(x, t− s)ds =

1
4πc2

∫ t

0

∫
Sc(t−s)(x)

f (y,s)
t− s

dσy ds

=
1

4πc2

∫ ct

0

∫
Sτ (x)

f (y, t− τ/c)
τ

dσy dτ [using τ = c(t− s)]

=
1

4πc2

∫
Bct (x)

f (y, t−|x− y|/c)
|x− y|

dy.

Similarly, one can derive the formulae for one and two dimensions.

Note that in the three dimensional case the integrand is not taken at time t, but at
an earlier time t− |x−y|

c . Thus, the integrand in this case is called retarded potential.

Example 5.1. Consider the wave equationutt(x, t)− c2uxx(x, t) = sin3x in (0,π)× (0,∞)
u(0, t) = u(π, t) = 0 in (0,∞)

u(x,0) = ut(x,0) = 0 in (0,π).

We look for the solution of the homogeneous wave equation
wtt(x, t)− c2wxx(x, t) = 0 in (0,π)× (0,∞)

w(0, t) = w(π, t) = 0 in (0,∞)
w(x,0) = 0 in (0,π)

wt(x,0) = sin3x in (0,π).

By separation of variable technique, we know that the general solution of w is

w(x, t) =
∞

∑
k=1

[ak cos(kct)+bk sin(kct)]sin(kx)

and

w(x,0) =
∞

∑
k=1

ak sin(kx) = 0.

Thus, ak = 0, for all k ∈ N. Also,

wt(x,0) =
∞

∑
k=1

bkck sin(kx) = sin3x.

Hence, bk’s are all zeroes, except for k = 3 and b3 = 1/3c. Thus,

w(x, t) =
1
3c

sin(3ct)sin(3x)

and
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u(x, t) =
∫ t

0
w(x, t− s)ds =

1
3c

∫ t

0
sin(3c(t− s))sin3xds

=
sin3x

3c

∫ t

0
sin(3c(t− s))ds =

sin3x
3c

cos(3c(t− s))
3c

∣∣∣∣t
0

=
sin3x
9c2 (1− cos3ct) .

5.5 Eigenvalue Problem of Laplacian

The separation of variable technique can be used for studying wave equation on
2D Rectangle and 2D Disk etc. This leads to studying the eigen value problem of
the Laplacian. For a given open bounded subset Ω ⊂ R2, the Dirichlet eigenvalue
problem, {

−∆u(x,y) = λu(x,y) (x,y) ∈Ω

u(x,y) = 0 (x,y) ∈ ∂Ω .

Note that, for all λ ∈ R, zero is a trivial solution of the Laplacian. Thus, we are
interested in non-zero λ ’s for which the Laplacian has non-trivial solutions. Such an
λ is called the eigenvalue and corresponding solution uλ is called the eigen function.

Note that if uλ is an eigen function corresponding to λ , then αuλ , for all α ∈ R,
is also an eigen function corresponding to λ . Let W be the real vector space of all
u : Ω → R continuous (smooth, as required) functions such that u(x,y) = 0 on ∂Ω .
For each eigenvalue λ of the Laplacian, we define the subspace of W as

Wλ = {u ∈W | u solves Dirichlet EVP for given λ}.

Theorem 5.10. There exists an increasing sequence of positive numbers 0 < λ1 <
λ2 < λ3 < .. . < λn < .. . with λn→ ∞ which are eigenvalues of the Laplacian and
Wn =Wλn is finite dimensional. Conversely, any solution u of the Laplacian is in Wn,
for some n.

Though the above theorem assures the existence of eigenvalues for Laplacian, it
is usually difficult to compute them for a given Ω . In this course, we shall compute
the eigenvalues when Ω is a 2D-rectangle and a 2D-disk.

5.5.1 In Rectangle

Let the rectangle be Ω = {(x,y) ∈ R2 | 0 < x < a,0 < y < b}. We wish to solve the
Dirichlet EVP in the rectangle Ω{

−∆u(x,y) = λu(x,y) (x,y) ∈Ω

u(x,y) = 0 (x,y) ∈ ∂Ω .



154 5 Wave Equation

The boundary condition amounts to saying

u(x,0) = u(a,y) = u(x,b) = u(0,y) = 0.

We look for solutions of the form u(x,y) = v(x)w(y) (variable separated). Substitut-
ing u in separated form in the equation, we get

−v′′(x)w(y)− v(x)w′′(y) = λv(x)w(y).

Hence

−v′′(x)
v(x)

= λ +
w′′(y)
w(y)

.

Since LHS is function of x and RHS is function y and are equal they must be some
constant, say µ . We need to solve the EVP’s

−v′′(x) = µv(x) and −w′′(y) = (λ −µ)w(y)

under the boundary conditions v(0) = v(a) = 0 and w(0) = w(b) = 0.
As seen before, while solving for v, we have trivial solutions for µ ≤ 0. If µ > 0,

then v(x) = c1 cos(
√

µx) + c2 sin(
√

µx). Using the boundary condition v(0) = 0,
we get c1 = 0. Now using v(a) = 0, we have c2 sin

√
µa = 0. Thus, either c2 = 0

or sin
√

µa = 0. We have non-trivial solution, if c2 6= 0, then
√

µa = kπ or
√

µ =
kπ/a, for k ∈ Z. For each k ∈ N, we have vk(x) = sin(kπx/a) and µk = (kπ/a)2.
We solve for w for each µk. For each k, l ∈ N, we have wkl(y) = sin(lπy/b) and
λkl = (kπ/a)2 +(lπ/b)2. For each k, l ∈ N, we have

ukl(x,y) = sin(kπx/a)sin(lπy/b)

and λkl = (kπ/a)2 +(lπ/b)2.

