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Notation

{A} \ {B} Elements of set A minus set B.
a ∈ {A} a is an element of set A.
a /∈ {A} a is not an element of set A.
a ∧ b Logical AND of a and b.
a ∨ b Logical OR of a and b.

a
?
= b a may or may not be equal to b.

∃ There exists.
∃! There exists uniquely.
∄ Does not exist.
∀ For all.
⌊x⌋ Largest integer less than or equal to x.
⌈x⌉ Smallest integer greater than or equal to x.
j

√
−1

∆
= Equal to by definition.
⋆ Convolution.
δD(·) Dirac delta function.
δK(·) Kronecker delta function.
x̃ A complex quantity.
x̂ Estimate of x.
x A vector or matrix.
IM An M ×M identity matrix.
S Complex symbol (note the absence of tilde).
ℜ{·} Real part.
ℑ{·} Imaginary part.
xI Real or in-phase part of x̃.
xQ Imaginary or quadrature part of x̃.
E[·] Expectation.
erfc(·) Complementary error function.
[x1, x2] Closed interval, inclusive of x1 and x2.
[x1, x2) Open interval, inclusive of x1 and exclusive of x2.
(x1, x2) Open interval, exclusive of x1 and x2.
P (·) Probability.
p(·) Probability density function.
Hz Frequency in Hertz.
wrt With respect to.
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Preface to the Second
Edition

The second edition of this book is a result of the continuing efforts of the author
to unify the areas of discrete-time signal processing and communication. The use
of discrete-time techniques allow us to implement the transmitter and receiver
algorithms in software.

The additional topics covered in the second edition are:

1. Computing the average probability of error for constellations having non-
equiprobable symbols (Chapter 1).

2. Performance analysis of differential detectors in Rayleigh flat fading chan-
nels (Chapter 1).

3. Synchronization techniques for linearly modulated signals (Chapter 4).

The additional C programs that are included in the CDROM are:

1. Coherent detectors for multi-D orthogonal constellations in AWGN chan-
nels (associated with Chapter 1).

2. Noncoherent detectors for multi-D orthogonal constellations in AWGN
channels (associated with Chapter 1).

3. Coherent detection ofM -ary constellations in Rayleigh flat fading channels
(associated with Chapter 1).

4. Coherent detection of QPSK signals transmitted over the AWGN channel.
Here, the concepts of pulse shaping, carrier and timing synchronization are
involved (associated with Chapter 4).

Many new examples have been added. I hope the reader will find the second
edition of the book interesting.

K. Vasudevan
July 2008
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The additional topics covered in the third edition are:

1. MIMO systems (Chapter 2).

2. Detection of coded symbols in coloured noise (Chapter 2).

3. The channel capacity theorem for both AWGN and fading channels (Ap-
pendix L).

Many new examples have been added. I hope the reader will find the third
edition of the book interesting.

K. Vasudevan
July 2018
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Chapter 1

Introduction

Source Transmitter

Channel

ReceiverDestination

Figure 1.1: Basic components in a communication system.

The basic purpose of communication is to exchange information. The main
components of a communication system (whether it is analog or digital) are the
source of information, a transmitter that converts the information into a form
that is suitable for transmission through a channel, a receiver that performs
the reverse function of the transmitter and finally the destination. The source
of information is usually humans (in the form of voice or pictures) or devices
like computers, storage media (in the form of data). The main features that
distinguish between analog and digital communication is that in the former the
information is continuous in time as well as in amplitude, whereas in the latter
it is discrete.

The main advantages of digital communication over analog communication
are listed below:

1. Errors can be detected and corrected. This makes the system more reli-
able.

2. It can be implemented in software, which makes the system flexible.

Error detection and correction is a feature unique to digital communication.
The usefulness of a software-based implementation needs no emphasis. Besides
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providing flexibility, it is also much more reliable than a hardware implementa-
tion. Sophisticated signal processing techniques can be used to obtain optimal
performance. In today’s scenario, software implementation is feasible due to the
easy availability of high-speed digital signal processors (DSPs).

The other important features of digital communication include the ability to
compress the data and the ability to encrypt the data. The process of compres-
sion involves removing the redundancy in the data. This makes the transmission
of data more efficient. Encryption of the data makes it immune to eavesdropping
by an intruder. This is useful in military applications.

The two main resources that are available to a communication system are

1. Bandwidth of the transmitted signal which is directly proportional to the
bit-rate or the symbol-rate. The bandwidth of the transmitted signal is
usually governed by the available channel bandwidth.

2. Transmit power.

The performance criteria for a digital communication system is usually the prob-
ability of error. There is usually a tradeoff between bandwidth and power,
in order to maintain a given probability of error. For example in satellite or
deep space communication, bandwidth (bit-rate) is not a constraint whereas
the power available on-board the satellite is limited. Such systems would there-
fore employ the simplest modulation schemes, namely binary phase shift keying
(BPSK) or quadrature phase shift keying (QPSK) that require the minimum
power to achieve a given error-rate. The reverse is true for telephone-line com-
munication employing voiceband modems where power is not a constraint and
the available channel bandwidth is limited. In order to maximize the bit-rate,
these systems tend to pack more number of bits into a symbol (typically in
excess of 10) resulting in large constellations requiring more power.

The channel is an important component of a communication system. They
can be classified as follows:

1. Time-invariant – the impulse response of the channel is invariant to time.
Examples are the telephone-line, Ethernet, fiber-optic cable etc.

2. Time-variant or fading – the impulse response varies with time e.g. wire-
less channels.

Channels can also be classified as

1. Distortionless – the impulse response of the channel can be modeled as a
Dirac-Delta function.

2. Distorting – the impulse response cannot be modeled as a Dirac-Delta
function.

Whether the channel is distortionless or distorting depends on the frequency
response of the channel over the bandwidth of the transmitted signal. If the
magnitude response of the channel is flat (constant) and the phase response is
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linear over the transmission bandwidth, then the channel is said to be distor-
tionless, otherwise the channel is distorting. The channel also adds additive
white Gaussian noise (AWGN) [1]. A distortionless channel is usually referred
to as an AWGN channel.

Commonly encountered channels in wireless communications are:

1. Time-varying distortionless channels, also known as frequency nonselective
or flat fading channels.

2. Time-varying distorting channels, also known as frequency selective fading
channels.

Wireless communication systems also experience the Doppler effect, which can
be classified as the Doppler spread and the Doppler shift, which is discussed
below.

1. Doppler spread : Consider the transmitted signal

S(t) = A0 cos(2πFct+ θ) (1.1)

where A0 is the amplitude, Fc is the carrier frequency and θ is a uniformly
distributed random variable [2] in [0, 2π). Let the received signal be given
by (ignoring noise and multipath)

X(t) = A(t) cos(2πFct+ α) (1.2)

where −∞ < A(t) < ∞ denotes random fluctuations in amplitude, due
to the time-varying nature of the wireless channel, and α is a uniformly
distributed random variable in [0, 2π). This model is valid when the trans-
mitter and receiver are stationary. Observe that S(t) andX(t) are random
processes [2].

The autocorrelation of X(t) is

RXX(τ) = E[X(t)X(t− τ)]

= E[A(t)A(t − τ)]

× E[cos(2πFct+ α) cos(2πFc(t− τ) + α)]

=
1

2
RAA(τ) cos(2πFcτ) (1.3)

assuming that A(t) is wide sense stationary (WSS) and independent of
α. In (1.3), E[·] denotes expectation [2]. Using the Wiener-Khintchine
relations [2], the power spectral density of X(t) is equal to the Fourier
transform of RXX(τ) and is given by

SX(F ) =
1

4
[SA(F − Fc) + SA(F + Fc)] (1.4)

where SA(F ) denotes the power spectral density of A(t). Note that SA(F )
is the Fourier transform of RAA(τ). It can be similarly shown that the
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autocorrelation and power spectral density of S(t) is

RSS(τ) =
A2

0

2
cos(2πFcτ)

SS(F ) =
A2

0

4
[δD(F − Fc) + δD(F + Fc)] . (1.5)

From (1.4) and (1.5) we find that even though the power spectral density
of the transmitted signal contains only Dirac-delta functions at ±Fc, the
power spectrum of the received signal is smeared about ±Fc, with a band-
width that depends on SA(F ). This process of smearing or more precisely,
the two-sided bandwidth of SA(F ) is called the Doppler spread.

A
8
−
1
3
2

A8−132

Transmitter

A

B

φ1

v1

φ2

Receiver

Length of AB is d0

line-of-sight

v2

Figure 1.2: Illustrating the Doppler shift.

2. Doppler shift : Consider Figure 1.2. Assume that the transmitter and
receiver move with velocities v1 and v2 respectively. The line connecting
the transmitter and receiver is called the line-of-sight (LOS). The angle
of v1 and v2 with respect to the LOS is φ1 and φ2 respectively. Let the
transmitted signal from A be given by (1.1). The received signal at B, in
absence of multipath and noise is

X(t) = A(t) cos(2πFc(t− τ(t)) + θ) (1.6)
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where τ(t) denotes the time taken by the electromagnetic wave to travel
the distance AB (d0) in Figure 1.2, and is given by

τ(t) =
d0 − v3t

c
(1.7)

where c is the velocity of light and v3 is the relative velocity between the
transmitter and receiver along the LOS and is equal to

v3 = v1 cos(φ1) + v2 cos(φ2). (1.8)

Note that v3 is positive when the transmitter and receiver are moving
towards each other and negative when they are moving away from each
other, along the LOS. Substituting (1.7) in (1.6) we get

X(t) = A(t) cos

(

2πFc

(

t− d0 − v3t

c

)

+ θ

)

= A(t) cos

(

2πFct
(

1 +
v3
c

)

− 2πFc
d0
c

+ θ

)

. (1.9)

From (1.9), it is clear that the modified carrier frequency is

F ′
c = Fc

(

1 +
v3
c

)

(1.10)

and the Doppler shift is

Fd = Fc
v3
c
. (1.11)

When v3 = 0, (1.9) reduces to (1.2) with

α = θ − 2πFc
d0
c
. (1.12)

Note that in Figure 1.2, φ1 and φ2 are actually functions of time, therefore
Fd in (1.11) is the instantaneous Doppler shift, obtained by making a
piecewise constant approximation on φ1 and φ2 over an incremental time
duration.

Finally, the receiver design depends on the transmitter and the channel
characteristics. The various topics covered in this book is elaborated in the
next section.

1.1 Overview of the Book

Digital communication is all about sending bits (1s and 0s) from a transmitter
to a receiver through a channel. The number of bits transmitted per second is
called the bit-rate. In Chapter 2, we assume that the transmitter emits bits, the
channel adds additive white Gaussian noise (AWGN) and the receiver tries to
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optimally detect the bits such that the bit-error-rate (BER) is minimized. The
BER is defined as:

BER
∆
=

Number of bits in error

Total number of bits transmitted
. (1.13)

A more complex transmitter would map a group of bits into a symbol and trans-
mit the symbols. The symbols are taken from a constellation. A constellation
is defined as a set of points in N -dimensional space. Thus a point in the con-
stellation can be represented by a N × 1 column vector. When N = 2 we get a
2-D constellation and the symbols are usually represented by a complex number
instead of a 2× 1 vector.

The number of symbols transmitted per second is called the symbol-rate or
bauds. The symbol-rate or baud-rate is related to the bit-rate by:

Symbol Rate
∆
=

Bit Rate

Number of bits per symbol
. (1.14)

From the above equation it is clear that the transmission bandwidth reduces by
grouping bits to a symbol.

The receiver optimally detects the symbols, such that the symbol-error-rate
(SER) is minimized. The SER is defined as:

SER
∆
=

Number of symbols in error

Total number of symbols transmitted
. (1.15)

In general, minimizing the SER does not imply minimizing the BER. The BER
is minimized only when the symbols are Gray coded.

A receiver is said to be coherent if it knows the constellation points exactly.
However, if the received constellation is rotated by an arbitrary phase that
is unknown to the receiver, it is still possible to detect the symbols. Such a
receiver is called a non-coherent receiver. Chapter 2 covers the performance of
both coherent as well as non-coherent receivers. The performance of coherent
detectors for constellations having non-equiprobable symbols is also described.

In many situations the additive noise is not white, though it may be Gaus-
sian. We devote a section in Chapter 2 for the derivation and analysis of a
coherent receiver in coloured Gaussian noise. Finally we discuss the perfor-
mance of coherent and differential detectors in fading channels.

Chapter 3 is devoted to forward error correction. We restrict ourselves to
the study of convolutional codes and its extensions like trellis coded modula-
tion (TCM). In particular, we show how soft-decision decoding of convolutional
codes is about 3 dB better than hard decision decoding. We also demonstrate
that TCM is a bandwidth efficient coding scheme compared to convolutional
codes. The Viterbi algorithm for hard and soft-decision decoding of convolu-
tional codes is discussed. In practice, it is quite easy to obtain a coding gain
of about 4 dB by using TCM schemes having reasonable decoding complexity.
However, to obtain an additional 1 dB coding gain requires a disproportionately
large decoding complexity. To alleviate this problem, the concept of constella-
tion shaping is introduced. It is quite easy to obtain a shape gain of 1 dB. Thus
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the net gain that can be attained by using both TCM and constellation shaping
is 5 dB. Finally, we conclude the chapter with a discussion on turbo codes and
performance analysis of maximum likelihood (ML) decoding of turbo codes. A
notable feature in this section is the development of the BCJR algorithm using
the MAP (maximum a posteriori) detector, unlike the conventional methods
in the literature, where the log-MAP or the max-log-MAP is used.

