Stress analysis of lithium-based rechargeable batteries using micro and macro scale analysis

Utsav Kumar
Atanu K. Metya
Jayant K. Singh
Department of Chemical Engineering
IIT Kanpur
INTRODUCTION

Christensen and Newman, Journal of Electrochemical Society, 2006
- Estimated stress generation in Li$_y$Mn$_2$O$_4$ and carbon electrodes separately.

Zhang et al., Journal of Electrochemical Society, 2007
- Stress distribution inside one single electrode particle using numerical simulation.

Zhang et al., Journal of Electrochemical Society, 2008
- Intercalation induced stress and heat generation within single Lithium-Ion battery cathode particles.

Golmon et al., Computers and Structures, 2009
- Electrochemical –mechanical interaction phenomena at macro, meso and micro scale.

OBJECTIVE
- Study of intercalation and thermal stress generation in Li ion rechargeable battery incorporating the effect of Li ion electrode concentration on electrode diffusivity coefficient and stress generation.
STRUCTURE

Source: spectrum.ieee.org

Source: srinivasan et al., 2003
\[i_s = -\sigma_{s,eff} \nabla \phi_s \]

\[\frac{\partial c_s}{\partial t} = \nabla \cdot (D_s (\nabla c_s - \frac{\Omega c_s}{RT} \nabla \sigma_h)) \]

Effect of hydrostatic stress on Li ion flux

Butler-Volmer Reaction

\[i_{loc} = i_0 (\exp(\frac{\alpha_c F \eta}{RT}) - \exp(\frac{-\alpha_c F \eta}{RT})) \]

\[\eta = \phi_s - \Delta \phi_{s,\text{film}} - \phi_l - E_{eq} \]

\[i_0 = F(k_c)^{\alpha_c} (k_a)^{\alpha_c} (c_{s,\text{max}} - c_s)^{\alpha_a} (c_s)^{\alpha_c} (c_l / c_{l,\text{ref}})^{\alpha_a} \]

Reference: Doyle et al., 1996; Rosas et al., 2011 and Fuel cells and Battery module, COMSOL

Stress Analysis of Lithium-Based Rechargeable Batteries using micro and macro scale analysis
\[i_l = -\sigma_{l,eff} \nabla \phi_l + \frac{2\sigma_{l,eff} RT}{F} (1 + \frac{\partial \ln f}{\partial \ln c_l})(1 - t_+) \nabla \ln c_l \]

Concentration gradient

\[\varepsilon_l \frac{\partial c_l}{\partial t} + \nabla \cdot N_l = R_l \]

Flux

\[N_l = -D_{l,eff} \nabla c_l + \frac{i_l t_+}{F} \]

Diffusion and Migration

\[R_l = -\sum_m a_{v,m} \frac{v_{Li+} m i_{loc}}{F} \]

Reference: Doyle et al., 1996; Rosas et al., 2011 and Fuel cells and Battery module, COMSOL

Stress Analysis of Lithium-Based Rechargeable Batteries using micro and macro scale analysis
\[Q_{\text{rev}} = Q_{\text{rea}} \quad Q_{\text{irr}} = Q_{\text{act}} + Q_{\text{ohm}} \]

\[Q_{\text{rea}} = a_{v,i} i_{\text{loc},i} T \frac{\partial U_i}{\partial T} \]

\[Q_{\text{act}} = a_{v,i} i_{\text{loc},i} (\phi_{s,i} - \phi_{l,i} - U_i) \]

\[\kappa_D^{\text{eff}} = \frac{2RT}{F} \kappa^{\text{eff}} (t_+ - 1)(1 + d\ln f / d\ln c) \]

\[Q_{\text{ohm}} = \sigma_s^{\text{eff}} \nabla \phi_s \cdot \nabla \phi_s + \kappa^{\text{eff}} \nabla \phi_l \cdot \nabla \phi_l + \kappa_D^{\text{eff}} \frac{\nabla c_l}{c_l} \cdot \nabla \phi_l \]

Thermal Strain \[\varepsilon_{\text{thermal}} = \alpha T \]
\[\frac{\partial c_s}{\partial t} = \nabla \cdot \left(D_s \left(\nabla c_s - \frac{\Omega c_s}{RT} \nabla \sigma_h \right) \right) \]