5.5.2 In Disk

Let the disk of radius a be Ω = {(x,y) ∈ R2 | x2 + y2 < a2}. We wish to solve the
Dirichlet EVP in the disk Ω

−1
r

∂

∂ r

(
r ∂u

∂ r

)
− 1

r2
∂ 2u
∂θ 2 = λu(r,θ) (r,θ) ∈Ω

u(θ) = u(θ +2π) θ ∈ R
u(a,θ) = 0 θ ∈ R.

We look for solutions of the form u(r,θ) = v(r)w(θ) (variable separated). Substi-
tuting u in separated form in the equation, we get

−w
r

d
dr

(
r

dv
dr

)
− v

r2 w′′(θ) = λv(r)w(θ).
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Hence dividing by vw and multiplying by r2, we get

− r
v

d
dr

(
r

dv
dr

)
− 1

w
w′′(θ) = λ r2.

r
v

d
dr

(
r

dv
dr

)
+λ r2 =

−1
w

w′′(θ) = µ.

Solving for non-trivial w, using the periodicity of w, we get for µ0 = 0, w0(θ) =
a0
2

and for each k ∈ N, µk = k2 and

wk(θ) = ak coskθ +bk sinkθ .

For each k ∈ N∪{0}, we have the equation,

r
d
dr

(
r

dv
dr

)
+(λ r2− k2)v = 0.

Introduce change of variable x =
√

λ r and x2 = λ r2. Then

r
d
dr

= x
d
dx

.

rewriting the equation in new variable y(x)) = v(r)

x
d
dx

(
x

dy(x)
dx

)
+(x2− k2)y(x) = 0.

Note that this none other than the Bessel’s equation. We already know that for each
k ∈ N∪{0}, we have the Bessel’s function Jk as a solution to the Bessel’s equation.
Recall the boundary condition on v, v(a)= 0. Thus, y(

√
λa)= 0. Hence

√
λa should

be a zero of the Bessel’s function.
For each k ∈ N∪{0}, let zkl be the l-th zero of Jk, l ∈ N. Hence

√
λa = zkl and

so λkl = z2
kl/a2 and y(x) = Jk(x). Therefore, v(r) = Jk(zklr/a). For each k ∈N∪{0}

and l ∈ N, we have

ukl(r,θ) = Jk(zklr/a)sin(kθ) or Jk(zklr/a)cos(kθ)

and λkl = z2
kl/a2.





Chapter 6
Heat Equation

In 1822, J. Fourier introduced in Théorie analytique de la chaleur the heat equation

∂u(x, t)
∂ t

= ∆u(x, t),

where ∆ = ∑
3
i=1

∂ 2

∂x2
i
. This heat flow model was based on Newton’s law of cooling.

6.1 Derivation of Heat Equation

The heat propagation in a bar of length L is

∂u
∂ t

=
1

ρ(x)σ(x)
∂

∂x

(
κ(x)

∂u
∂x

)
where σ(x) is the specific heat at x, ρ(x) is density of bar at x and κ(x) is the thermal
conductivity of the bar at x. If the bar is homogeneous, i.e, its properties are same at
every point, then

∂u
∂ t

=
κ

ρσ

∂ 2u
∂x2

with ρ,σ ,κ being constants.
Let a homogeneous material occupy a region represented by an open, bounded

subset Ω ⊂ Rn with C1 boundary. Let κ denote the thermal conductivity (dimen-
sionless quantity) and c be the heat capacity of the material. Let u(x, t) denote the
temperature of the material Ω at x ∈ Ω and time t ∈ [0,∞). The thermal energy
stored at x ∈Ω and time t ∈ [0,∞) is cu(x, t). If v(x, t) denotes the velocity at (x, t)
then, by Fourier law, the thermal energy changes according to the gradients of tem-
perature, i.e., cu(x, t)v(x, t) =−κ∇u(x, t). The thermal energy is the quantity that is
conserved (conservation law) and satisfies the continuity equation (1.4). Thus, we
have

157
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ut(x, t)−
κ

c
∆u(x, t) = 0.

If the material occupying the region Ω is non-homogeneous, anisotropic, the
temperature gradient may generate heat in preferred directions, which themselves
may depend on x ∈ Ω . Thus, the conductivity of such a material at x ∈ Ω is given
by a n×n matrix K(x) = (κi j(x)). Thus, in this case, the heat equation becomes,

ut(x, t)−divx

(
1
c

K(x)∇xu(x, t)
)
= 0.

The heat equation is an example of a second order equation in divergence form. The
heat equation gives the temperature distribution u(x, t) of the material with conduc-
tivity κ and capacity c. In general, we may choose κ/c = 1, since, for any κ and c,
we may rescale our time scale t 7→ (κ/c)t.