In Chapter 4 we discuss how the “points” (which may be coded or uncoded)
are converted to signals, suitable for transmission through a distortionless chan-
nel. Though this is an idealized channel model, it helps in obtaining the “best
performance limit’ of a digital communication system. In fact the performance
of a digital communication system through a distorting channel can only be
inferior to that of a distortionless channel. This chapter also seeks to justify
the communication model used in Chapter 2. Thus Chapters 2 and 4 neatly
separate the two important issues in an idealized digital communication system
namely, analysis and implementation. Whereas Chapter 2 deals exclusively with
analysis, Chapter 4 is devoted mostly to implementation.

Chapter 4 is broadly divided into two parts. The first part deals with lin-
ear modulation and the second part deals with non-linear modulation. Under
the heading of linear modulation we discuss the power spectral density of the
transmitted signals, the optimum (matched filter) receiver and the Nyquist cri-
terion for zero-ISI. The important topic of synchronization of linearly modulated
signals is dealt with. The topics covered under non-linear modulation include
strongly and weakly orthogonal signals. We demonstrate that minimum shift
keying (MSK) is a particular case of weakly orthogonal signals. The bandpass
sampling theorem is also discussed.

In Chapter 5 we deal with the real-life scenario where the channel is non-
ideal. In this situation, there are three kinds of detection strategies — the first
one is based on equalization the second is based on maximum likelihood (ML)
estimation and the third approach uses multicarrier communication. The ap-
proaches based on equalization are simple to implement but are suboptimal in
practice, due to the use of finite-length (impulse response is of finite duration)
equalizers. The approaches based on ML estimation have a high computational
complexity but are optimal, for finite-length channels. Finally, multicarrier com-
munication or orthogonal frequency division multiplexing (OFDM) as a means
of mitigating ISI is presented.

The topics covered under equalization are symbol-spaced, fractionally-spaced
and decision-feedback equalizers. We show that the Viterbi algorithm can be
used in the receivers based on ML estimation. We also show that the symbol-
spaced and fractionally-spaced ML detectors are equivalent.

1.2 Bibliography

There are other books on digital communication which are recommended for
further reading. The book by Proakis [3] covers a wide area of topics like
information theory, source coding, synchronization, OFDM and wireless com-
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munication, and is quite suitable for a graduate level course in communication.
In Messerschmitt [4] special emphasis is given to synchronization techniques.
Communication Systems by Haykin [5] covers various topics at a basic level
and is well suited for a first course in communication. There are also many
recent books on specialized topics. Synchronization in digital communication
systems is discussed in [6–8]. The book by Hanzo [9] discusses turbo coding
and its applications. A good treatment of turbo codes can also be found in [10]
and [11]. Space-time codes are addressed in [12]. The applications of OFDM
are covered in [13,14]. An exhaustive discussion on the recent topics in wireless
communication can be found in [15, 16]. A more classical treatment of wireless
communication can be found in [17]. Various wireless communication standards
are described in [18]. Besides, the fairly exhaustive list of references at the end
of the book is a good source of information to the interested reader.



Chapter 2

Communicating with Points

This chapter is devoted to the performance analysis of both coherent and non-
coherent receivers. We assume a simple communication model: The transmitter
emits symbols that is corrupted by additive white Gaussian noise (AWGN) and
the receiver tries to optimally detect the symbols. In the later chapters, we
demonstrate how a real-life digital communication system can be reduced to
the simple model considered in this chapter. We begin with the analysis of
coherent receivers.

2.1 Coherent Detectors for 2D Constellations

Consider the digital communication system shown in Figure 2.1. Bit 0 gets
mapped to ã1 and 1 gets mapped to ã2. Thus, the constellation consists of
two complex points ã1 and ã2. The transmitted symbol at time n is given

by S
(i)
n ∈ {ã1, ã2}, where the superscript (i) denotes the ith symbol in the

constellation (1 ≤ i ≤ 2). The received point is given by:

r̃n = S(i)
n + w̃n (2.1)

where w̃n denotes samples of a complex wide sense stationary (WSS), additive
white Gaussian noise (AWGN) process with zero-mean and variance

σ2
w =

1

2
E
[

|w̃n|2
]

. (2.2)

We assume that the real and imaginary parts of w̃n are statistically independent,
that is

E [wn, Iwn,Q] = E [wn, I ]E [wn,Q] = 0 (2.3)

since each of the real and imaginary parts have zero-mean. Such a complex
Gaussian random variable (w̃n) is denoted by C N (0, 2σ2

w). The letters C N
denote a circular normal distribution. The first argument denotes the mean
and the second argument denotes the variance over two dimensions. Note that
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Source

ℑ

ℜ

ã2
ã1

AWGN w̃n

Input

bit-stream

Output

bit-stream

S
(i)
n r̃n

Receiver
Ŝn

De-mapperMapper

Channel Destination

Figure 2.1: Block diagram of a simple digital communication system. The transmit-
ted constellation is also shown.

a complex random variable has two dimensions, the real part and the imaginary
part. We also assume that

E
[
w2

n, I

]
= E

[
w2

n,Q

]
= σ2

w . (2.4)

In general, the autocorrelation of w̃n is given by:

R̃w̃w̃(m)
∆
=

1

2
E
[
w̃nw̃

∗
n−m

]
= σ2

wδK(m) (2.5)

where

δK(m)
∆
=

{
1 if m = 0
0 otherwise

(2.6)

is the Kronecker delta function.
Let us now turn our attention to the receiver. Given the received point r̃n,

the receiver has to decide whether ã1 or ã2 was transmitted. Let us assume
that the receiver decides in favour of ãi, i ∈ {1, 2}. Let us denote the average
probability of error in this decision by Pe(ãi, r̃n). Clearly [19, 20]

Pe(ãi, r̃n) = P (ãi not sent |r̃n)
= 1− P (ãi was sent |r̃n) . (2.7)

For brevity, the above equation can be written as

Pe(ãi, r̃n) = 1− P (ãi|r̃n) . (2.8)

Now if we wish to minimize the probability of error, we must maximize P (ãi|r̃n).
Thus the receiver computes the probabilities P (ã1|r̃n) and P (ã2|r̃n) and decides
in favour of the maximum. Mathematically, this operation can be written as:

Choose Ŝn = ãi if P (ãi|r̃n) is the maximum. (2.9)
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The estimate in the above equation is referred to as the maximum a posteri-
ori (MAP) estimate and the receiver is called the MAP receiver. The above
equation can be written more succinctly as:

max
i

P (ãi|r̃n) (2.10)

which can be simplified using the Bayes’ rule as follows:

max
i

p(r̃n|ãi)P (ãi)

p(r̃n)

⇒max
i

p(r̃n|ãi)P (ãi)
∑

i p(r̃n|ãi)P (ãi)
. (2.11)

Observe that P (·) denotes probability and p(·) denotes the probability density
function (pdf). The term p(r̃n|ãi) denotes the conditional pdf of r̃n given ãi.
When all symbols in the constellation are equally likely, P (ãi) is a constant,
independent of i. Moreover, the denominator term in the above equation is
also independent of i. Hence the MAP detector becomes a maximum likelihood
(ML) detector:

max
i

p(r̃n|ãi). (2.12)

We observe that the conditional pdf in (2.12) is Gaussian and can be written
as:

max
i

1

2πσ2
w

exp

(

−|r̃n − ãi|2
2σ2

w

)

. (2.13)

Taking the natural logarithm of the above equation and ignoring the constants
results in

min
i

|r̃n − ãi|2 . (2.14)

To summarize, the ML detector decides in favour of that point (or symbol) in
the constellation that is nearest to the received point r̃n. Let us now analyze
the performance of the ML detector.

2.1.1 Performance Analysis

In this section we compute the probability that the ML detector makes an error,
given that the symbol ã1 was transmitted. This would happen when

|r̃n − ã2|2 < |r̃n − ã1|2 . (2.15)

The above equation can be simplified to [4]:

∣
∣
∣d̃+ w̃n

∣
∣
∣

2

< |w̃n|2

⇒
∣
∣
∣d̃
∣
∣
∣

2

+ 2ℜ
{

d̃∗w̃n

}

< 0. (2.16)
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where the superscript ‘*’ denotes the complex conjugate and

d̃ = ã1 − ã2. (2.17)

Let

Z = 2ℜ
{

d̃∗w̃n

}

= 2 (dIwn, I + dQwn,Q) (2.18)

where the subscripts I and Q denote the in-phase and quadrature components
respectively. It is clear that Z is a real Gaussian random variable, since it is
a linear combination of two real Gaussian random variables. The mean and
variance of Z is given by:

E[Z] = 0

E[Z2] = 4σ2
w

∣
∣
∣d̃
∣
∣
∣

2

= σ2
Z (say). (2.19)

Thus the required probability of error is given by:

P

(

Z < −
∣
∣
∣d̃
∣
∣
∣

2
)

=

∫ −|d̃|2

Z=−∞

1

σZ

√
2π

exp

(

− Z2

2σ2
Z

)

dZ

=
1

2
erfc







√
√
√
√

∣
∣
∣d̃
∣
∣
∣

2

8σ2
w







= P (ã2|ã1) (2.20)

where

erfc (x) =
2√
π

∫ ∞

y=x

e−y2

dy (2.21)

is the complementary error function which takes values

erfc (−∞) = 2

erfc (0) = 1

erfc (∞) = 0

erfc (−x) = 2− erfc (x). (2.22)

To summarize, the above equation implies that the probability of error depends
only on the squared Euclidean distance |d̃|2, between the two points and the
noise variance σ2

w . In other words, the probability of error is independent of
rotation and translation of the constellation.

Observe that the detection rule in (2.14) is in terms of the received signal
r̃n. However, when evaluating the performance of the detector, we need to
substitute for r̃n, (in this case r̃n = ã1 + w̃n) in (2.15). The next important
question that needs attention is whether the same performance can be obtained
by minimizing the transmit power. This aspect is investigated in the next
section.
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2.1.2 Optimizing the Constellation

A constellation is optimized by minimizing its average power, for a given mini-
mum distance between the points. For the constellation given in Figure 2.1, the
conditions can be written as (assuming that ã1 and ã2 are equiprobable):

min
1

2

(

|ã1|2 + |ã2|2
)

subject to the constraint |ã1 − ã2|2 =
∣
∣
∣d̃
∣
∣
∣

2

. (2.23)

The above optimization problem can be solved using the method of Lagrange
multipliers. The above equation can be re-written as:

min f (ã1, ã2) =
1

2

(

|ã1|2 + |ã2|2
)

+ λ̃

(

|ã1 − ã2|2 −
∣
∣
∣d̃
∣
∣
∣

2
)

. (2.24)

Taking partial derivatives with respect to ã∗1 and ã∗2 (see Appendix A) and
setting them equal to zero, we get the conditions:

1

2
ã1 + λ̃(ã1 − ã2) = 0

1

2
ã2 − λ̃(ã1 − ã2) = 0. (2.25)

It is clear from the above equations that the two points ã1 and ã2 have to be
antipodal , that is:

ã1 = −ã2. (2.26)

2.1.3 Union Bound on the Probability of Error

In this section, we derive a union bound on the probability of error when there

are G0 points at a distance of
∣
∣
∣d̃
∣
∣
∣ from the transmitted point ã0. This is il-

lustrated in Figure 2.2 for G0 = 4. We assume that ã0 has been transmitted.
The probability that the ML detector makes an error is equal to the probability
of detecting ã1 or ã2 or ã3 or ã4. We now invoke the well known axiom in
probability, relating to events A and B:

P (A or B) = P (A) + P (B)− P (A and B)

≤ P (A) + P (B). (2.27)

In Figure 2.2, the probability that the received point falls in regions R1 and R2

correspond to the events A and B in the above equation. It is clear that the
events overlap. It is now easy to conclude that the probability of error given
that ã0 was transmitted is given by:

P (e|ã0) ≤ G0P (ã1|ã0)

=
G0

2
erfc







√
√
√
√

∣
∣
∣d̃
∣
∣
∣

2

8σ2
w







(2.28)
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Region R1

ã1

Region R2

ã2

ã3

ã0

ℑ

ã4
|d̃|

ℜ

Figure 2.2: Illustration of the computation of the union bound.

where we have made use of the expression for pairwise probability of error de-
rived in (2.20) and P (e|ã0) denotes the probability of error given that ã0 was
transmitted. In general, the Gi nearest points equidistant from a transmitted
point ãi, are called the nearest neighbours.

We are now in a position to design and analyze more complex transmitters
and receivers. This is explained in the next section.

2.1.4 M-ary Signalling Schemes

In the previous sections, it was assumed that one bit is transmitted at a time.
Therefore, the bit-rate equals the baud-rate. We now consider a more complex
transmitter which maps a group of bits into a symbol. The relationship between
the bit-rate and the baud-rate is given by (1.14). Observe that m bits must get
mapped to M = 2m distinct symbols in the constellation. Some commonly used
constellations are shown in Figures 2.3 and 2.4 [21]. It is clear that grouping
more bits into a symbol increases the size of the constellation (transmit power),
for the same minimum distance between the points. However, the transmission-
bandwidth decreases since the baud-rate is less than the bit-rate.

