OFDM-OQAM using Hilbert Transform WCAM 8 – 10 May 2023 Tokyo

K Vasudevan, *Professor*Gyanesh Kumar Pathak, *PhD student*Surendra Kota, *PhD student*Lov Kumar, *PhD student*

IIT Kanpur

May 20, 2023

Copyright © 2021 K Vasudevan et. al. All rights reserved. No part of this work may be reproduced without prior permission from

the author. This slide deck is set in \LaTeX

Outline I

Introduction

System Model – Digital SSB Modulation

3 Analysis

Conclusions

Introduction

- Orthogonal frequency division multiplexing (OFDM), see
 Figure 1.1, is a popular modulation technique for mitigating
 intersymbol interference (ISI) introduced by frequency selective
 channels.
 - OFDM is spectrally equivalent to quadrature carrier multiplexing (QCM) or double sideband suppressed carrier (DSB-SC) modulation.
 - Is it possible to transmit only one sideband and at the same time mitigate ISI?
 - This would increase symbol density in time-frequency space.
- Use single sideband (SSB) modulation.
 - Requires real-valued message for simple (matched filter) receiver implementation – reduces symbol densty.
 - Controlled ISI can be introduced to improve symbol density.

Introduction

Figure 1.1: Frame structure of OFDM in the time domain.

Introduction

Figure 1.2: Symbol density of OFDM in time-frequency space.

- In Figure 1.1, T is one 2D/1D symbol duration (not an OFDM symbol or "frame").
- $B = 2(1 + \alpha)/(2T)$, where $0 < \alpha \le 1$ is the roll-off factor of the root-raised cosine (RRC) spectrum. Clearly, 1/(BT) < 1.

System Model - Digital SSB Modulation

- With SSB we have $B = (1 + \alpha)/(2T)$, which implies 1/(BT) > 1, since only one sideband (upper or lower) is transmitted.
- This is illustrated in Figure 2.1.

System Model – Digital SSB Modulation

Figure 2.1: Digital SSB modulation – transmitter.

System Model - Digital SSB Modulation

We have

$$S(t) = \Re\left\{\tilde{S}(t)e^{j2\pi F_c t}\right\}$$
 (2.1)

where

$$\tilde{S}(t) = \sum_{k=-\infty}^{\infty} S_k \tilde{p}(t - kT)$$
 (2.2)

and

$$\tilde{p}(t) = p(t) + j\,\hat{p}(t) \tag{2.3}$$

is the complex-valued transmit filter.

- Here $\hat{p}(t)$ is the Hilbert transform of p(t).
- p(t) is a square root Nyquist pulse e.g. having RRC spectrum.
- S_k denotes real-valued symbols from a pulse amplitude modulation (PAM) (1D) constellation.

• The power spectral density (psd) of $\tilde{S}(t)$ in (2.2) is (for uncorrelated symbols)

$$S_{\tilde{S}}(F) = \frac{P_{\text{av}}}{2T} \left| \tilde{P}(F) \right|^2 \tag{3.1}$$

where $P_{\rm av}$ is the average power of the PAM constellation and

$$\tilde{p}(t) \rightleftharpoons \tilde{P}(F)$$
 (3.2)

constitute a Fourier transform pair.

Let

$$p(t) \rightleftharpoons P(F).$$
 (3.3)

Then

$$\tilde{P}(F) = P(F) + j \left(-j \operatorname{sgn}(F) P(F)\right)
= \begin{cases}
2P(F) & \text{for } F > 0 \\
P(0) & \text{for } F = 0 \\
0 & \text{for } F < 0
\end{cases}$$
(3.4)

• Thus, the psd of $\tilde{S}(t)$ in (3.1) is one-sided – hence the psd of S(t) in (2.1) is also one-sided about the carrier frequency F_c .

Figure 3.1: Digital SSB modulation - receiver.

• Scope for error correction since S_k is available in both receiver arms.

Note that

$$p(t) \star p(-t)\big|_{t=nT} = R_{pp}(0)\delta_{K}(nT)$$

$$\hat{p}(t) \star \hat{p}(-t)\big|_{t=nT} = R_{\hat{p}\hat{p}}(0)\delta_{K}(nT)$$
(3.5)

where " \star " denotes convolution, $\delta_{\mathcal{K}}(\cdot)$ is the Kronecker delta function, $R_{pp}(\cdot)$ is the autocorrelation of p(t) and $R_{\hat{p}\hat{p}}(\cdot)$ is the autocorrelation of $\hat{p}(t)$.

Note that

$$R_{pp}(0) = R_{\hat{p}\hat{p}}(0).$$
 (3.6)

 No ISI at the sampler output – channel is ideal and introduces only additive white Gaussian noise (AWGN).

Issues

- PAM constellations are power inefficient compared to QAM.
- In real-life both p(t) and $\hat{p}(t)$ are time-limited. How would this effect ISI?

Table 3.1: Power of QAM vs PAM.

Bits/symbol	P_{av}	
	QAM	PAM
1	1	1
2	2	5
3	$3 + \sqrt{3}$	21
4	10	85

- In Table 3.1 minimum Euclidean distance is 2.
- QAM cannot be used only offset QAM (OQAM) can be used, which introduces ISI – receiver is more complex.
- PAM does not introduce ISI simple matched filter receiver can be used.