Remark 6.1 (Time Irreversiblity). The heat equation describes irreversible process,
i.e., it is not possible to find the distribution of temperature at an earlier time t < t0,
if the temperature distribution is given at t0. Equivalently, the transformation t 7→ −t
changes the heat equation to a backward equation. If set v(x, t) = u(x,−t) where
ut −∆u = 0, then v satisfies the backward equation vt +∆v = 0.

Remark 6.2 (Invariance in space and time). For each fixed (y,τ), if u satisfies ut −
∆u = 0 then v(x, t) := u(x− y, t− τ) also satisfies vt −∆v = 0.

Remark 6.3 (Parabolic Dilations). If u satisfies ut−∆u= 0 then v(x, t)= βu(λx,λ 2t)
satisfies vt −∆v = 0 for all λ ,β > 0.

6.2 Duhamel’s Principle

In this section we solve the inhomogeneous heat equation, using Duhamel’s princi-
ple. The Duhamel’s principle states that one can obtain a solution of the inhomoge-
neous IVP for heat from its homogeneous IVP.

For a given f , let u(x, t) be the solution of the inhomogeneous heat equation,ut(x, t)− c2∆u(x, t) = f (x, t) in Ω × (0,T )
u(x, t) = 0 in ∂Ω × (0,T )
u(x,0) = 0 in Ω .

(6.1)

As a first step, for each s ∈ (0,∞), consider w(x, t;s) as the solution of the homoge-
neous problem (auxiliary)ws

t (x, t)− c2∆ws(x, t) = 0 in Ω × (s,T )
ws(x, t) = 0 in ∂Ω × (s,T )
ws(x,s) = f (x,s) on Ω ×{s}.
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Since t ∈ (s,T ), introducing a change of variable r = t − s, we have ws(x, t) =
w(x, t− s) which solveswt(x,r)− c2∆w(x,r) = 0 in Ω × (0,T − s)

w(x,r) = 0 in ∂Ω × (0,T − s)
w(x,0) = f (x,s) on Ω .

Theorem 6.1 (Duhamel’s Principle). The function u(x, t) defined as

u(x, t) :=
∫ t

0
ws(x, t)ds =

∫ t

0
w(x, t− s)ds

solves (6.1).

Proof. Suppose w is C2,1(Rn× (0,T )), we get

ut(x, t) =
∂

∂ t

∫ t

0
w(x, t− s)ds

=
∫ t

0
wt(x, t− s)ds+w(x, t− t)

d(t)
dt

−w(x, t−0)
d(0)
dt

=
∫ t

0
wt(x, t− s)ds+w(x,0)

=
∫ t

0
wt(x, t− s)ds+ f (x, t).

Similarly,

∆u(x, t) =
∫ t

0
∆w(x, t− s)ds.

Thus,

ut − c2
∆u = f (x, t)+

∫ t

0

(
wt(x, t− s)− c2

∆w(x, t− s)
)

ds

= f (x, t).

6.3 Cauchy Problem for Bounded Domains

We have already elaborated on the way to choose boundary conditions (q.v. Sec-
tion 2.3.3 and Remark 3.4). In view of those discussions, let Ω be an open subset of
Rn with a non-empty boundary ∂Ω . The Cauchy problem for heat equation{

ut(x, t)− c2∆u(x, t) = 0 in Ω × (0,T )
u(x,0) = g(x) on Ω ×{0}
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is well-posed if we choose to specify one of the following conditions on ∂Ω ×
(0,T ):

(i) (Dirichlet condition) u(x, t) = h(x, t);
(ii) (Neumann condition) ∇xu(x, t) ·ν(x) = h(x, t), where ν(x) is the unit outward

normal of (x, t) ∈ ∂Ω × (0,T );
(iii) (Robin condition) ∇xu(x, t) ·ν + cu(x, t) = h(x, t) for any c > 0.
(iv) (Mixed condition) u(x, t) = h(x, t) on Γ1 and ∇xu(x, t) ·ν = h(x, t) on Γ2, where

Γ1∪Γ2 = ∂Ω × (0,T ) and Γ1∩Γ2 = /0.

Set QT := Ω × (0,T ) and

∂pQT := Ω ×{t = 0}∪∂Ω × (0,T ].

Let C2,1(QT ) denote the class of all continuous functions which are twice contin-
uously differentiable in the x-variable and once continuously differentiable in the
t-variable.

Remark 6.4 (Steady State Equation). Consider the Cauchy problem with inhomoge-
neous Dirichlet boundary conditions:

ut(x, t)− c2∆u(x, t) = 0 in Ω × (0,∞)
u(x, t) = = h(x, t) in ∂Ω × [0,∞)

u(x,0) = g(x) on Ω

such that, for all x ∈ ∂Ω ,

g(x) = h(x,0),g′′(x) = h′′(x,0).

The steady-state solution of the heat equation is defined as

v(x) = lim
t→∞

u(x, t).

Note that v satisfies the equation ∆v = 0, since vt = 0. Further, v satisfies the fol-
lowing condition on ∂Ω :

v(x) = lim
t→∞

h(x, t).

The heat flows from higher to lower temperature regions. This is equivalent to
saying that a solution of the homogeneous heat equation attains its maximum and
minimum values on ∂pQT . This is known as the maximum principle.