The average probability of symbol error of any constellation, based on the
minimum distance error event (MDEE), can be derived using (2.28). Assuming
that all symbols occur with probability 1/M , the general formula for the average
probability of symbol error is:

P (e) ≤
M∑

i=1

Gi

2M
erfc







√
√
√
√

∣
∣
∣d̃
∣
∣
∣

2

8σ2
w







(2.29)

where Gi denotes the number of nearest neighbours at a distance of
∣
∣
∣d̃
∣
∣
∣ from
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ℑ

ℜ

ℑ

ℜ

|d̃| |d̃|

|d̃|

|d̃| |d̃|
ℜ

16-QAM

32-QAM

4-QAM 8-QAM

ℜ

ℑ

ℑ

Figure 2.3: Some commonly used QAM (Quadrature Amplitude Modulation) con-
stellations.

8-PSK 16-PSK

ℜ

ℑ ℑ

ℜ

Figure 2.4: Some commonly used PSK (Phase Shift Keying) constellations.



16 K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in

symbol ãi. Note that the average probability of error also depends on other
neighbours, but it is the nearest neighbours that dominate the performance.

The next important issue is the average transmit power. Assuming all sym-
bols are equally likely, this is equal to

Pav =
M∑

i=1

|ãi|2
M

. (2.30)

It is clear from Figures 2.3 and 2.4 that for the same minimum distance, the
average transmit power increases as M increases. Having defined the transmit
power, it is important to define the average signal-to-noise ratio (SNR). For a
two-dimensional constellation, the average SNR is defined as:

SNRav =
Pav

2σ2
w

. (2.31)

The reason for having the factor of two in the denominator is because the
average signal power Pav is defined over two-dimensions (real and imaginary),
whereas the noise power σ2

w is over one-dimension (either real or imaginary, see
equation 2.4). Hence, the noise variance over two-dimensions is 2σ2

w.
In general if we wish to compare the symbol-error-rate performance of dif-

ferent M -ary modulation schemes, say 8-PSK with 16-PSK, then it would be
inappropriate to use SNRav as the yardstick. In other words, it would be unfair
to compare 8-PSK with 16-PSK for a given SNRav simply because 8-PSK trans-
mits 3 bits per symbol whereas 16-PSK transmits 4 bits per symbol. Hence it
seems logical to define the average SNR per bit as:

SNRav, b =
Pav

2κσ2
w

(2.32)

where κ = log2(M) is the number of bits per symbol. The error-rate perfor-
mance of different M -ary schemes can now be compared for a given SNRav, b.
It is also useful to define

Pav, b
∆
=

Pav

κ
(2.33)

where Pav, b is the average power of the BPSK constellation or the average power
per bit.

Example 2.1.1 Compute the average probability of symbol error for 16-QAM
using the union bound. Compare the result with the exact expression for the
probability of error. Assume that the in-phase and quadrature components of
noise are statistically independent and all symbols equally likely.

Solution: In the 16-QAM constellation there are four symbols having four near-
est neighbours, eight symbols having three nearest neighbours and four having
two nearest neighbours. Thus the average probability of symbol error from the
union bound argument is:

P (e) ≤ 1

16
[4× 4 + 3× 8 + 4× 2]

1

2
erfc

(√

d2

8σ2
w

)
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= 1.5 erfc

(√

d2

8σ2
w

)

. (2.34)

Note that for convenience we have assumed |d̃| = d is the minimum distance
between the symbols. To compute the exact expression for the probability of
error, let us first consider an innermost point (say ãi) which has four nearest
neighbours. The probability of correct decision given that ãi was transmitted
is:

P (c|ãi) = P ((−d/2 ≤ wn, I < d/2) AND (−d/2 ≤ wn,Q < d/2))

= P (−d/2 ≤ wn, I < d/2)P (−d/2 ≤ wn,Q < d/2) (2.35)

where we have used the fact that the in-phase and quadrature components of
noise are statistically independent. The above expression simplifies to

P (c|ãi) = [1− y]2 (2.36)

where

y = erfc

(√

d2

8σ2
w

)

. (2.37)

Similarly we can show that for an outer point having three nearest neighbours

P (c|ãj) = [1− y]
[

1− y

2

]

(2.38)

and for an outer point having two nearest neighbours

P (c|ãk) =
[

1− y

2

]2

. (2.39)

The average probability of correct decision is

P (c) =
1

16
[4P (c|ãi) + 8P (c|ãj) + 4P (c|ãk)] . (2.40)

The average probability of error is

P (e) = 1− P (c). (2.41)

When y ≪ 1 the average probability of error reduces to

P (e) ≈ 1.5y = 1.5 erfc

(√

d2

8σ2
w

)

(2.42)

which is identical to that obtained using the union bound in (2.34). In Figure 2.5
we have plotted the theoretical and simulated performance of 16-QAM. The
simulations were performed over 108 symbols.
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Figure 2.5: Theoretical and simulation results for 16-QAM and 16-PSK.

Example 2.1.2 Compute the average probability of symbol error for 16-PSK
using the union bound. Assume that the in-phase and quadrature components
of noise are statistically independent and all symbols equally likely. Using nu-
merical integration techniques plot the exact probability of error for 16-PSK.

Solution: In the 16-PSK constellation all symbols have two nearest neighbours.
Hence the average probability of error using the union bound is

P (e) ≤ 16× 2

16
× 1

2
erfc

(√

d2

8σ2
w

)

= erfc

(√

d2

8σ2
w

)

(2.43)

where d is the minimum distance between the symbols.
We now compute the exact expression for the probability of error assuming

an M -ary PSK constellation with radius R. Note that for M -ary PSK, the
minimum distance d between symbols is related to the radius R by

d = 2R sin(π/M). (2.44)

To evaluate the average probability of error, it is convenient to first compute
the average probability of correct decision. For convenience, let us assume that
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ã0 = R was transmitted. Then the received symbol can be denoted by

r̃ = rI + j rQ = R+ wI + jwQ = xe j θ (say) (2.45)

where we have suppressed the time index n for brevity and wI and wQ denote
samples of in-phase and quadrature components of AWGN. The probability of

C

A

B

ℜ

ℑ

ã0 = R

Figure 2.6: Decision region for ã0.

correct decision is the probability that r̃ lies in the triangular decision region
ABC, as illustrated in Figure 2.6. Since the decision region can be conveniently
represented in polar coordinates, the probability of correct decision given ã0 can
be written as

P (c|ã0) =
∫ π/M

θ=−π/M

∫ ∞

x=0

p(x, θ|ã0) dθ dx

=

∫ π/M

θ=−π/M

p(θ|ã0) dθ (2.46)

where p(x, θ|ã0) denotes the joint pdf of x and θ given ã0. It only remains to find
out the pdf p(x, θ|ã0). This can be done using the method of transformation of
random variables [22]. We have

p(x, θ|ã0) = p(rI , rQ|ã0)|rI=x cos(θ)
rQ=x sin(θ)

|J(x, θ)| (2.47)

where J(x, θ) is the Jacobian

J(x, θ) =

∣
∣
∣
∣
∣

∂rI
∂x

∂rQ
∂x

∂rI
∂θ

∂rQ
∂θ

∣
∣
∣
∣
∣
= x. (2.48)

Thus (2.47) becomes

p(x, θ|ã0) =
x

2πσ2
w

exp

(

−
(rI −R)2 + r2Q

2σ2
w

)∣
∣
∣
∣
∣rI=x cos(θ)
rQ=x sin(θ)

=
x

2πσ2
w

exp

(

−x2 +R2 − 2Rx cos(θ)

2σ2
w

)
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=
x

2πσ2
w

exp

(

− (x−R cos(θ))2 +R2 sin2(θ)

2σ2
w

)

(2.49)

where σ2
w is the variance of wI and wQ. Now

p(θ|ã0) =
∫ ∞

x=0

p(x, θ|ã0) dx. (2.50)

Let

R2

2σ2
w

= γ = SNRav

x−R cos(θ)

σw

√
2

= y

⇒ dx

σw

√
2
= dy. (2.51)

Therefore

p(θ|ã0) =
1

2πσ2
w

e−γ sin2(θ)

∫ ∞

y=−√
γ cos(θ)

(yσw

√
2 +R cos(θ))e−y2

σw

√
2 dy

=
1

π
e−γ sin2(θ)

∫ ∞

y=−√
γ cos(θ)

ye−y2

dy

+
R cos(θ)

σπ
√
2

e−γ sin2(θ)

∫ ∞

y=−√
γ cos(θ)

e−y2

dy

=
1

2π
e−γ + e−γ sin2(θ)

√
γ

π
cos(θ) [1− 0.5 erfc (

√
γ cos(θ))] . (2.52)

Thus P (c|ã0) can be found by substituting the above expression in (2.46). How-
ever (2.46) cannot be integrated in a closed form and we need to resort to
numerical integration as follows:

P (c|ã0) ≈
K∑

k=0

p(θ0 + k∆θ|ã0)∆θ (2.53)

where

θ0 = − π

M

∆θ =
2π

MK
. (2.54)

Note that K must be chosen large enough so that ∆θ is close to zero.
Due to symmetry of the decision regions

P (c|ã0) = P (c|ãi) (2.55)
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for any other symbol ãi in the constellation. Since all symbols are equally likely,
the average probability of correct decision is

P (c) =
1

M

M∑

i=1

P (c|ãi) = P (c|ã0). (2.56)

The average probability of error is

P (e) = 1− P (c). (2.57)

We have plotted the theoretical and simulated curves for 16-PSK in Figure 2.5.

Example 2.1.3 Let the received signal be given by

r̃ = S + ue j θ (2.58)

where S is drawn from a 16-QAM constellation with average power equal to 90,
u is a Rayleigh distributed random variable with pdf

p(u) =
u

3
e−u2/6 for u > 0 (2.59)

and θ is uniformly distributed in [0, 2π). It is given that u and θ are independent
of each other. All symbols in the constellation are equally likely.

1. Derive the ML rule for coherent detection and reduce it to the simplest
form.

2. Compute the average SNR per bit. Consider the signal power and noise
power in two dimensions.

3. Compute the average probability of symbol error using the union bound.

Solution: Let
a+ j b = u cos(θ) + ju sin(θ). (2.60)

We know that a and b are Gaussian random variables with mean

E[a] = E[u cos(θ)]

= E[u]E[cos(θ)]

= 0

= E[b] (2.61)

and variance

E[a2] = E[u2 cos2(θ)]

= E[u2]E[cos2(θ)]

= E[u2]E[sin2(θ)]

= E[b2]. (2.62)
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Now

E[u2] =

∫ ∞

u=0

u3

3
e−u2/6

= 6 (2.63)

and

E[cos2(θ)] = E

[
1 + cos(2θ)

2

]

= 1/2. (2.64)

Therefore
E[a2] = E[b2] = 3

∆
= σ2. (2.65)

Therefore the given problem reduces to ML detection in Gaussian noise and is
given by:

max
i

1

σ
√
2π

e−|r−S(i)|2/(2σ2) for 1 ≤ i ≤ 16 (2.66)

which simplifies to

min
i

|r − S(i)|2 for 1 ≤ i ≤ 16 (2.67)

where S(i) is a symbol in the 16-QAM constellation.
The average SNR per bit is (κ is defined in (2.32))

SNRav, b =
Pav

2σ2κ

=
90

2× 3× 4

= 15/4. (2.68)

If the co-ordinates of the 16-QAM constellation lie in the set {±a, ±3a} then

Pav =
1

16

[
4× 2a2 + 8× 10a2 + 4× 18a2

]

= 90

⇒ a = 3. (2.69)

Hence the minimum Euclidean distance between symbols in the constellation is

d = 2a = 6. (2.70)

Using (2.34) the average probability of symbol error is:

P (e) ≤ 1.5 erfc

(√

d2

8σ2

)

= 1.5 erfc
(√

1.5
)

. (2.71)
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p(w)

a

2a/3

w

−1 0 1 −2 −1 0 1 2

Figure 2.7: BPSK constellation and noise pdf.

Example 2.1.4 A BPSK constellation is corrupted by noise having pdf as given
in Figure 2.7. The received signal is given by

r = S(i) + w (2.72)

where S(i) ∈ {±1} for i = 1, 2.

1. Find a.

2. Find the average probability of error assuming that the two symbols are
equally likely.

3. Find the average probability of error assuming that P (−1) = 3/5 and
P (+1) = 2/5.

Solution: Since
∫ ∞

w=−∞
p(w) dw = 1

⇒ a = 3/10. (2.73)

To solve (b), we note that when both the symbols are equally likely (P (+1) =
P (−1) = 1/2), the ML detection rule in (2.12) needs to be used. The two
conditional pdfs are shown in Figure 2.8. By inspection, we find that

p(r|+ 1) > p(r| − 1) for r > 0

p(r| − 1) > p(r|+ 1) for r < 0. (2.74)

Therefore the detection rule is

Choose +1 if r > 0
Choose −1 if r < 0.

(2.75)

Hence

P (−1|+ 1) = P (−1 < r < 0|+ 1) = 2/10

P (+1| − 1) = P (0 < r < 1| − 1) = 2/10. (2.76)

Therefore, the average probability of error is

P (e) = P (−1|+ 1)P (+1) + P (+1| − 1)P (−1)
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−1 0 1 2 3

−2 0 1

p(r|+ 1)

3/10

2/10

r

r

2/10

3/10

p(r| − 1)

−3

−2

Figure 2.8: Application of the ML detection rule.

−3

−2

r

6/50

9/50

p(r| − 1)P (−1)

r

4/50

6/50

p(r|+ 1)P (+1)

−2 0 1

−1 0 1 2 3

Figure 2.9: Application of the MAP detection rule.
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= 2/10. (2.77)

In order to solve (c) consider Figure 2.9. Note that (2.11) needs to be used.
Again, by inspection we find that

p(r|+ 1)P (+1) > p(r| − 1)P (−1) for r > 1

p(r| − 1)P (−1) > p(r|+ 1)P (+1) for r < 0

p(r| − 1)P (−1) = p(r|+ 1)P (+1) for 0 < r < 1. (2.78)

Therefore the decision regions are

Choose +1 if r > 1
Choose −1 if r < 0
Choose −1 or +1 with equal probability if 0 < r < 1.