Effect of hydrostatic stress on Li ion flux

\[J = -M c_s \nabla \mu \quad \mu = \mu_0 + RT \ln X - \Omega \sigma_h \]

\[\varepsilon_r = \frac{1}{E} \left(\sigma_r - 2\vartheta \sigma_t \right) + \frac{\Omega}{3} \tilde{c} \]

\[\varepsilon_t = \frac{1}{E} \left[(\sigma_t - \vartheta (\sigma_r + \sigma_t)) + \frac{\Omega}{3} \tilde{c} \right] \]

\[\sigma_r = \frac{2\Omega E}{3(1-\vartheta)} \left(\frac{1}{r_0^3} \int_0^{r_0} \tilde{c} r^2 dr - \frac{1}{r^3} \int_0^r \tilde{c} r^2 dr \right) \]

\[\sigma_t = \frac{\Omega E}{3(1-\vartheta)} \left(\frac{2}{r_0^3} \int_0^{r_0} \tilde{c} r^2 dr - \frac{1}{r^3} \int_0^r \tilde{c} r^2 dr - \tilde{c} \right) \]

Reference: Zhang et al., 2007; Zhang et al., 2008 and Xiao et al., 2010

Stress Analysis of Lithium-Based Rechargeable Batteries using micro and macro scale analysis
Stress Analysis of Lithium-Based Rechargeable Batteries using micro and macro scale analysis
Stress Analysis of Lithium-Based Rechargeable Batteries using micro and macro scale analysis

MODELING

Butler Volmer

Electrode & Electrolyte Species/Charge Transport

Electrode Solids State Diffusion

Stress Intercalation and Thermal

Thermal Heat Generation/Transport

MODELING

\[J \]

\[C_s \]

\[\frac{\partial C}{\partial t} + \nabla \cdot (D \nabla C) = \frac{\partial J}{\partial C} \]

\[\frac{\partial J}{\partial \phi} = \frac{\partial J}{\partial \phi} \]

\[\frac{\partial T}{\partial t} + \nabla \cdot (K \nabla T) = \frac{\partial \phi}{\partial \phi} \]

\[\frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \]

\[\frac{\partial i}{\partial t} = \frac{\partial i}{\partial t} \]
\[D_s \text{ as a function of } C_s? \]

Butler Volmer

Electrode & Electrolyte Species/Charge Transport

Electrode Solids State Diffusion

Stress Intercalation and Thermal

Thermal Heat Generation/Transport

\[C_s, J \]

\[D_s (T) \rightarrow D_s (C_s, T) \]

\[C_s \]

\[\phi, i \]

\[T \]
Li$_x$C$_6$ Electrode phase diffusion value (MD Simulation)

INTERACTION PARAMETERS

<table>
<thead>
<tr>
<th>Graphene Layers</th>
<th>AIREBO (Adaptive Intermolecular Reactive Empirical Bond-Order)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stuart et. al, Journal of Chemical Physics, 2000</td>
</tr>
<tr>
<td>Li-Li interaction</td>
<td>Field Parameter for Intermolecular and Columbic interactions.</td>
</tr>
<tr>
<td></td>
<td>Wander and Shuford, Journal of Chemical Physics, 2011</td>
</tr>
<tr>
<td>Graphene-Li interaction</td>
<td>Lorentz-Berthelot combining rules</td>
</tr>
</tbody>
</table>

DIFFUSIVITY CALCULATION

Einstein relation - diffusion coefficient is related to the slope of the mean square displacement (MSD) of the particles over time.

$$D = \frac{1}{6} \lim_{t \to \infty} \frac{d}{dt} \left\langle \left[r_i \left(t + t_0 \right) - r_i \left(t_0 \right) \right]^2 \right\rangle$$
\[\Delta E = 81.5 \text{ meV} \]

\[
D_{C_s,T} = D_{298K} \times \exp \left(-\frac{\Delta E}{R} \left(\frac{1}{T} - \frac{1}{T_{ref}} \right) \right)
\]

Similarly for LiMn$_2$O$_4$ Wakhira et al., Ionic State Solids, 1996 and Srinivasan et al., Journal of The Electrochemical Society, 2003 gives us the same kind of expression.
Stress Analysis of Lithium-Based Rechargeable Batteries using micro and macro scale analysis

1D electrochemical finite element model (FEM)
- Charge Conservation
- Chemical Kinetics
- Mass Transport (except for electrode particles)
- Heat Transport

2D electrode particle FEM model
- Li ion concentration in electrode particle
- Intercalation and Thermal Stress

Stress Analysis of Lithium-Based Rechargeable Batteries using micro and macro scale analysis
- Current density of **17.5 A/m²** applied
- Charge cycle of **1600s** with **800s** of discharging and charging
- Total number of cycles - **10**
- Anode kept at constant potential

Source: srinivasan et al., 2003
Electrode
Stress Analysis of Lithium-Based Rechargeable Batteries using micro and macro scale analysis
Stress Analysis of Lithium-Based Rechargeable Batteries using micro and macro scale analysis