Theorem 6.2 (Weak Maximum Principle). Let u ∈C2,1(QT )∩C(QT ) be the solu-
tion of

ut(x, t)−∆u(x, t) = f (x, t) in QT . (6.2)

If f (x, t)≤ 0 in QT then u attains its maximum on ∂pQT , i.e.,

max
QT

u(x, t) = max
∂pQT

u(x, t).
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In particular, if u is negative on ∂pQT then it is negative in QT .

Proof. We already have
max
QT

u(x, t)≥ max
∂pQT

u(x, t)

because ∂pQT ⊂ QT . It only remains to show the other inequality. We need to show
the maximum of u is achieved in ∂pQT . If not the maximum can be in the interior
of QT or in the boundary Ω ×{t = T}. To avoid the problem of differentiability at
boundary, we consider ε > 0 such that T − ε > 0. We first claim that

max
QT−ε

u≤ max
∂pQT

u+ εT. (6.3)

Set v = u− εt. Then

vt(x, t)−∆v(x, t) = f (x, t)− ε < 0. (6.4)

We claim that the maximum of v on QT−ε occurs on ∂pQT−ε . Suppose not, then
(x0, t0) ∈ Ω × (0,T − ε] be a maximum point for v on QT−ε . Thus, by the negative
definiteness of Hessian matrix, ∆xv(x0, t0) ≤ 0. Since v(x0, t0) ≥ v(x0, t) for all 0 <
t ≤ T − ε being a maximum point,

vt(x0, t0) := lim
h→0

v(x0, t0 +h)− v(x0, t0)
h

≤ 0.

For t0 < T − ε , we obtain vt(x0, t0) = 0. For the maximum attained at boundary
t0 = T − ε , vt(x0, t0)≥ 0. In both cases,

vt(x0, t0)−∆v(x0, t0)≥ 0

contradicting (6.4). Since v≤ u,

max
QT−ε

v≤ max
∂pQT−ε

v≤ max
∂pQT

u. (6.5)

On the other hand, u = v+ εt ≤ v+ εT , and therefore, from (6.5) we get

max
QT−ε

u≤ max
QT−ε

v+ εT ≤ max
∂pQT

u+ εT

which is 6.3. Since u is continuous in QT , it is uniformly continuous and attains its
maximum on QT . Thus,

max
QT−ε

u→max
QT

u as ε → 0.

Now, letting ε → 0 in (6.3) we get maxQT
u≤max∂pQT u.

Corollary 6.1. If f (x, t) = 0 in QT then u attains its maximum and its minimum on
∂pQT . In particular,
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min
∂pQT

u≤ u(x, t)≤ max
∂pQT

u ∀(x, t) ∈ QT .

Corollary 6.2 (Comparison and stability). Let u and v satisfy

ut −∆u = f1 and vt −∆v = f2.

Then

(a) If u≥ v on ∂pQT and f1 ≥ f2 in QT then u≥ v in all QT .
(b) The stability estimate holds:

max
QT

|u− v| ≤ max
∂pQT
|u− v|+T max

QT

| f1− f2|. (6.6)

In particular, the Dirichlet problem has at most one solution and depends continu-
ously on the data.

Remark 6.5. The equation (6.6) is a uniform pointwise stability estimate, useful in
several applications. In fact, if u = g1,v = g2 on ∂pQT and

max
∂pQT
|g1−g2| ≤ ε and max

QT

| f1− f2| ≤ ε

then
max
QT

|u− v| ≤ ε(1+T ).

Thus, in finite time, a small change in data implies a small change in the correspond-
ing solutions.

Remark 6.6 (Strong Maximum Principle). The weak maximum principle gives no
information about the solution achieving its maximum or minimum at an interior
point too. The strong maximum principle states that if a solution of ut −∆u = 0
achieves its maximum M (or minimum) at a point (x1, t1) with x1 ∈Ω and 0 < t1 ≤
T , then u = M in Ω × [0, t1].

Remark 6.7. Above Corollary gives uniqueness for the Dirichlet problem. One can
show uniquenees without maximum principle but assuming continuity of derivatives
of the solution up to ∂pQT .

Theorem 6.3 (At most one solution). Let Ω be a domain with C1 boundary. The
initial Dirichlet, Neumann, Robin and mixed problems have at most one solution in
C2,1(QT ).

Proof. Suppose u and v are solutions of one of the specified Cauchy problem. Set
w := u−v. We claim that w≡ 0. Observe that w satisfies the homogeneous equation

wt(x, t)−∆w(x, t) = 0 (6.7)
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with initial condition w(x,0) = 0. in Ω , and one of the homogeneous boundary
conditions on ∂Ω× (0,T ]. Multiply both sides of (6.7) by w and integrate on Ω , we
get ∫

Ω

wwt dx =
∫

Ω

w∆wdx.

But LHS is, using Green’s identity,∫
Ω

wwt dx =
1
2

d
dt

∫
Ω

w2 dx.

Similarly, RHS is ∫
Ω

w∆wdx =
∫

∂Ω

w[∇w ·ν ]dσ −
∫

Ω

|∇w|2 dx.

By setting F(t) :=
∫

Ω
w2 dx, and putting in LHS, we get

1
2

F ′(t) =
∫

∂Ω

w[∇w ·ν ]dσ −
∫

Ω

|∇w|2 dx.