(2.79)

Hence

P (+1| − 1) =
1

2
P (0 < r < 1| − 1) = 2/20

P (−1|+ 1) =
1

2
P (0 < r < 1|+ 1) + P (−1 < r < 0|+ 1) = 7/20.

(2.80)

Finally, the average probability of error is

P (e) = P (−1|+ 1)P (+1) + P (+1| − 1)P (−1)

= 1/5. (2.81)

In the next section, we discuss how the average transmit power, Pav, can be
minimized for an M -ary constellation.

2.1.5 Constellations with Minimum Average Power

Consider an M -ary constellation with the ith symbol denoted by ãi. Let the
probability of ãi be Pi. The average power of this constellation is given by:

Pav =
M∑

i=1

|ãi|2 Pi. (2.82)

Consider now a translate of the original constellation, that is, all symbols in the
constellation are shifted by a complex constant c̃. Note that the probability of
symbol error remains unchanged due to the translation. The average power of
the modified constellation is given by:

P ′
av =

M∑

i=1

|ãi − c̃|2 Pi
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=
M∑

i=1

(ãi − c̃) (ã∗i − c̃∗)Pi. (2.83)

The statement of the problem is: Find out c̃ such that the average power is
minimized. The problem is solved by differentiating P ′

av with respect to c̃∗

(refer to Appendix A) and setting the result to zero. Thus we get:

M∑

i=1

(ãi − c̃) (−1)Pi = 0

⇒ c̃ =
M∑

i=1

ãiPi

⇒ c̃ = E [ãi] . (2.84)

The above result implies that to minimize the transmit power, the constellation
must be translated by an amount equal to the mean value of the constellation.
This further implies that a constellation with zero mean value has the minimum
transmit power.

In sections 2.1.1 and 2.1.3, we had derived the probability of error for a
two-dimensional constellation. In the next section, we derive the probability of
error for multidimensional orthogonal constellations.

2.1.6 Analysis for Non-Equiprobable Symbols

The earlier sections dealt with the situation where the symbols were equiproba-
ble, therefore the MAP detector reduces to the ML detector. Let us now consider
the case where the symbols are non-equiprobable, due to which the MAP de-
tector must be used. We refer back to Figure 2.1 with the additional constraint
that the probability of ãi is given by P (ai). Note that the probabilities of ã1
and ã2 need not add up to unity. In other words, ã1 and ã2 could be a part
of a larger constellation. Let us now compute the pairwise error probabilities
P (ã1|ã2) and P (ã2|ã1).

Using Bayes’ rule the MAP detector can be written as:

max
i

p(r̃n|ãi)P (ãi). (2.85)

Substituting for the conditional pdf in (2.85) we get

max
i

1

2πσ2
w

exp

(

−|r̃n − ãi|2
2σ2

w

)

P (ãi)

⇒max
i

exp

(

−|r̃n − ãi|2
2σ2

w

)

P (ãi). (2.86)

The MAP detector decides in favour of ã2 given that ã1 was transmitted when

exp

(

−|r̃n − ã1|2
2σ2

w

)

P (ã1) < exp

(

−|r̃n − ã2|2
2σ2

w

)

P (ã2)
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⇒ |r̃n − ã2|2 − |r̃n − ã1|2 < T (2.87)

where

T = 2σ2
w ln

(
P (ã2)

P (ã1)

)

. (2.88)

If ã1 was transmitted
r̃n = ã1 + w̃n. (2.89)

Substituting (2.89) in (2.87) we get:
∣
∣
∣d̃+ w̃n

∣
∣
∣

2

− |w̃n|2 < T

⇒ Z < T −
∣
∣
∣d̃
∣
∣
∣

2

(2.90)

where d̃ and Z are defined by (2.17) and (2.18) respectively. The mean and
variance of Z are given by (2.19). Assuming that

T −
∣
∣
∣d̃
∣
∣
∣

2

< 0 (2.91)

we get

P (ã2|ã1) = P

(

Z < T −
∣
∣
∣d̃
∣
∣
∣

2
)

=
1

2
erfc









√
√
√
√
√
√
√

(∣
∣
∣d̃
∣
∣
∣

2

− T

)2

8
∣
∣
∣d̃
∣
∣
∣

2

σ2
w









. (2.92)

Observe that

T −
∣
∣
∣d̃
∣
∣
∣

2

> 0

⇒ P (ã2|ã1) > 0.5 (2.93)

which does not make sense.
It can be similarly shown that when

T +
∣
∣
∣d̃
∣
∣
∣

2

> 0 (2.94)

we get the pairwise probability as

P (ã1|ã2) = P

(

Z > T +
∣
∣
∣d̃
∣
∣
∣

2
)

=
1

2
erfc









√
√
√
√
√
√
√

(∣
∣
∣d̃
∣
∣
∣

2

+ T

)2

8
∣
∣
∣d̃
∣
∣
∣

2

σ2
w









. (2.95)
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Again

T +
∣
∣
∣d̃
∣
∣
∣

2

< 0

⇒ P (ã1|ã2) > 0.5 (2.96)

which does not make sense. The average probability of error can be written as

P (e) =
M∑

i=1

P (e|ãi)P (ãi) (2.97)

where the probability of error given ãi is given by the union bound

P (e|ãi) ≤
∑

ãj∈Gi

P (ãj |ãi) (2.98)

where Gi denotes the set of symbols closest to ãi.

2.2 Coherent Detectors for Multi-D Orthogonal
Constellations

In this section, we deal with M -dimensional (vector) constellations. Note that

M = 2κ (2.99)

where κ denotes the number of bits per symbol. The ith symbol in an M -
dimensional orthogonal constellation is represented by an M × 1 vector

ãi =













0
0
...

ãi, i
...
0













for 1 ≤ i ≤ M . (2.100)

The following relationship holds:

ãHi ãj =

{
0 for i 6= j

|ãi, i|2 = C (a constant) for i = j.
(2.101)

The superscript H in the above equation denotes conjugate transpose.
The received vector can be represented as

r̃n = S(i)
n + w̃n (2.102)

where
S(i)
n = ãi (2.103)
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and

w̃n =






w̃n, 1

...
w̃n,M




 (2.104)

denotes the noise vector. The elements of w̃n are uncorrelated, that is

1

2
E
[
w̃n, iw̃

∗
n, j

]
=

{
σ2
w for i = j

0 otherwise.
(2.105)

Once again, the optimum (MAP) detector maximizes the probability:

max
i

P (ãi|r̃n) (2.106)

which reduces to the ML detector which maximizes the joint conditional pdf
(when all symbols are equally likely)

max
i

p(r̃n|ãi). (2.107)

Substituting the expression for the conditional pdf [23, 24] we get

max
i

1

(2π)M det(R̃w̃w̃)
exp

(

−1

2
(r̃n − ãi)

H
R̃−1

w̃w̃ (r̃n − ãi)

)

(2.108)

where R̃w̃w̃ denotes theM×M conditional covariance matrix (given that symbol
ãi was transmitted)

R̃w̃w̃
∆
=

1

2
E
[

(r̃n − ãi) (r̃n − ãi)
H
]

=
1

2
E
[
w̃nw̃

H
n

]

= σ2
wIM (2.109)

where IM is an M × M identity matrix. The maximization in (2.108) can be
simplified to:

max
i

1

(2πσ2
w)

M
exp

(

−
∑M

l=1 |r̃n, l − ãi, l|2
2σ2

w

)

(2.110)

where ãi, l denotes the lth element of symbol ãi.
Taking the natural logarithm of the above equation, and ignoring constants

we get:

min
i

M∑

l=1

|r̃n, l − ãi, l|2 . (2.111)

Observe that the above expression for the ML detector is valid irrespective of
whether the symbols are orthogonal to each other or not. We have not even
assumed that the symbols have constant energy. In fact, if we assume that the
symbols are orthogonal and have constant energy, the detection rule in (2.111)
reduces to:

max
i

ℜ
{
r̃n, iã

∗
i, i

}
. (2.112)
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If we further assume that all samples are real-valued and ãi, i is positive, then
the above detection rule becomes:

max
i

rn, i. (2.113)

In the next section, we present the performance analysis of multidimensional or-
thogonal signalling, where we explicitly assume that the symbols are orthogonal
and have constant energy.

2.2.1 Performance Analysis

Given that the ith symbol was transmitted, the ML detector decides in favour
of the jth (1 ≤ i, j ≤ M) symbol when

M∑

l=1

|r̃n, l − ãj, l|2 <
M∑

l=1

|r̃n, l − ãi, l|2

⇒
M∑

l=1

|ẽi, j, l + w̃n, l|2 <
M∑

l=1

|w̃n, l|2 (2.114)

where
ẽi, j, l = ãi, l − ãj, l (2.115)

is an element of the M × 1 vector

ẽi, j = ãi − ãj . (2.116)

The inequality in (2.114) can be simplified to (due to orthogonality between
symbols):

2C + 2ℜ
{
ã∗i, iw̃n, i − ã∗j, jw̃n, j

}
< 0 (2.117)

where C is defined in (2.101).
Let

Z = 2ℜ
{
ã∗i, iw̃n, i − ã∗j, jw̃n, j

}

= 2 (ai, i, Iwn, i, I + ai, i, Qwn, i, Q

− aj, j, Iwn, j, I − aj, j, Qwn, j, Q) . (2.118)

It is clear that Z is a real Gaussian random variable with mean and variance
given by

E[Z] = 0

E
[
Z2
]
= 8Cσ2

w. (2.119)

Thus the required probability of error is given by:

P (Z < −2C) =

∫ −2C

Z=−∞

1

σZ

√
2π

exp

(

− Z2

2σ2
Z

)
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=
1

2
erfc

(√

2C

8σ2
w

)

. (2.120)

Note that 2C is the squared Euclidean distance between symbols ãi and ãj ,
that is

ẽHi, j ẽi, j = 2C (2.121)

Thus, we once again conclude from (2.120) that the probability of error depends
on the squared distance between the two symbols and the noise variance. In
fact, (2.120) is exactly identical to (2.20).

We now compute the average probability of symbol error for M -ary multi-
dimensional orthogonal signalling. It is clear that each symbol has got M − 1
nearest neighbours at a squared distance equal to 2C. Hence, using (2.29) we
get

P (e) ≤ M − 1

2
erfc

(√

2C

8σ2
w

)

(2.122)

The performance of various multi-dimensional modulation schemes is shown

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

0 2 4 6 8 10 12 14

1, 2

3

4

Average SNR per bit (dB)
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2 - 2-D union bound
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Figure 2.10: Performance of coherent detectors for various multi-dimensional con-
stellations.

in Figure 2.10. When all the symbols are equally likely, the average transmit
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power is given by (2.101), that is

Pav =
1

M

M∑

i=1

ãHi ãi = C. (2.123)

The average SNR is defined as

SNRav =
Pav

2σ2
w

(2.124)

which is exactly identical to (2.31) for the two-dimensional case. The average
SNR per bit is also the same as that for the two-dimensional case, and is given by
(2.32). With the above definitions, we are now ready to compute the minimum
SNR per bit required to achieve arbitrarily low probability of error for M -ary
orthogonal signalling.

2.2.2 Union Bound on the Probability of Error

We begin by making use of the Chernoff bound (see Appendix B)

1

2
erfc (y) ≤ exp

(
−y2

)
. (2.125)

The average probability of error in (2.122) can now be approximated as

P (e) ≤ (M − 1) exp

(

− 2C

8σ2
w

)

< M exp

(

− 2C

8σ2
w

)

= 2κ exp

(

− 2C

8σ2
w

)

= exp

(

κ ln(2)− κ SNRav, b

2

)

. (2.126)

From the above equation, it is clear that as κ → ∞ (number of bits per symbol
tends to infinity), the average probability of symbol error goes to zero provided

ln(2) <
SNRav, b

2
⇒ SNRav, b > 2 ln(2)

⇒ SNRav, b (dB) > 10 log10(2 ln(2))

⇒ SNRav, b (dB) > 1.42 dB. (2.127)

Therefore (2.127) implies that as long as the SNR per bit is greater than 1.42
dB, the probability of error tends to zero as κ tends to infinity. However, this
bound on the SNR is not very tight. In the next section we derive a tighter
bound on the minimum SNR required for error-free signalling, as κ → ∞.
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2.2.3 Minimum SNR Required for Error-free Transmis-
sion

We begin this section by first deriving an exact expression for the probability of
correct decision, given that the ith symbol of the M -ary orthogonal constellation
has been transmitted. For ease of analysis, we consider only real-valued signals
in this section. Let the received signal be denoted by:

rn = S(i)
n +wn (2.128)

where

rn =






rn, 1
...

rn,M




 ; S(i)

n = ai =











0
...

ai, i
...
0











for 1 ≤ i ≤ M (2.129)

and

wn =






wn, 1

...
wn,M




 . (2.130)

Once again, we assume that the elements of wn are uncorrelated, that is

E [wn, iwn, j ] =

{
σ2
w for i = j

0 otherwise.
(2.131)

Comparing the above equation with (2.105), we notice that the factor of 1/2
has been eliminated. This is because, the elements of wn are real.