For an RRC spectrum

$$p(t) = \frac{1}{\pi \sqrt{2B}(1 - 64B^2 \rho^2 t^2)} \left[8B\rho \cos(\theta_1 + \theta_2) + \frac{\sin(\theta_1 - \theta_2)}{t} \right]$$
(3.7)

where

$$\rho = \alpha$$

$$B = 1/(2T)$$

$$\theta_1 = 2\pi Bt$$

$$\theta_2 = 2\pi B\rho t.$$
(3.8)

The HT of p(t) is

$$\hat{p}(t) = I_1 + I_2 \tag{3.9}$$

where for $F_1 = B(1 - \rho)$

$$I_{1} = \frac{2}{\sqrt{2B}} \int_{F=0}^{F_{1}} \sin(2\pi F t) dF$$

$$= \frac{1}{\pi t \sqrt{2B}} (1 - \cos(2\pi F_{1} t))$$

$$I_{2} = \frac{2}{\sqrt{2B}} \int_{F_{1}}^{2B-F_{1}} \cos\left(\frac{\pi (F - F_{1})}{4B - 4F_{1}}\right) \sin(2\pi F t) dF$$

$$= \frac{8B\rho}{\pi \sqrt{2B} (1 - 64B^{2} t^{2} \rho^{2})} \left[\sin(2\pi B t (1 + \rho)) - 8Bt\rho \cos(2\pi B t (1 - \rho))\right].$$

(3.10)

Figure 3.2: Magnitude response of p(t) and $\tilde{p}(t)$. $P(0) = \tilde{P}(0) = 1$.

• In Figure 3.2 T=1 sec, $\rho=0.161$, $F_s=5$ Hz.

Table 3.2: SIR of $R_{\hat{p}\hat{p}}(mT)$ and $R_{pp}(mT)$.

N	SIR	
	$R_{\hat{p}\hat{p}}(mT)$	$R_{pp}(mT)$
100	16.931	56.921
80	15.934	49.426
40	12.975	40.602
20	9.363	25.212

- In Table 3.2 T=1 sec, $\rho=0.161$, $F_s=5=1/T_s$ Hz.
- Samples $p(nT_s)$, $\hat{p}(nT_s)$ considered for $-N \le n \le N$.

The ratio of signal-to-interference (SIR) power is

$$SIR = \frac{R_{gg}^{2}(0)}{\sum_{\substack{m \ m \neq 0}}^{m} R_{gg}^{2}(mT)}$$
(3.11)

where $g(\cdot)$ is $p(\cdot)$ or $\hat{p}(\cdot)$.

• The reason for the low SIR for $\hat{p}(\cdot)$ is due to the discontinuity of the Fourier transform of the Hilbert transformer at F = 0, as given by

$$H(F) = \begin{cases} +j & \text{for } F < 0 \\ 0 & \text{for } F = 0 \\ -j & \text{for } F > 0. \end{cases}$$
 (3.12)

where $g(\cdot)$ is $p(\cdot)$ or $\hat{p}(\cdot)$.

 A possible solution lies in redefining the Fourier transform of the Hilbert transformer as follows (see Figure 3.3)

$$H(F) = \begin{cases} +j & \text{for } F \le -aF_1 \\ e^{j(\pi(F + aF_1)/(2aF_1) + \pi/2)} & \text{for } -aF_1 \le F \le aF_1 \\ -j & \text{for } F \ge aF_1. \end{cases}$$
(3.13)

where $F_1 = B(1 - \rho)$, as given in slide 16 and

$$0 < a < 1.$$
 (3.14)

Figure 3.3: Proposed frequency response of the Hilbert transformer.

• Using (3.13) we get

$$\hat{p}(t) = I_2 + I_3 + I_4 \tag{3.15}$$

where I_2 is given by (3.10) and

$$I_{3} = \frac{1}{\sqrt{2B}} \int_{F=-aF_{1}}^{aF_{1}} e^{j(\pi(F+aF_{1})/(2aF_{1})+\pi/2)} e^{j2\pi Ft} dF$$

$$= \frac{-2aF_{1}}{\sqrt{2B}} \operatorname{sinc}(aF_{1}A_{1})$$
(3.16)

and

$$A_1 = \frac{1}{2aF_1} + 2t$$

$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}.$$
(3.17)

Finally

$$I_{4} = \frac{-j}{\sqrt{2B}} \int_{F=aF_{1}}^{F_{1}} e^{j2\pi Ft} dF + \frac{j}{\sqrt{2B}} \int_{F=-F_{1}}^{-aF_{1}} e^{j2\pi Ft} dF$$

$$= \frac{2(1+a)F_{1}}{\sqrt{2B}} \operatorname{sinc}(F_{1}(1+a)t) \sin(F_{1}(1-a)t). \tag{3.18}$$

Figure 3.4: Magnitude response of p(t) and $\tilde{p}(t)$. $P(0) = \tilde{P}(0) = 1$.

• In Figure 3.4 T=1 sec, $\rho=0.161$, $F_s=5$ Hz, a=0.25.

Table 3.3: SIR of $R_{\hat{p}\hat{p}}(mT)$ and $R_{pp}(mT)$.

N	SIR	
	$R_{\hat{p}\hat{p}}(mT)$	$R_{pp}(mT)$
100	52.787	56.921
80	45.168	49.426
40	33.298	40.602
20	17.93	25.212

- In Table 3.3 T=1 sec, $\rho=0.161$, $F_s=5=1/T_s$ Hz, a=0.25.
- Samples $p(nT_s)$, $\hat{p}(nT_s)$ considered for $-N \le n \le N$.

Conclusions

- OFDM-OQAM is not a new modulation technique.
 - Has it been hyped?
- Conceptually similar to SSB modulation that was commonly used in analog communication.
- The proposed model for OFDM-OQAM is much simpler than the ones given in literature.
- Same symbol is available in both I and Q arms, resulting in 3 dB improvement in error rate.