If the Robin boundary condition is satisfied, then∫
∂Ω

w[∇w ·ν ]dσ =−c
∫

Ω

w2 dx≤ 0.

If one of the other boundary conditions are satisfied, then∫
∂Ω

w[∇w ·ν ]dσ = 0.

Thus, in all the cases it follows that F ′(t) ≤ 0 and, hence, F is a non-increasing
function of t. Also,

F(0) =
∫

Ω

w2(x,0)dx = 0.

Thus, F(t)≤ 0 for all t ≥ 0. But, by definition, F(t)≥ 0 for all t ≥ 0. Hence, F(t)= 0
for all t ≥ 0 which implies that w(x, t)≡ 0 in Ω for all t > 0. Thus u = v in QT .

Theorem 6.4 (Heat Flow on a Bar). Let Ω =(0,L) be a homogeneous rod of length
L insulated along sides and its ends are kept at zero temperature. The tempera-
ture zero at the end points of the rod is given by the Dirichlet boundary condition
u(0, t) = u(L, t) = 0. The initial temperature of the rod, at time t = 0, is given by
u(x,0) = g(x), where g : [0,L]→ R be such that g(0) = g(L) = 0. Then there is a
solution u of ut(x, t)− c2uxx(x, t) = 0 in (0,L)× (0,∞)

u(0, t) = u(L, t) = 0 in (0,∞)
u(x,0) = g(x) on [0,L]

where c is a constant.
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Proof. We begin with the ansatz that u(x, t) = v(x)w(t) (variable separated). Substi-
tuting u in separated form in the equation, we get

v(x)w′(t) = c2v′′(x)w(t)

and, hence,
w′(t)

c2w(t)
=

v′′(x)
v(x)

.

Since LHS, a function of t, and RHS, a function x, are equal they must be equal to
some constant, say λ . Thus,

w′(t)
c2w(t)

=
v′′(x)
v(x)

= λ .

Therefore, we need to solve two ODE to obtain v and w,

w′(t) = λc2w(t) and v′′(x) = λv(x).

We first solve the eigenvalue problem involving v. For each k ∈ N, there is a pair
(λk,vk) which solves the eigenvalue problem involving v, where λk = −(kπ)2/L2

and vk(x) = sin
( kπx

L

)
. For each k ∈ N, we solve for wk to get

lnwk(t) = λkc2t + lnα,

where α is integration constant. Thus, wk(t) = αe−(kcπ/L)2t . Hence,

uk(x, t) = vk(x)wk(t) = βk sin
(

kπx
L

)
e−(kcπ/L)2t ,

for some constants βk, is a solution to the heat equation. By superposition principle,
the general solution is

u(x, t) =
∞

∑
k=1

uk(x, t) =
∞

∑
k=1

βk sin
(

kπx
L

)
e−(kcπ/L)2t .

We now use the initial temperature of the rod, given as g : [0,L]→R to compute the
constants. Since u(x,0) = g(x),

g(x) = u(x,0) =
∞

∑
k=1

βk sin
(

kπx
L

)
.

Further, g(0) = g(L) = 0. Thus, g admits a Fourier Sine expansion and hence its
coefficients βk are given as

βk =
2
L

∫ L

0
g(x)sin

(
kπx
L

)
.
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Theorem 6.5 (Circular Wire). Let Ω be a circle (circular wire) of radius one insu-
lated along its sides. Let the initial temperature of the wire, at time t = 0, be given
by a 2π-periodic function g : R→ R. Then there is a solution u(r,θ) ofut(θ , t)− c2uθθ (θ , t) = 0 in R× (0,∞)

u(θ +2π, t) = u(θ , t) in R× (0,∞)
u(θ ,0) = g(θ) on R×{t = 0}

where c is a constant.

Proof. Note that u(θ , t) is 2π-periodic in θ -variable, i.e., u(θ +2π, t) = u(θ , t) for
all θ ∈ R and t ≥ 0. We begin with ansatz u(θ , t) = v(θ)w(t) with variables sepa-
rated. Substituting for u in the equation, we get

w′(t)
c2w(t)

=
v′′(θ)
v(θ)

= λ .

For each k ∈N∪{0}, the pair (λk,vk) is a solution to the eigenvalue problem where
λk =−k2 and

vk(θ) = ak cos(kθ)+bk sin(kθ).

For each k ∈ N∪{0}, we get wk(t) = αe−(kc)2t . For k = 0

u0(θ , t) = a0/2 (To maintain consistency with Fourier series)

and for each k ∈ N, we have

uk(θ , t) = [ak cos(kθ)+bk sin(kθ)]e−k2c2t .

Therefore, the general solution is

u(θ , t) =
a0

2
+

∞

∑
k=1

[ak cos(kθ)+bk sin(kθ)]e−k2c2t .

We now use the initial temperature on the circle to find the constants. Since u(θ ,0)=
g(θ),

g(θ) = u(θ ,0) =
a0

2
+

∞

∑
k=1

[ak cos(kθ)+bk sin(kθ)] .

Further, g is 2π-periodic and, hence, admits a Fourier series expansion. Thus,

ak =
1
π

∫
π

−π

g(θ)cos(kθ)dθ

and
bk =

1
π

∫
π

−π

g(θ)sin(kθ)dθ .