The exact expression for the probability of correct decision is given by:

P (c|ai) =
∫ ∞

rn, i=−∞
P ((wn, 1 < rn, i) AND . . . (wn, i−1 < rn, i) AND

(wn, i+1 < rn, i) AND . . . (wn,M < rn, i)| rn, i, ai, i)
× p(rn, i|ai, i) drn, i. (2.132)

For convenience, let

rn, i = y

ai, i = y0. (2.133)

We also observe that since the elements of wn are uncorrelated, the probability
inside the integral in (2.132) is just the product of the individual probabilities.
Hence using the notation in equation (2.133), (2.132) can be reduced to:

P (c|ai) =
∫ ∞

y=−∞
(P (wn, 1 < y| y, y0))M−1 p(y|y0) dy. (2.134)
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Solving the above equation, we get:

P (wn, 1 < y| y, y0) =
1

σw

√
2π

∫ y

wn, 1=−∞
exp

(

−
w2

n, 1

2σ2
w

)

dwn, 1

= 1− 1

2
erfc

(
y

σw

√
2

)

. (2.135)

Let us make the substitution:

z =
y

σw

√
2
. (2.136)

Hence (2.135) becomes:

P (wn, 1 < y| y, y0) = 1− 1

2
erfc (z) . (2.137)

From (2.136) it is clear that z is a real Gaussian random variable with conditional
mean and variance given by:

E[z|y0] = E

[
y

σw

√
2

]

= E

[
y0 + wn, i

σw

√
2

]

=
y0

σw

√
2

= mz (say)

E
[

(z −mz)
2 |y0

]

=
1

2
= σ2

z (say). (2.138)

Next, we observe that p(y|y0) in (2.134) is given by:

p(y|y0) =
1

σw

√
2π

exp

(

− (y − y0)2

2σ2
w

)

⇒ p(z|y0) =
1

σz

√
2π

exp

(

− (z −mz)
2

2σ2
z

)

. (2.139)

Now, substituting (2.136) and (2.139) in (2.134) we get:

P (c|ai) =
1

σz

√
2π

∫ ∞

z=−∞

(

1− 1

2
erfc (z)

)M−1

exp

(

− (z −mz)2

2σ2
z

)

dz.

(2.140)
The probability of error given that ai has been transmitted, is given by

P (e|ai) = 1− P (c|ai) =
1

σz

√
2π

∫ ∞

z=−∞

(

1−
(

1− 1

2
erfc (z)

)M−1
)
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× exp

(

− (z −mz)2

2σ2
z

)

dz. (2.141)

It is clear that the above integral cannot be solved in closed form, and some
approximations need to be made. We observe that:

lim
z→−∞

1−
(

1− 1

2
erfc (z)

)M−1

= 1

lim
z→∞

1−
(

1− 1

2
erfc (z)

)M−1

=
(M − 1)

2
erfc (z)

≤ (M − 1) exp
(
−z2

)

< M exp
(
−z2

)
. (2.142)

Notice that we have used the Chernoff bound in the second limit. It is clear from
the above equation that the term in the left-hand-side decreases monotonically
from 1 to 0 as z changes from −∞ to ∞. This is illustrated in Figure 2.11,
where the various functions plotted are:

f1(z) = 1

f2(z) = 1−
(

1− 1

2
erfc (z)

)M−1

f3(z) = M exp
(
−z2

)
. (2.143)

We will now make use of the first limit in (2.142) for the interval (−∞, z0] and
the second limit in (2.142) for the interval [z0, ∞), for some value of z0 that
needs to be optimized. Note that since

f1(z) > f2(z) for −∞ < z < ∞
f3(z) > f2(z) for z0 < z < ∞ (2.144)

P (e|ai) (computed using f2(z)) is less than the probability of error computed
using f1(z) and f3(z). Hence, the optimized value of z0 yields the minimum
value of the probability of error that is computed using f1(z) and f3(z). To find
out the optimum value of z0, we substitute f1(z) and f2(z) in (2.141) to obtain:

P (e|ai) <
1

σz

√
2π

∫ z0

z=−∞
exp

(

− (z −mz)2

2σ2
z

)

dz

+
M

σz

√
2π

∫ ∞

z=z0

exp
(
−z2

)
exp

(

− (z −mz)2

2σ2
z

)

dz. (2.145)

Next, we differentiate the above equation with respect to z0 and set the result
to zero. This results in:

1−M exp
(
−z20

)
= 0

⇒ z0 =
√

ln(M). (2.146)
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Figure 2.11: Plots of various functions described in (2.143) for M = 16.

We now proceed to solve (2.145). The first integral can be written as (for
z0 < mz):

1

σz

√
2π

∫ z0

z=−∞
exp

(

− (z −mz)2

2σ2
z

)

dz =
1√
π

∫ (z0−mz)/(σz

√
2)

x=−∞
exp

(
−x2

)
dx

=
1

2
erfc

(
mz − z0

σz

√
2

)

< exp

(

− (mz − z0)2

2σ2
z

)

= exp
(
−(mz − z0)

2
)

(2.147)

since 2σ2
z = 1. The second integral in (2.145) can be written as (again making

use of the fact that 2σ2
z = 1 or σz

√
2 = 1):

M

σz

√
2π

∫ ∞

z=z0

exp
(
−z2

)
exp

(

− (z −mz)2

2σ2
z

)

dz

=
M√
π
exp

(

−m2
z

2

)∫ ∞

z=z0

exp

(

−2
(

z − mz

2

)2
)

dz

=
M√
2π

exp

(

−m2
z

2

)∫ ∞

u=u0

exp
(
−u2

)
du

= I (say). (2.148)
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In the above equation, u0 is defined as:

u0
∆
=

√
2
(

z0 −
mz

2

)

. (2.149)

Now, the term I in (2.148) depends on whether u0 is positive or negative. When
u0 is positive (z0 > mz/2) we get:

I =
M√
2
exp

(
−m2

z/2
) 1

2
erfc (u0)

<
M√
2
exp

(
−m2

z/2
)
exp

(
−u2

0

)
. (2.150)

When u0 is negative (z0 < mz/2), we get:

I =
M√
2
exp

(
−m2

z/2
)
[

1− 1

2
erfc (−u0)

]

<
M√
2
exp

(
−m2

z/2
)
. (2.151)

Using (2.147), (2.150) and (2.151), the probability P (e|ai) can be written as:

P (e|ai) <
{

f1(z0) for mz/2 < z0 < mz

f2(z0) for z0 < mz/2.
(2.152)

where

f1(z0) = e−(mz−z0)
2

+
M√
2
e−(m2

z/2+2(z0−mz/2)
2)

f2(z0) = e−(mz−z0)
2

+
M√
2
e−m2

z/2. (2.153)

We now make use of the fact that M = 2κ and the relation in (2.146) to obtain:

M = ez
2
0 . (2.154)

We substitute the above relation in (2.152) to obtain:

P (e|ai) <







e−(mz−z0)
2
(

1 + 1√
2

)

for mz/2 < z0 < mz

e(z
2
0−m2

z/2)
√
2

(

1 +
√
2e−2(z0−mz/2)

2
)

for z0 < mz/2.

(2.155)

Next, we observe that:

SNRav =
Pav

2σ2
w

=
y20
2σ2

w
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= m2
z

SNRav, b =
m2

z

κ
z20 = κ ln(2). (2.156)

Substituting form2
z and z20 from the above equation in (2.155) we get formz/2 <

z0 < mz (which corresponds to the interval ln(2) < SNRav, b < 4 ln(2)):

P (e|ai) < e
−
(√

κSNRav, b−
√

κ ln(2)
)2
(

1 +
1√
2

)

. (2.157)

From the above equation, it is clear that if

SNRav, b > ln(2). (2.158)

the average probability of symbol error tends to zero as κ → ∞. This minimum
SNR per bit required for error-free transmission is called the Shannon limit.

For z0 < mz/2 (which corresponds to SNRav, b > 4 ln(2)), (2.155) becomes:

P (e|ai) <
e(κ ln(2)−κSNRav, b/2)

√
2

(

1 +
√
2e

−2
(√

κ ln(2)−
√

κSNRav, b/2
)2
)

. (2.159)

Thus, for SNRav, b > 4 ln(2), the bound on the SNR per bit for error free
transmission is:

SNRav, b > 2 ln(2) (2.160)

which is also the bound derived in the earlier section. It is easy to show that
when z0 > mz in (2.147) (which corresponds to SNRav, b < ln(2)), the average
probability of error tends to one as κ → ∞.

r1

r2

r2

r1S(i)

r1r2-plane

w1

w2

Figure 2.12: Block diagram of a communication system.

Example 2.2.1 Consider the communication system shown in Figure 2.12 [19].
For convenience of representation, the time index n has been dropped. The
symbols S(i), i = 1, 2, are taken from the constellation {±A}, and are equally
likely. The noise variables w1 and w2 are statistically independent with pdf

pw1(α) = pw2(α) =
1

4
e−|α|/2 for −∞ < α < ∞ (2.161)
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1. Derive the ML detection rule and reduce it to the simplest form.

2. Find the decision region for each of the symbols in the r1r2-plane.

Solution: Observe that all variables in this problem are real-valued, hence we
have not used the tilde. Though the constellation used in this example is BPSK,
we are dealing with a vector receiver, hence we need to use the concepts devel-
oped in section 2.2. Note that

r =

[
r1
r2

]

=

[
S(i) + w1

S(i) + w2

]

. (2.162)

Since w1 and w2 are independent of each other, the joint conditional pdf p(r|S(i))
is equal to the product of the marginal conditional pdfs p(r1|S(i)) and p(r2|S(i))
and is given by (see also (2.110))

p
(

r|S(i)
)

= p
(

r1, r2|S(i)
)

=
1

16
exp

(

−|r1 − S(i)|+ |r2 − S(i)|
2

)

. (2.163)

The ML detection rule is given by

max
i

p
(

r|S(i)
)

(2.164)

which simplifies to

min
i

|r1 − S(i)|+ |r2 − S(i)| for i = 1, 2. (2.165)

Therefore, the receiver decides in favour of +A if:

|r1 −A|+ |r2 −A| < |r1 +A|+ |r2 +A|. (2.166)

Note that if
|r1 −A|+ |r2 −A| = |r1 +A|+ |r2 +A|. (2.167)

then the receiver can decide in favour of either +A or −A.
In order to arrive at the decision regions for +A and −A, we note that both

r1 and r2 can be divided into three distinct intervals:

1. r1, r2 ≥ A

2. −A ≤ r1, r2 < A

3. r1, r2 < −A.

Since r1 and r2 are independent, there are nine possibilities. Let us study each
of these cases.

1. Let r1 ≥ A AND r2 ≥ A

This implies that the receiver decides in favour of +A if

r1 −A+ r2 −A < r1 +A+ r2 +A

⇒ −2A < 2A (2.168)

which is consistent. Hence r1 ≥ A AND r2 ≥ A corresponds to the
decision region for +A.
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2. Let r1 ≥ A AND −A ≤ r2 < A

This implies that the receiver decides in favour of +A if

r1 −A− r2 +A < r1 +A+ r2 +A

⇒ r2 > −A (2.169)

which is consistent. Hence r1 ≥ A AND −A ≤ r2 < A corresponds to the
decision region for +A.

3. Let r1 ≥ A AND r2 < −A

This implies that the receiver decides in favour of +A if

r1 −A− r2 +A < r1 +A− r2 −A

⇒ 0 < 0 (2.170)

which is inconsistent. Moreover, since LHS is equal to RHS, r1 ≥ A AND
r2 < −A corresponds to the decision region for both +A and −A.

4. Let −A ≤ r1 < A AND r2 ≥ A

This implies that the receiver decides in favour of +A if

−r1 +A+ r2 −A < r1 +A+ r2 + A

⇒ r1 > −A (2.171)

which is consistent. Therefore −A ≤ r1 < A AND r2 ≥ A corresponds to
the decision region for +A.

5. Let −A ≤ r1 < A AND −A ≤ r2 < A

This implies that the receiver decides in favour of +A if

−r1 +A− r2 +A < r1 +A+ r2 + A

⇒ r1 + r2 > 0 (2.172)

which is consistent. This decision region lies above the line r2 = −r1 in
Figure 2.13.

6. Let −A ≤ r1 < A AND r2 < −A

This implies that the receiver decides in favour of +A if

−r1 +A− r2 +A < r1 +A− r2 − A

⇒ r1 > A (2.173)

which is inconsistent. Therefore −A ≤ r1 < A AND r2 < −A corresponds
to the decision region for −A.
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r1

r2

r2 = −r1

Choose either +A or −A

A

A

−A
−A

Choose either +A or −A

Choose −A

Choose +A

Figure 2.13: Decision regions for Figure 2.12.

7. Let r1 < −A AND r2 ≥ A

This implies that the receiver decides in favour of +A if

−r1 +A+ r2 −A < −r1 −A+ r2 +A

⇒ 0 < 0 (2.174)

which is inconsistent. Moreover, since LHS is equal to RHS, r1 < −A
AND r2 ≥ A corresponds to the decision region for both +A and −A.

8. Let r1 < −A AND −A ≤ r2 < A

This implies that the receiver decides in favour of +A if

−r1 +A− r2 +A < −r1 −A+ r2 +A

⇒ r2 > A (2.175)

which is inconsistent. Hence r1 < −A AND −A ≤ r2 < A corresponds to
the decision region for −A.

9. Let r1 < −A AND r2 < −A

This implies that the receiver decides in favour of +A if

−r1 +A− r2 +A < −r1 −A− r2 −A

⇒ 2A < −2A (2.176)

which is inconsistent. Hence r1 < −A AND r2 < −A corresponds to the
decision region for −A.