Cs variation

Discharging (200s-600s)

Charging (1100s-1500s)
AVERAGE TEMPERATURE

Q_{total} is taken as heat generated inside Li ion battery and on the basis of that an average Temperature is calculated and used for further studies including thermal stress.
INTERCALATION STRESS

Anode – Tangential Stress

Cathode – Tangential Stress

\[
\sigma_t = \frac{\Omega E}{3(1 - \nu)} \left(\frac{2}{r_0^3} \int_0^{r_0} \tilde{c}r^2 dr - \frac{1}{r^3} \int_0^r \tilde{c}r^2 dr - \tilde{c} \right)
\]
Electrode Potential

![Graph of Electrode Potential](image)

- **x-axis**: Time (s)
- **y-axis**: Normalized electrode potential

The graph shows the normalized electrode potential over time, indicating periodic fluctuations.
Normalized Stress and Potential

![Graph showing normalized stress and potential over time. The graph compares different types of stress and potential over time.]

Stress Analysis of Lithium-Based Rechargeable Batteries using micro and macro scale analysis
CONCLUSION

• Diffusion coefficient as a function of Temperature and Li ion concentration is developed for electrodes and incorporated into model.

• Effect of Diffusion coefficient as a function of Li ion electrode concentration on stress value can be seen.

• T_{avg} reaches an asymptotic value as counterbalance between heat generation and heat rejection comes to an equilibrium as time progresses.

• There is an accumulation of stress with continuous use of battery, this may lead to break down of battery if it reaches the break through point limit.

• With continuous use of battery there is a decrease in maximum battery potential, i.e. more charge required for achieving the previous potential value as we keep on using battery.
ACKNOWLEDGEMENT

Chemical Engineering Department and DRPG, IIT Kanpur for travel support

Dr. Ramakrishnan Narayanrao, General Motors, India

Computational Nano Science Group, IIT Kanpur for their help and support

Thank You
LiₙC₆ Electrode phase diffusion value
(MD Simulation)

INTERACTION PARAMETERS

Graphite: AIREBO (Adaptive Intermolecular Reactive Empirical Bond-Order).
Stuart et. al, Journal of Chemical Physics, 2000

\[
E = \frac{1}{2} \sum_i \sum_{j \neq i} \left[E_{ij}^{REBO} + E_{ij}^{LJ} + \sum_{k \neq i, j} \sum_{l \neq i, j, k} E_{kijl}^{\text{tors}} \right].
\]

\[
E_{ij}^{REBO} = V^R r_{ij} + b_i V^A r_{ij}
\]

Li-Li interaction - Field Parameter for Intermolecular and Columbic interactions.
Wander and Shuford, Journal of Chemical Physics, 2011

Graphite-Li interaction - Lorentz-Berthelot combining rules are employed for the cross interactions
DIFFUSIVITY CALCULATION

The diffusion coefficient can be obtained using two equivalent equilibrium methods.

Einstein relation - diffusion coefficient is related to the slope of the mean square displacement (MSD) of the particles over time.

\[
D = \frac{1}{6} \lim_{t \to \infty} \frac{d}{dt} \left\langle \left[r_i(t) - r_i(t_0) \right]^2 \right\rangle
\]

Green-Kubo (GK) - integration over the velocity autocorrelation function

\[
D = \frac{1}{3} \int_0^\infty \left\langle V_i(t) \cdot V_0(t) \right\rangle dt
\]

Green-Kubo gives too much fluctuation as compared to Einstein relation because of low concentration of Li.
Lithium intercalated graphite $\text{Li}_{0.396}\text{C}_6$
(MD Simulation snapshot)

INITIAL CONFIGURATION

FINAL CONFIGURATION (1ns)

SIDE VIEW

NVT Ensemble

TOP VIEW

Stress Analysis of Lithium-Based Rechargeable Batteries using micro and macro scale analysis
DIFFUSIVITY at 298K

\[D = \frac{1}{6} \lim_{t \to \infty} \frac{d}{dt} \left\langle \left[r_i (t + t_0) - r_i t_0 \right]^2 \right\rangle \]

(MSD)
THERMAL ANALYSIS

\[Q_{\text{irrev}} = Q_{\text{ohm}} + Q_{\text{act}} \]

\[Q_{\text{rev}} = a_{v,i} i_{loc,i} T \frac{\partial U_i}{\partial T} \]
Anode-Tangential Stress Difference

Tangential Stress for Diffusivity as function of electrode Li ion and Temperature subtracted from Tangential Stress for Diffusivity as function of Temperature only vs. time

Stress Analysis of Lithium-Based Rechargeable Batteries using micro and macro scale analysis