Note that as t→ ∞ the temperature of the wire approaches a constant a0/2.
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Exercise 6.1. Solve the heat equation for 2D Rectangle and 2D Disk.

6.4 Method of Shifting the data

Without solving the problem, let us reduce the problem
ut(x, t)−uxx(x, t) = sinxcos t in (0,π)× (0,∞)

u(0, t) = t2 in (0,∞)
u(π, t) = t in (0,∞)
u(x,0) = cosx in (0,π)

to a homogeneous problem with zero boundary conditions and an inhomogeneous
problem with zero boundary and initial conditions. The idea is to subtract the bound-
ary conditions from the solution. Define

v(x, t) :=
(

1− x
π

)
t2 +

x
π

t.

Note that v(0, t) = t2 and v(π, t) = t. Set w(x, t) := u(x, t)− v(x, t). Then w(x, t)
satisfies

wt(x, t)−wxx(x, t) = sinxcos t−2
(
1− x

π

)
t− x

π
in (0,π)× (0,∞)

w(0, t) = 0 in (0,∞)
w(π, t) = 0 in (0,∞)
w(x,0) = cosx in (0,π).

Note that w(x, t) = w1(x, t) + w2(x, t) where w1(x, t) and w2(x, t) solves, respec-
tively, 

w1
t (x, t)−w1

xx(x, t) = 0 in (0,π)× (0,∞)
w1(0, t) = w1(π, t) = 0 in (0,∞)

w1(x,0) = cosx in (0,π)

and 
w2

t (x, t)−w2
xx(x, t) = sinxcos t−2

(
1− x

π

)
t− x

π
in (0,π)× (0,∞)

w2(0, t) = w2(π, t) = 0 in (0,∞)
w2(x,0) = 0 in (0,π).

6.5 Fundamental Solution of Heat Equation

The global Cauchy problem of the heat equation is{
ut(x, t)−∆xu(x, t) = f (x, t) in Rn× (0,T )

u(x,0) = g(x) in Rn,
(6.8)
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where g ∈C(Rn).
To solve the Cauchy problem (6.8) for unbounded domains, we shall derive the

fundamental solution of (6.8). Taking Fourier transform w.r.t the x-variable both
sides of the equation, we get

ût −∆u = f̂

ût(ξ , t)− ∆̂u(ξ , t) = f̂ (ξ , t)

ût(ξ , t)−
n

∑
j=1

i2ξ
2
j û(ξ , t) = f̂ (ξ , t)

ût(ξ , t)+ |ξ |2û(ξ , t) = f̂ (ξ , t).

For each ξ ∈Rn, we have an ODE in t-variable with initial condition û(ξ ,0) = ĝ(ξ )
whose solution is given by (cf. Appendix ??)

û(ξ , t) = ĝ(ξ )e−|ξ |
2t +

∫ t

0
e−|ξ |

2(t−s) f̂ (ξ ,s)ds.

Therefore, by inverse Fourier formula,

u(x, t) = (2π)−n/2
∫
Rn

(
ĝ(ξ )e−|ξ |

2teiξ ·x +
∫ t

0
eiξ ·x−|ξ |2(t−s) f̂ (ξ ,s)ds

)
dξ

= (2π)−n
∫
Rn

(∫
Rn

g(y)e−iξ ·y dy
)

e−|ξ |
2teiξ ·x dξ

+(2π)−n
∫
Rn

∫ t

0

(∫
Rn

f (y,s)e−iξ ·y dy
)

eiξ ·x−|ξ |2(t−s) dsdξ

= (2π)−n
∫
Rn

g(y)
(∫

Rn
eiξ ·(x−y)−|ξ |2t dξ

)
dy

+(2π)−n
∫
Rn

∫ t

0
f (y,s)

(∫
Rn

eiξ ·(x−y)−|ξ |2(t−s) dξ

)
dsdy

=
∫
Rn

g(y)K(x,y, t)dy+
∫
Rn

∫ t

0
f (y,s)K(x,y, t− s)dsdy

where
K(x,y, t) = (2π)−n

∫
Rn

eiξ ·(x−y)−|ξ |2t dξ .

Note that

iξ · (x− y)−|ξ |2t =−
(

ξ
√

t− i
(x− y)

2
√

t

)
·
(

ξ
√

t− i
(x− y)

2
√

t

)
− |x− y|2

4t

and, set η =
(

ξ
√

t− i (x−y)
2
√

t

)
. Therefore, dη =

√
tdξ . Using this substituion in K

and simplifying, we get
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K(x,y, t) = (4πt)−
n
2 e−

|x−y|2
4t

called the heat kernel or the fundamental solution of heat equation. The function K
can be motivated in another way. Recall that the solution of heat equation respectes
parabolic dilation, i.e., if u(x, t) is a solution of the heat equation, then u(λx,λ 2t)
is also a solution of the heat equation, for any λ 6= 0. Thus, we look for a solution
u(x, t) = v(t)w(r2/t), where r = |x|. Substituting this separation of variable in the
heat equation, we derive v(t) = t−n/2 and w(t) = e−r2/4t . This motivates us to define
the fundamental solution as

K(x, t) :=

{
−
( 1

4πt

)n/2
e−

r2
4t x ∈ Rn, t ∈ (0,T )

0 x ∈ Rn, t < 0.