The decision regions for +A and −A are summarized in Figure 2.13.

2.2.4 Binary Antipodal and Orthogonal Constellations

Let us now compare the transmit power for binary antipodal signalling with
binary orthogonal signalling, assuming that the minimum squared Euclidean
distance is the same in both cases, that is

∣
∣
∣d̃
∣
∣
∣

2

in equation (2.20) = 2C in equation (2.120). (2.177)
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In the case of M -ary orthogonal signalling the transmit power is a constant,
equal to C, independent of M . However, for binary antipodal signalling, the
transmit power is only





∣
∣
∣d̃
∣
∣
∣

2





2

=
C

2
. (2.178)

Thus, binary antipodal signalling (BPSK) is 3 dB more efficient than binary or-
thogonal signalling (binary FSK), for the same average error-rate performance.

2.3 Bi-Orthogonal Constellations

The ith+ symbol in an M -dimensional bi-orthogonal constellation is represented
by

ãi+ =













0
0
...

+ãi, i
...
0













for 1 ≤ i ≤ M (2.179)

and the ith− symbol is denoted by:

ãi
−

=













0
0
...

−ãi, i
...
0













for 1 ≤ i ≤ M. (2.180)

Observe that 2M distinct symbols can be represented by an M -dimensional
bi-orthogonal constellation, as opposed to only M distinct symbols in an M -
dimensional orthogonal constellation.

The squared minimum distance between symbols is given by:

ẽHi+, j+ ẽi+, j+ = 2C (2.181)

where

ẽi+, j+ = ãi+ − ãj+ . (2.182)

Thus the squared minimum distance is identical to that of the orthogonal con-
stellation. However, the number of nearest neighbours is double that of the
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orthogonal constellation and is equal to 2(M − 1). Hence the approximate ex-
pression for the average probability of error for the bi-orthogonal constellation
is given by:

P (e) ≤ (M − 1) erfc

(√

2C

8σ2
w

)

. (2.183)

Note also that the average power of the bi-orthogonal constellation is identical
to the orthogonal constellation.

2.4 Simplex Constellations

Consider an M -dimensional orthogonal constellation whose ith symbol is given
by (2.100). The mean of the symbols is given by:

m̃ =
1

M

M∑

i=1

ãi

=
C̃

M








1
1
...
1








(2.184)

where C̃ = ãi, i, for 1 ≤ i ≤ M , is a complex constant. Note that |C̃|2 = C,

where C is defined in (2.101). Define a new symbol set b̃i such that:

b̃i = ãi − m̃. (2.185)

The new constellation obtained is called simplex constellation. It is clear that
the squared minimum distance between the new set of symbols is identical to
that of the orthogonal signal set, since

(

b̃i − b̃j

)H (

b̃i − b̃j

)

= (ãi − ãj)
H (ãi − ãj)

= 2C. (2.186)

Hence the average probability of error is again given by (2.122). The average
power is given by:

1

M

M∑

i=1

b̃H
i b̃i = C − C

M
(2.187)

which is less than the orthogonal signal set.

2.5 Noncoherent Detectors for Multi-D Orthog-
onal Constellations

Noncoherent detectors do not require or do not make use of any phase informa-
tion contained in the received signal. This section is devoted to the study of
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optimum noncoherent detectors for multidimensional orthogonal constellations.
The received signal can be written as:

r̃n = S(i)
n e j θ + w̃n for 1 ≤ i ≤ M (2.188)

where θ is a uniformly distributed random variable in the interval [0, 2π), and
the remaining terms are defined in (2.102). The receiver is assumed to have no
knowledge about θ. The MAP detector once again maximizes the probability:

max
i

P (ãi|r̃n) for 1 ≤ i ≤ M (2.189)

which reduces to the ML detector:

max
i

p(r̃n|ãi)

⇒max
i

∫ 2π

θ=0

p(r̃n|ãi, θ) p(θ) dθ

⇒max
i

1

(2π)M det(R̃w̃w̃)

×
∫ 2π

θ=0

exp

(

−1

2

(
r̃n − ãi e

j θ
)H

R̃−1
w̃w̃

(
r̃n − ãi e

j θ
)
)

1

2π
dθ (2.190)

where we have used the fact that

p(θ) =
1

2π
for 0 ≤ θ < 2π (2.191)

and R̃w̃w̃ is the M ×M conditional covariance matrix:

R̃w̃w̃
∆
=

1

2
E
[(
r̃n − ãi e

j θ
) (

r̃n − ãi e
j θ
)H
]

=
1

2
E
[
w̃nw̃

H
n

]

= σ2
wIM (2.192)

Ignoring terms that are independent of i and θ in (2.190) we get:

max
i

1

2π

∫ 2π

θ=0

exp

(

−
∑M

l=1

∣
∣r̃n, l − ãi, l e j θ

∣
∣
2

2σ2
w

)

dθ. (2.193)

We note that
∑

l |r̃n, l|2 and
∑

l |ãi, l exp(jθ)|2 are independent of i and θ and
hence they can be ignored. The maximization in (2.193) can now be written
as [25]:

max
i

1

2π

∫ 2π

θ=0

exp





∑M
l=1 2ℜ

{

r̃n, lã∗i, l e
− j θ

}

2σ2
w



 dθ

⇒max
i

1

2π

∫ 2π

θ=0

exp




ℜ
{

e−j θ
∑M

l=1 2r̃n, lã
∗
i, l

}

2σ2
w



 dθ
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⇒max
i

1

2π

∫ 2π

θ=0

exp

(

ℜ
{
e−j θAie jφi

}

2σ2
w

)

dθ

⇒max
i

1

2π

∫ 2π

θ=0

exp

(
Ai cos(φi − θ)

2σ2
w

)

dθ

⇒max
i

I0

(
Ai

2σ2
w

)

(2.194)

where

Aie
jφi =

M∑

l=1

2r̃n, lã
∗
i, l (2.195)

and I0(·) is the modified Bessel function of the zeroth-order. Noting that I0(x)
is a monotonically increasing function of x, the maximization in (2.194) can be
written as

max
i

Ai

2σ2
w

⇒max
i

Ai

⇒max
i

∣
∣
∣
∣
∣

M∑

l=1

r̃n, lã
∗
i, l

∣
∣
∣
∣
∣

⇒max
i

∣
∣
∣
∣
∣

M∑

l=1

r̃n, lã
∗
i, l

∣
∣
∣
∣
∣

2

(2.196)

which is the required expression for a noncoherent ML detector.
Observe that in the above derivation, we have not made any assumption

about the orthogonality of the symbols. We have only assumed that all symbols
have equal energy, that is

M∑

l=1

|ãi, l|2 = C (a constant independent of i). (2.197)

Moreover, the detection rule is again in terms of the received signal r̃n, and we
need to substitute for r̃n when doing the performance analysis, as illustrated in
the next subsection.

2.5.1 Performance Analysis

Here we assume that the symbols are orthogonal. Given that the ith symbol
has been transmitted, the ML detector decides in favour of symbol j when

∣
∣
∣
∣
∣

M∑

l=1

r̃n, lã
∗
j, l

∣
∣
∣
∣
∣

2

>

∣
∣
∣
∣
∣

M∑

l=1

r̃n, lã
∗
i, l

∣
∣
∣
∣
∣

2

. (2.198)
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Making use of the orthogonality between the symbols and the fact that ãi, l = 0
for i 6= l, the above expression simplifies to:

∣
∣w̃n, j ã

∗
j, j

∣
∣
2
>
∣
∣Ce j θ + w̃n, iã

∗
i, i

∣
∣
2

⇒C |w̃n, j |2 > C2 + C |w̃n, i|2 + 2Cℜ
{
w̃n, iã

∗
i, ie

−j θ
}

⇒|w̃n, j |2 > C + |w̃n, i|2 + 2ℜ
{
w̃n, iã

∗
i, ie

−j θ
}
. (2.199)

Let

u+ j v = w̃n, ie
−j θ

= (wn, i, I cos(θ) + wn, i, Q sin(θ))

+ j (wn, i,Q cos(θ)− wn, i, I sin(θ)) . (2.200)

Since θ is uniformly distributed in [0, 2π), both u and v are Gaussian random
variables. If we further assume that θ is independent of w̃n, i then we have:

E [u] = 0

= E [v]

E
[
u2
]
= σ2

w

= E
[
v2
]

E [uv] = 0 (2.201)

where we have used the fact that wn, i, I and wn, i,Q are statistically independent.
Thus we observe that u and v are uncorrelated and being Gaussian, they are
also statistically independent. Note also that:

|w̃n, i|2 =
∣
∣w̃n, ie

−j θ
∣
∣
2
= u2 + v2. (2.202)

Let

Z = |w̃n, j |2

Y = C + u2 + v2 + 2ℜ
{
(u+ j v)ã∗i, i

}

= f(u, v) (say). (2.203)

It is clear that Z is a Chi-square distributed random variable with two degrees
of freedom and pdf given by [3]:

p(Z) =
1

2σ2
w

exp

(

− Z

2σ2
w

)

for Z > 0. (2.204)

Now, the probability of detecting ãj instead of ãi is given by (using the fact
that u and v are statistically independent):

P (ãj |ãi) =
∫ ∞

Y=0

P (Z > Y |Y )p(Y ) dY
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=

∫ ∞

u=−∞

∫ ∞

v=−∞
P (Z > f(u, v)|u, v)p(u)p(v) du dv. (2.205)

First, we evaluate P (Z > Y |Y ):

P (Z > Y |Y ) =
1

2σ2
w

∫ ∞

Z=Y

exp

(

− Z

2σ2
w

)

dZ

= exp

(

− Y

2σ2
w

)

= exp

(

−C + u2 + v2 + 2(uai, i, I + vai, i, Q)

2σ2
w

)

. (2.206)

Substituting the above probability into (2.205) we get:

P (ãj |ãi) =
∫ ∞

u=−∞

∫ ∞

v=−∞
exp

(

−C + u2 + v2 + 2(uai, i, I + vai, i, Q)

2σ2
w

)

× p(u)p(v) du dv. (2.207)

Since u and v are Gaussian random variables with zero-mean and variance σ2
w,

the above pairwise probability of error reduces to:

P (ãj |ãi) = exp

(

− C

2σ2
w

)
1

2
exp

(
C

4σ2
w

)

=
1

2
exp

(

− C

4σ2
w

)

. (2.208)

Using the union bound argument, the average probability of error is upper
bounded by:

P (e|ãi) ≤
M − 1

2
exp

(

− C

4σ2
w

)

(2.209)

which is less than the union bound obtained for coherent detection (see (2.126))!
However, the union bound obtained above is not very tight. In the next section
we will obtain the exact expression for the probability of error.

2.5.2 Exact Expression for Probability of Error

Consider equation (2.203). Let

Zj = |w̃n, j |2 for 1 ≤ j ≤ M , j 6= i. (2.210)

Then, using the fact that the noise terms are uncorrelated and hence also statis-
tically independent, the exact expression for the probability of correct decision
is given by

P (c|ãi) =
∫ ∞

Y =0

P ((Z1 < Y ) AND . . . (Zi−1 < Y ) AND (Zi+1 < Y )
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AND . . . (ZM < Y )|Y ) p(Y ) dY

=

∫ ∞

Y=0

(P (Z1 < Y |Y ))M−1 p(Y ) dY

=

∫ ∞

u=−∞

∫ ∞

v=−∞
(P (Z1 < f(u, v)|u, v))M−1 p(u)p(v) du dv (2.211)

where the terms Y , u and v are defined in (2.203). Now

P (Z < Y |Y ) =
1

2σ2
w

∫ Y

Z=0

exp

(

− Z

2σ2
w

)

dZ

= 1− exp

(

− Y

2σ2
w

)

= 1− exp

(

−f(u, v)

2σ2
w

)

. (2.212)

Substituting the above expression in (2.211) we get:

P (c|ãi) =
∫ ∞

u=−∞

∫ ∞

v=−∞

(

1− exp

(

−f(u, v)

2σ2
w

))M−1

p(u)p(v) du dv

=

∫ ∞

u=−∞

∫ ∞

v=−∞

(
M−1∑

l=0

(−1)l
(
M − 1

l

)

exp

(

−f(u, v)l

2σ2
w

))

× p(u)p(v) du dv

=
M−1∑

l=0

(−1)l
(
M − 1

l

)∫ ∞

u=−∞

∫ ∞

v=−∞
exp

(

−f(u, v)l

2σ2
w

)

× p(u)p(v) du dv. (2.213)

Once again, we note that u and v are Gaussian random variables with zero-mean
and variance σ2

w . Substituting the expression for p(u), p(v) and Y in the above
equation we get:

P (c|ãi) =
M−1∑

l=0

(−1)l
(
M − 1

l

)
1

l + 1
exp

(

− lC

2(l+ 1)σ2
w

)

. (2.214)

The probability of error given that ãi is transmitted, is given by:

P (e|ãi) = 1− P (c|ãi)

=
M−1∑

l=1

(−1)l+1

(
M − 1

l

)
1

l + 1
exp

(

− lC

2(l+ 1)σ2
w

)

. (2.215)

The performance of noncoherent detectors for 2-D and 16-D constellations is
depicted in Figure 2.14. For the sake of comparison, the performance of the
corresponding coherent detectors is also shown.
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Figure 2.14: Performance of noncoherent detectors for various multi-dimensional
constellations.
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2.6 Noncoherent Detectors for M-ary PSK

In this section, we derive the detection rule and the performance of noncoherent
(also called differentially coherent or differential) detectors for M -ary PSK in
AWGN channels. Noncoherent detectors for multilevel signals in fading channel
is addressed in [26–29]. Differentially coherent receivers is discussed in [25, 30].
The bit-error-rate performance of differentially coherent feedback detectors is
given in [31]. Viterbi decoding (see 3.3.1) of differentially encoded BPSK is given
in [32,33]. In [34] differential detection of 16-DAPSK (differential amplitude and
phase shift keyed) signals is described. Noncoherent detectors for (error control)
coded signals is presented in [35]. Various maximum likelihood receivers for M -
ary differential phase shift keyed (DPSK) signals is discussed in [36–41]. A
differential detector for M -ary DPSK using linear prediction (see Appendix J)
is discussed in [42]. Differential encoding is required for the linear prediction-
based detection of orthogonal frequency division multiplexed (OFDM) signals
transmitted through frequency selective channels [43].