6.6 Fokas Method

Consider the initial value problem (IVP) for the heat equation{
ut(x, t)−uxx(x, t) = 0 in R× (0,T ]

u(x,0) = g(x) in R

such that u(x, t)→ 0 sufficiently fast as |x| →∞, for all t ≥ 0 and T > 0. From §6.5,
we know that

u(x, t) =
1

2π

∫
∞

−∞

ĝ(ξ )eiξ x−ξ 2t dξ

where
ĝ(ξ ) =

∫
∞

−∞

g(y)e−iξ y dy.

For each z ∈ C, we define the one parameter family of PDE’s, called the local
relation,

ρt(x, t;z)+qx(x, t;z) = 0

where ρ(x, t;z) = e−izx+ω(z)tu and ω(z) = z2 is the dispersion relation for heat equa-
tion. The dispersion relation gives the relationship between the wave number and
frequency. This family of PDE’s are called the local relation. Note that

ρt(x, t;z) = e−izx+ω(z)tut +ω(z)e−izx+ω(z)tu

= e−izx+ω(z)tuxx +ω(z)e−izx+ω(z)tu

= (e−izx+ω(z)tux)x + ize−izx+ω(z)tux +ω(z)e−izx+ω(z)tu

= (e−izx+ω(z)tux)x +(ize−izx+ω(z)tu)x− z2e−izx+ω(z)tu+ω(z)e−izx+ω(z)tu.

Choosing ω(z) = z2, we get

ρt(x, t;z) = [e−izx+ω(z)t(ux + izu)]x
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and hence q(x, t;z) =−e−izx+ω(z)t(ux + izu). Integrating both sides of local relation
we get ∫

R×(0,T )
[ρt +qx]dt dx = 0∫

R×(0,T )
[(e−izx+ω(z)tu)t − [e−izx+ω(z)t(ux + izu)]x dt dx = 0.

By Green’s theorem in Ω and the fact that u vanishes at ∞, the LHS becomes∫
∞

−∞

e−izxu(x,0)dx−
∫

∞

−∞

e−izx+ω(z)T u(x,T )dx = 0∫
∞

−∞

e−izx+ω(z)T u(x,T )dx =
∫

∞

−∞

e−izxg(x)dx∫
∞

−∞

e−izxu(x,T )dx = e−ω(z)T
∫

∞

−∞

e−izxg(x)dx

û(z,T ) = e−ω(z)T ĝ(z).
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Appendix A
Leibniz Integral Rule

Theorem A.1. Let a,b ∈C1(x0,x1) and f : Ω ⊂R2→R be such that both f and ∂x
are continuous in Ω , a region that includes a(x)≤ y≤ b(x) and x0 ≤ x≤ x1. Then

d
dx

(∫ b(x)

a(x)
f (x,y)dy

)
= f (x,b(x))

d
dx

b(x)− f (x,a(x))
d
dx

a(x)+
∫ b(x)

a(x)
∂x f (x,y)dy.
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Appendix B
Divergence Theorem

Definition B.1. For an open set Ω ⊂Rn, its boundary ∂Ω is said to be Ck (k≥ 1) if,
for every point x∈ ∂Ω , there is a r > 0 and a Ck diffeomorphism1 φ : Br(x)→ B1(0)
such that

1. φ(∂Ω ∩Br(x))⊂ B1(0)∩{x ∈ Rn | xn = 0} and
2. φ(Ω ∩Br(x))⊂ B1(0)∩{x ∈ Rn | xn > 0}

The boundary ∂Ω is said to be C∞ if ∂Ω is Ck, for all k ∈ N, and ∂Ω is analytic if
φ is analytic.

Equivalently, ∂Ω is Ck if, for every point x ∈ ∂Ω , there exists a neighbourhood
Ux of x and a Ck function φ : Rn−1→ R such that

Ω ∩Bx = {x ∈ Bx | xn > φ(x1,x2, . . . ,xn−1)}.

Theorem B.1. Let Ω be an open bounded subset of Rn with C1 boundary. If v ∈
C1(Ω) then ∫

Ω

∂v
∂xi

dx =
∫

∂Ω

vνi dσ

where ν = (ν1, . . . ,νn) is the unit vector pointing outward and dσ is the surface
measure of ∂Ω .

The hypothesis that Ω is bounded can be relaxed provided |v| and
∣∣∣ ∂v

∂xi

∣∣∣ decays
as |x| → ∞. Much weaker hypotheses on ∂Ω and v are considered in geometric
measure theory.

Theorem B.2 (Integration by parts). Let Ω be an open bounded subset of Rn with
C1 boundary. If u,v ∈C1(Ω) then∫

Ω

u
∂v
∂xi

dx+
∫

Ω

v
∂u
∂xi

dx =
∫

∂Ω

uvνi dσ .

1 φ−1 exists and both φ and φ−1 are k-times continuously differentiable

175



176 B Divergence Theorem

Proof (Hint). Set v := uv in the theorem above.

Theorem B.3 (Gauss). Let Ω be an open bounded subset of Rn with C1 boundary.
If V = (v1, . . . ,vn) on Ω is a vector field such that vi ∈C1(Ω), for all 1≤ i≤ n, then∫

Ω

∇ ·V dx =
∫

∂Ω

V ·ν dσ . (B.1)

The divergence of a vector field is the measure of the magnitude (outgoing na-
ture) of all source (of the vector field) and absorption in the region. The divergence
theorem was discovered by C. F. Gauss in 18132 which relates the outward flow
(flux) of a vector field through a closed surface to the behaviour of the vector field
inside the surface (sum of all its “source” and “sink”). The divergence theorem is
the mathematical formulation of the conservation law.

Theorem B.4 (Green’s Identities). Let Ω be an open bounded subset of Rn with
C1 boundary. If u,v ∈C2(Ω) then

(i) ∫
Ω

(v∆u+∇v ·∇u)dx =
∫

∂Ω

v
∂u
∂ν

dσ ,

where ∂u
∂ν

:= ∇u ·ν;
(ii) ∫

Ω

(v∆u−u∆v)dx =
∫

∂Ω

(
v

∂u
∂ν
−u

∂v
∂ν

)
dσ .

Proof (Hint). Apply divergence theorem to V = v∇u to get the first formula. To
get second formula apply divergence theorem for both V = v∇u and V = u∇v and
subtract one from the other.

2 J. L. Lagrange might have discovered this, before Gauss, in 1762



Appendix C
Surface Area and Volume of a Disk

Theorem C.1 (Polar coordinates). Let f : Rn→ R be continuous and integrable.
Then ∫

Rn
f (x)dx =

∫
∞

0

(∫
Sr(a)

f (y)dσy

)
dr

for each a ∈ Rn. In particular, for each r > 0,

d
dr

(∫
Br(a)

f (x)dx
)
=
∫

Sr(a)
f (y)dσy.

Theorem C.2. Prove that ∫
Rn

e−π|x|2 dx = 1.

Further, prove that the surface area ωn of S1(0) in Rn is

2πn/2

Γ (n/2)

and the volume of the ball B1(0) in Rn is ωn/n. Consequently, for any x ∈ Rn and
the r > 0, the surface area of Sr(x) is rn−1ωn and the volume of Br(x) is rnωn/n.

Proof. We first observe that

e−π|x|2 = e−π(∑
n
i=1 x2

i ) =
n

∏
i=1

e−πx2
i .

Therefore,
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178 C Surface Area and Volume of a Disk

In :=
∫
Rn

e−π|x|2 dx =
∫
Rn

n

∏
i=1

e−πx2
i dx

=
n

∏
i=1

∫
R

e−πt2
dt

=

(∫
R

e−πt2
dt
)n

= (I1)
n

∫
Rn

e−π|x|2 dx =

(∫
R

e−πt2
dt
)2(n/2)

=
(
(I1)

2)n/2
= (I2)

n/2

=

(∫
R2

e−π|y|2 dy
)n/2

=

(∫ 2π

0

∫
∞

0
e−π|y|2 dy

)n/2

=

(∫ 2π

0

∫
∞

0
e−πr2

r dr dθ

)n/2

(since jacobian is r)

=

(
2π

∫
∞

0
e−πr2

r dr
)n/2

=

(
π

∫
∞

0
e−πs ds

)n/2

(by setting r2 = s)

=

(∫
∞

0
e−q dq

)n/2

(by setting πs = q)

= (Γ (1))n/2 = 1.

Let ωn denote the surface area of the unit sphere S1(0) in Rn, i.e.,

ωn =
∫

S1(0)
dσ ,

where dσ is the n−1-dimensional surface measure. Now, consider

1 =
∫
Rn

e−π|x|2 dx

=
∫

S1(0)

∫
∞

0
e−πr2

rn−1 dr dσ

= ωn

∫
∞

0
e−πr2

rn−1 dr

=
ωn

2πn/2

∫
∞

0
e−ss(n/2)−1 ds (by setting s = πr2)

=
ωnΓ (n/2)

2πn/2 .
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Thus, ωn =
2πn/2

Γ (n/2) . We shall now compute the volume of the disk B1(0). Consider,

∫
B1(0)

dx = ωn

∫ 1

0
rn−1 dr =

ωn

n
.

For any x ∈ Rn and r > 0, we observe by the shifting of origin that the surface area
of Sr(x) is same as the surface area of Sr(0). Let Sr(0) = {s ∈ Rn | |s|= r}. Now∫

Sr(0)
dσs =

∫
S1(0)

rn−1 dσt = rn−1
ωn,

where t = s/r. Thus, the surface area of Sr(x) is rn−1ωn. Similarly, volume of a disk
Br(x) is rnωn/n.
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Harnack inequality, 105
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integral curve, 20
integral surface, 20

Laplace, 85
Laplace operator, 85, 86
Laplace-Beltrami operator, 89, 98
Laplacian, 3
Liouville’s theorem, 104

maximum principle
strong, 101
weak, 102

mean value property, 99
method of characteristics, 21
method of reflection, 127, 128
Monge cone, 48

Neumann boundary condition, 108
Neumann Problem, 108

parabolic PDE, 72, 73
Poisson, 85
Poisson equation, 85, 115
Poisson formula, 127, 130
Poisson kernel, 127, 130
potential, 85

gravity, 85

radial function, 87

sectorial harmonics, 98
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