Let the received signal be denoted by:

r̃ = S(i)e j θ + w̃ (2.216)

where

r̃ =






r̃1
...
r̃N




 ; S(i) = ãi =






ãi, 1
...

ãi, N




 for 1 ≤ i ≤ MN (2.217)

and the noise vector is:

w̃ =






w̃1

...
w̃N




 . (2.218)

In the above equations, r̃k denotes the received sample at time k and w̃k denotes
the AWGN sample at time k, and ãi, k denotes a symbol in an M -ary PSK
constellation, occurring at time k, for 1 ≤ k ≤ N . In other words:

ãi, k =
√
Ce jφi, k . (2.219)

The subscript i in ãi, k denotes the ith possible sequence, for 1 ≤ i ≤ MN . The
statement of the problem is: to optimally detect the vector S(i) (which is a
sequence of symbols) when θ is unknown.

Since
N∑

k=1

|ãi, k|2 = NC (a constant independent of i) (2.220)

the rule for the ML noncoherent detector is identical to (2.196), which is re-
peated here for convenience:

max
i

∣
∣
∣
∣
∣

N∑

k=1

r̃kã
∗
i, k

∣
∣
∣
∣
∣

2

. (2.221)



K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in 51

The case when N = 2 is of particular interest, and will be investigated here.
The above maximization reduces to:

max
i

∣
∣r̃1ã

∗
i, 1 + r̃2ã

∗
i, 2

∣
∣
2

⇒max
i

ℜ
{
r̃∗1 r̃2ãi, 1ã

∗
i, 2

}
for 1 ≤ i ≤ M2 (2.222)

where we have made use of the fact that |ãi, k|2 = C is a constant independent
of i and k. An important point to note in the above equation is that, out of
the M2 possible products ãi, 1ã∗i, 2, only M are distinct. Hence ãi, 1ã∗i, 2 can be

replaced by Ce−jφl , where

φl =
2πl

M
for 1 ≤ l ≤ M. (2.223)

With this simplification, the maximization rule in (2.222) can be written as

max
l

ℜ
{
r̃∗1 r̃2Ce−jφl

}
for 1 ≤ l ≤ M

⇒max
l

ℜ
{
r̃∗1 r̃2e

−jφl
}

for 1 ≤ l ≤ M. (2.224)

The maximization rule in the above equation corresponds to that of a differen-

0

Phase change
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π1

Differential binary PSK

Dibit
Phase change

(radians)

00

01

11

10 3π/2

π

π/2

Differential 4-ary PSK

0

Bit

Figure 2.15: Mapping of symbols to phase differences for M = 2 and M = 4.

tial detector for M -ary PSK. It is clear that information needs to be transmitted
in the form of phase difference between successive symbols for the detection rule
in (2.224) to be valid. Observe that for M -ary PSK, there are M possible phase
differences. The mapping of symbols to phase differences is illustrated in Fig-
ure 2.15 for M = 2 and M = 4. We now evaluate the performance of the
differential detector for M -ary PSK.

2.6.1 Approximate Performance Analysis

Let the pair of received points be denoted by:

r̃1 =
√
C e j θ + w̃1
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r̃2 =
√
C e j (θ+φi) + w̃2 (2.225)

where φi is given by (2.223) and denotes the transmitted phase change between
consecutive symbols. As before, we assume that θ is uniformly distributed
in [0, 2π) and is independent of the noise and signal terms. The differential
detector makes an error when it decides in favour of a phase change φj such
that:

ℜ
{
r̃∗1 r̃2e

−jφj
}
> ℜ

{
r̃∗1 r̃2e

−jφi
}

for j 6= i.

⇒ℜ
{
r̃∗1 r̃2

(
e−jφi − e−jφj

)}
< 0

⇒ℜ
{
r̃∗1 r̃2e

−jφi
(
1− e j δi, j

)}
< 0 (2.226)

where
δi, j = φi − φj . (2.227)

Observe that for high SNR

r̃∗1 r̃2e
−jφi = C +

√
C w̃2e

−j (θ+φi) +
√
C w̃∗

1e
j θ + w̃∗

1w̃2e
−jφi

≈ C +
√
C w̃2e

−j (θ+φi) +
√
C w̃∗

1e
j θ. (2.228)

Let

1− e j δi, j = (1− cos(δi, j))− j sin(δi, j)

= Be jα (say). (2.229)

Making use of (2.228) and (2.229) the differential detector decides in favour of
φj when:

ℜ
{(

C +
√
C w̃2e

−j (θ+φi) +
√
C w̃∗

1e
j θ
)

Be jα
}

< 0

⇒ℜ
{(√

C + w̃2e
−j (θ+φi) + w̃∗

1e
j θ
)

e jα
}

< 0

⇒
√
C cos(α) + w2, I cos(θ1)− w2, Q sin(θ1)

+ w1, I cos(θ2) + w1, Q sin(θ2) < 0 (2.230)

where

θ1 = α− θ − φi

θ2 = α+ θ. (2.231)

Let

Z = w2, I cos(θ1)− w2, Q sin(θ1) + w1, I cos(θ2) + w1, Q sin(θ2). (2.232)

Now Z is a Gaussian random variable with mean and variance given by:

E[Z] = 0
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E
[
Z2
]
= 2σ2

w. (2.233)

The probability that the detector decides in favour of φj given that φi is trans-
mitted is given by:

P (φj |φi) = P (Z < −
√
C cos(α))

=
1

2
erfc

(√

C cos2(α)

4σ2
w

)

. (2.234)

Now, the squared distance between the two points in a PSK constellation cor-
responding to φi and φj with radius

√
C is given by:

d2i, j = C (cos(φj)− cos(φj + δi, j))
2 + C (sin(φj)− sin(φj + δi, j))

2

= 2C (1− cos(δi, j)) . (2.235)

This is illustrated in Figure 2.16. From (2.229) we have:

ℜ
φj

δi, j

di, j

ℑ

√
C

Figure 2.16: Illustrating the distance between two points in a PSK constellation.

B2 = (1− cos(δi, j))
2 + sin2(δi, j)

= 2(1− cos(δi, j))

= d2i, j/C. (2.236)

Hence

cos(α) =
1− cos(δi, j)

B

=
B

2
. (2.237)

Hence the probability of deciding in favour of φj is given by:

P (φj |φi) =
1

2
erfc





√

d2i, j
16σ2

w



 . (2.238)

Comparing with the probability of error for coherent detection given by (2.20)
we find that the differential detector for M -ary PSK is 3 dB worse than a
coherent detector for M -ary PSK.
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2.7 Coherent Detectors in Coloured Noise

The reader is advised to go through Chapter 3 and Appendix J before reading
this section. So far we have dealt with both coherent as well as noncoherent
detection in the presence of AWGN. In this section, we discuss coherent detec-
tion in the presence of additive coloured (or correlated) Gaussian noise (ACGN)
[44, 45]. The noise is assumed to be wide sense stationary (WSS).

Assume that L symbols have been transmitted. The symbols are taken from
an M -ary two-dimensional constellation. The received signal can be written as:

r̃ = S(i) + w̃ (2.239)

where r̃ is an L×1 column vector of the received samples, S(i) is an L×1 vector
of the ith possible symbol sequence (1 ≤ i ≤ ML) and w̃ is an L × 1 column
vector of correlated Gaussian noise samples. Note that

r̃ =
[
r̃0 . . . r̃L−1

]T

S(i) =
[

S
(i)
0 . . . S

(i)
L−1

]T

w̃ =
[
w̃0 . . . w̃L−1

]T
. (2.240)

Assuming that all symbol sequences are equally likely, the maximum likelihood
(ML) detector maximizes the joint conditional pdf:

max
j

p
(

r̃|S(j)
)

for 1 ≤ j ≤ ML (2.241)

which is equivalent to:

max
j

1

(2π)L det
(

R̃
) exp

(

−1

2

(

r̃− S(j)
)H

R̃−1
(

r̃− S(j)
))

(2.242)

where the covariance matrix, conditioned on the jth possible symbol sequence,
is given by

R̃
∆
=

1

2
E

[(

r̃− S(j)
)(

r̃− S(j)
)H ∣
∣
∣S(j)

]

=
1

2
E
[
w̃w̃H

]
. (2.243)

Since R̃ is not a diagonal matrix, the maximization in (2.242) cannot be im-
plemented recursively using the Viterbi algorithm. However, if we perform a
Cholesky decomposition (see Appendix J) on R̃, we get:

R̃−1 = ÃHD−1Ã (2.244)
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where Ã is an L× L lower triangular matrix given by:

Ã
∆
=








1 0 . . . 0
ã1, 1 1 . . . 0
...

...
...

...
ãL−1, L−1 ãL−1, L−2 . . . 1








(2.245)

where ãk, p denotes the pth coefficient of the optimal kth-order forward prediction
filter. The L×L matrix D is a diagonal matrix of the prediction error variance
denoted by:

D
∆
=






σ2
e, 0 . . . 0

...
... 0

0 . . . σ2
e, L−1




 . (2.246)

Observe that σ2
e, j denotes the prediction error variance for the optimal jth-order

predictor (1 ≤ j ≤ L). Substituting (2.244) into (2.242) and noting that det R̃
is independent of the symbol sequence j, we get:

min
j

(

r̃− S(j)
)H

ÃHD−1Ã
(

r̃− S(j)
)

. (2.247)

which is equivalent to:

min
j

ηj =
L−1∑

k=0

∣
∣
∣z̃

(j)
k

∣
∣
∣

2

σ2
e, k

(2.248)

where the prediction error at time k for the jth symbol sequence, z̃
(j)
k , is an

element of z̃(j) and is given by:









z̃
(j)
0

z̃
(j)
1
...

z̃
(j)
L−1









∆
= z̃(j) = Ã

(

r̃− S(j)
)

. (2.249)

Note that the prediction error variance is given by:

σ2
e, k

∆
=

1

2
E
[

z̃
(j)
k

(

z̃
(j)
k

)∗]
. (2.250)

When w̃ consists of samples from a P th-order autoregressive (AR) process, then
a P th-order prediction filter is sufficient to completely decorrelate the elements
of w̃. In this situation, assuming that the first P symbols constitute a known
training sequence, (2.248) can be written as:

min
j

ηj =
L−1∑

k=P

∣
∣
∣z̃

(j)
k

∣
∣
∣

2

(2.251)
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where we have ignored the first P prediction error terms, and also ignored
σ2
e, k since it is constant (= σ2

e, P ) for k ≥ P . Equation (2.251) can now be
implemented recursively using the Viterbi algorithm (VA). Refer to Chapter 3
for a discussion on the VA. Since the VA incorporates a prediction filter, we
refer to it as the predictive VA [44,45].

For uncoded M -ary signalling, the trellis would have MP states, where P is
the order of the prediction filter required to decorrelate the noise. The trellis
diagram is illustrated in Figure 2.17(a) for the case when the prediction filter
order is one (P = 1) and uncoded QPSK (M = 4) signalling is used. The top-

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

(a)

z̃
(S0, 0)
k+1

z̃
(S3, 3)
kTime

ℑ

ℜ

1 0

(k + 2)T(k + 1)TkT

z̃
(S0, 0)
k

(b)

3 2

S0

S1

S2

S3

Figure 2.17: (a) Trellis diagram for the predictive VA when P = 1 and M = 4. (b)
Labelling of the symbols in the QPSK constellation.

most transition from each of the states is due to symbol 0 and bottom transition
is due to symbol 3. The jth trellis state is represented by an M -ary P -tuple as
given below:

Sj : {Sj, 1 . . . Sj, P } for 0 ≤ j ≤ MP − 1 (2.252)

where the digits
Sj, k ∈ {0, . . . , M − 1} . (2.253)

There is a one-to-one mapping between the digits and the symbols of the M -
ary constellation. Let us denote the mapping by M (·). For example in Fig-
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ure 2.17(b)
M (0) = 1 + j. (2.254)

Given the present state Sj and input l (l ∈ {0, . . . , M − 1}), the next state Si

is given by:
Si : {lSj, 1 . . . Sj, P−1} . (2.255)

The branch metric at time k, from state Sj due to input symbol l (0 ≤ l ≤
M − 1) is given by:

∣
∣
∣z̃

(Sj, l)
k

∣
∣
∣

2

=

∣
∣
∣
∣
∣
(r̃k − M (l)) +

P∑

n=1

ãP, n (r̃k−n − M (Sj, n))

∣
∣
∣
∣
∣

2

(2.256)

where ãP, n denotes the nth predictor coefficient of the optimal P th-order predic-
tor. Since the prediction filter is used in the metric computation, this is referred
to as the predictive VA. A detector similar to the predictive VA has also been
derived in [46–48], in the context of magnetic recording.

Note that when noise is white (elements of w̃ are uncorrelated), then (2.241)
reduces to:

max
j

1

(2πσ2
w)

L
exp

(

− 1

2σ2
w

L−1∑

k=0

∣
∣
∣r̃k − S

(j)
k

∣
∣
∣

2
)

for 1 ≤ j ≤ ML (2.257)

where r̃k and S
(j)
k are elements of r̃ and S(j) respectively. Taking the natural

logarithm of the above equation and ignoring constants we get:

min
j

L−1∑

k=0

∣
∣
∣r̃k − S

(j)
k

∣
∣
∣

2

for 1 ≤ j ≤ ML. (2.258)

When the symbols are uncoded, then all the ML symbol sequences are valid
and the sequence detection in (2.258) reduces to symbol-by-symbol detection

min
j

∣
∣
∣r̃k − S

(j)
k

∣
∣
∣

2

for 1 ≤ j ≤ M (2.259)

where M denotes the size of the constellation. The above detection rule implies
that each symbol can be detected independently of the other symbols. How-
ever when the symbols are coded, as in Trellis Coded Modulation (TCM) (see
Chapter 3), all symbol sequences are not valid and the detection rule in (2.258)
must be implemented using the VA.

2.7.1 Performance Analysis

In this section, we consider the probability of symbol error for uncoded signalling
for the case of the predictive VA as well as the conventional symbol-by-symbol
detection in ACGN.
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Predictive VA

At high SNR the probability of symbol error is governed by the probability of
the minimum distance error event [3]. We assume M -ary signalling and that
a P th-order prediction filter is required to completely decorrelate the noise.
Consider a transmitted symbol sequence i:

S(i) = {. . . , S(i)
k , Sk+1, Sk+2, . . .}. (2.260)

Typically, a minimum distance error event is generated by a sequence j

S(j) = {. . . , S(j)
k , Sk+1, Sk+2, . . .} (2.261)

where S
(j)
k is the symbol closest to S

(i)
k in the M -ary constellation. Observe

that the sequence in (2.261) is different from (2.260) only at time instant k.

The notation we have used here is as follows: the superscript i in S
(i)
k denotes

the ith symbol in the M -ary constellation (0 ≤ i ≤ M − 1), occurring at time k.
The superscript i in S(i) denotes the ith sequence. The two minimum distance
error events are denoted by a dashed line in Figure 2.17. The transmitted (or
reference) sequence is denoted by a dot-dashed line in the same figure.

For the correct sequence the prediction error at time k + n is given by
(0 ≤ n ≤ P ):

z̃k+n =
P∑

m=0

ãP,m w̃k+n−m. (2.262)

For the erroneous sequence we have the prediction error at time k + n as (0 ≤
n ≤ P ):

z̃e, k+n =
P∑

m=0,m 6=n

ãP,m w̃k+n−m + ãP, n

(

S
(i)
k − S

(j)
k + w̃k

)

= z̃k+n + ãP, n

(

S
(i)
k − S

(j)
k

)

. (2.263)

Hence, the probability of an error event, which is the probability of the re-
ceiver deciding in favour of the jth sequence, given that the ith sequence was
transmitted, is given by:

P (j|i) = P

(
P∑

m=0

|z̃k+m|2 >
P∑

m=0

|z̃e, k+m|2
)

= P

(
P∑

m=0

[

|g̃k+m|2 + 2ℜ
{
g̃k+m z̃∗k+m

}]

< 0

)

(2.264)

where for the sake of brevity we have used the notation j|i instead of S(j)|S(i),
P (·) denotes probability and

g̃k+m
∆
= ãP,m

(

S
(i)
k − S

(j)
k

)

. (2.265)
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Let us define:

Z
∆
= 2

P∑

m=0

ℜ
{
g̃k+m z̃∗k+m

}
. (2.266)

Observe that the noise terms z̃k+m are uncorrelated with zero mean and variance
σ2
e, P . It is clear that Z is a real Gaussian random variable obtained at the output

of a filter with coefficients g̃k+m. Hence, the mean and variance of Z is given
by:

E[Z] = 0

E[Z2] = 4d2min, 1 σ
2
e, P (2.267)

where

d2min, 1
∆
=

P∑

m=0

|g̃k+m|2 . (2.268)

The probability of error event in (2.264) can now be written as:

P (j|i) = P
(
Z < −d2min, 1

)

=
1

2
erfc

(√

d4min, 1

8d2min, 1σ
2
e, P

)

=
1

2
erfc

(√

d2min, 1

8σ2
e, P

)

. (2.269)

When there are M1, i sequences that are at a distance d2min, 1 from the sequence

i in (2.260), the probability of symbol error, given that the ith sequence has
been transmitted, can be written as:

P (e|i) = M1, iP (j|i) (2.270)

since there is only one erroneous symbol in the error event. Observe that from
our definition of the error event, M1, i is also the number of symbols that are

closest to the transmitted symbol S
(i)
k . The quantity M1, i is also referred to as

multiplicity [49]. The lower bound (based on the squared minimum distance)
on the average probability of symbol error is given by (for M -ary signalling):

P (e) =
M−1∑

i=0

P (e|i)P
(

S
(i)
k

)

=
M−1∑

i=0

M1, iP (j|i)
M

(2.271)

where we have assumed that S
(i)
k in (2.260) could be any one of the symbols in

the M -ary constellation and that all symbols are equally likely (probability of
occurrence is 1/M).
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Symbol-by-Symbol Detection

Let us now consider the probability of symbol error for the symbol-by-symbol
detector in correlated noise. Recall that for uncoded signalling, the symbol-
by-symbol detector is optimum for white noise. Following the derivation in
section 2.1.1, it can be easily shown that the probability of deciding in favour

of S
(j)
k given that S

(i)
k is transmitted, is given by:

P (j|i) = 1

2
erfc





√

d2min, 2

8σ2
w



 (2.272)

where for the sake of brevity, we have used the notation j|i instead of S
(j)
k |S(i)

k ,

d2min, 2
∆
=
∣
∣
∣S

(i)
k − S

(j)
k

∣
∣
∣

2

(2.273)

and

σ2
w

∆
=

1

2
E
[

|w̃k|2
]

. (2.274)

Assuming all symbols are equally likely and the earlier definition for M1, i, the
average probability of symbol error is given by:

P (e) =
M−1∑

i=0

M1, iP (j|i)
M

(2.275)

In deriving (2.272) we have assumed that the in-phase and quadrature compo-
nents of w̃k are uncorrelated. This implies that:

1

2
E
[
w̃n w̃

∗
n−m

]
=

1

2
E [wn, I wn−m, I ] +

1

2
E [wn,Q wn−m,Q]

= Rww,m (2.276)

where the subscripts I and Q denote the in-phase and quadrature components
respectively. Observe that the last equality in (2.276) follows when the in-phase
and quadrature components have identical autocorrelation.

Example

To find out the performance improvement of the predictive VA over the symbol-
by-symbol detector (which is optimum when the additive noise is white), let us
consider uncoded QPSK as an example. Let us assume that the samples of w̃
in (2.239) are obtained at the output of a first-order IIR filter. We normalize
the energy of the IIR filter to unity so that the variance of correlated noise is
identical to that of the input. Thus, the in-phase and quadrature samples of
correlated noise are generated by the following equation:

wn, I{Q} =
√

(1− a2)un, I{Q} − awn−1, I{Q} (2.277)
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where un, I{Q} denotes either the in-phase or the quadrature component of white
noise at time n. Since un, I and un,Q are mutually uncorrelated, wn, I and wn,Q

are also mutually uncorrelated and (2.276) is valid.
In this case it can be shown that:

P = 1

ã1, 1 = a

σ2
e, P = σ2

w(1− a2)

d2min, 1 = d2min, 2(1 + a2)

M1, i = 2 for 0 ≤ i ≤ 3. (2.278)

Hence (2.271) reduces to:

Pe = erfc





√

d2min, 2(1 + a2)

8σ2
w(1− a2)



 (2.279)

and (2.275) becomes:

Pe = erfc





√

d2min, 2

8σ2
w



 . (2.280)

Comparing (2.280) and (2.279) we can define the SNR gain as:

SNRgain
∆
= 10 log10

(
1 + a2

1− a2

)

. (2.281)

From the above expression, it is clear that detection schemes that are optimal
in white noise are suboptimal in coloured noise.

We have so far discussed the predictive VA for uncoded symbols (the symbols
are independent of each other and equally likely). In the next section we consider
the situation where the symbols are coded.

2.7.2 Predictive VA for Channel Coded Symbols

When the symbols are channel coded, as in trellis coded modulation (see Chap-
ter 3), the VA branch metric computation in (2.256) is still valid. However, the
trellis needs to be replaced by a supertrellis [45, 50–52]. We now discuss the
construction of the supertrellis.

Let us assume that a rate-k/n convolutional encoder is used. The n coded
bits are mapped onto an M = 2n-ary constellation according to the set parti-
tioning rules (see Chapter 3). Now consider Figure 2.18. Observe that M (l) is
the most recent encoded symbol (0 ≤ l ≤ M − 1 is the decimal equivalent of the
corresponding n code bits and is referred to as the code digit) and M (Sj, P )
is the oldest encoded symbol in time (the code digit 0 ≤ Sj, P ≤ M − 1 is the
decimal equivalent of the corresponding n code bits). Here M (·) denotes the
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Input symbol to the prediction filterk uncoded

Prediction filter memory

Rate-k/n
convolutional

encoder
M (Sj, 1) M

(
Sj, P

)M (l)

bits (e)

Figure 2.18: Procedure for computing the number of supertrellis states.

mapping of code digits to symbols in the M -ary constellation, as illustrated in
(2.254). Moreover

{M (l)M (Sj, 1) . . . M (Sj, P )} (2.282)

must denote a valid encoded symbol sequence. For a given encoder state, there
are 2k = N ways to generate an encoded symbol. Hence, if we start from a
particular encoder state, there are NP ways of populating the memory of a
P th-order prediction filter. If the encoder has E states, then there are a total
of E ×NP ways of populating the memory of a P th-order prediction filter. Let
us denote the encoder state as Ei, for 0 ≤ i < E . Similarly, we denote the
prediction filter state by Fm for 0 ≤ m < NP . Then the supertrellis state
SST, j is given by [52]:

j = i×NP +m 0 ≤ j < E ×NP . (2.283)

Symbolically, a supertrellis state can be represented by:

SST, j : {Ei; Fm} . (2.284)

It is convenient to represent the prediction filter state Fm by an N -ary P -tuple
as follows (see also (2.252)):

Fm : {Nm, 1 . . . Nm,P } (2.285)

where the input digits

Nm, t ∈ {0, . . . , N − 1} for 1 ≤ t ≤ P . (2.286)

In particular

m =
P∑

t=1

Nm,P+1−t N
t−1. (2.287)

Observe that Fm is actually the input digit sequence to the encoder in Fig-
ure 2.18, with Nm,P being the oldest input digit in time. Let the encoder state
corresponding to input digit Nm,P be Es (0 ≤ s < E ). We denote Es as the
encoder starting state. Then the code digit sequence corresponding to SST, j is
generated as follows:

Es, Nm,P → Ea, Sj, P for 0 ≤ a < E , 0 ≤ Sj, P < M
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Ea, Nm,P−1 → Eb, Sj, P−1 for 0 ≤ b < E , 0 ≤ Sj, P−1 < M (2.288)

which is to be read as: the encoder at state Es with input digit Nm,P yields the
code digit Sj, P and next encoder state Ea and so on. Repeating this procedure
with every input digit in (2.285) we finally get:

Ec, Nm, 1 → Ei, Sj, 1 for 0 ≤ c < E , 0 ≤ Sj, 1 < M

Ei, e → Ef , l for 0 ≤ e < N , 0 ≤ f < E , 0 ≤ l < M. (2.289)

Thus (2.282) forms a valid encoded symbol sequence and the supertrellis state
is given by (2.283) and (2.284).

Given the supertrellis state SST, j and the input e in (2.289), the next su-
pertrellis state SST, h can be obtained as follows:

Fn : {eNm, 1 . . . Nm,P−1}
≡ Fn : {Nn, 1 . . . Nn,P } where Nn, 1 = e, . . . , Nn, P = Nm,P−1

⇒ n =
P∑

t=1

Nn, P+1−t N
t−1

h = f ×NP + n for 0 ≤ n < NP , 0 ≤ h < E ×NP

SST, h : {Ef ; Fn} . (2.290)

The branch metric at time k, from state Sj due to input symbol e (0 ≤ l ≤ N−1)
is given by (2.256). To summarize, a transition in the supertrellis can be written
as

SST, j , e → SST, h (2.291)

with branch metric given by (2.256). It must be emphasized that the procedure
for constructing the supertrellis is not unique. For example, in (2.287) Nm, 1

could be taken as the least significant digit and Nm,P could be taken as the most
significant digit. The performance analysis of the predictive VA with channel
coding (e.g. trellis coded modulation) is rather involved. The interested reader
is referred to [45].

2.8 Coherent Detectors for Flat Fading Chan-
nels

We have so far dealt with the detection of signals in additive Gaussian noise
(both white and coloured) channels. Such channels are non-fading or time-
invariant . However, in wireless communication channels, there is additional
distortion to the signal in the form of fading. Early papers on fading channels
can be found in [53–55]. Tutorials on fading channel communications can be
found in [56–58].

Consider the model shown in Figure 2.19. The transmit antenna emits a

symbol S
(i)
n , where as usual n denotes time and i denotes the ith symbol in
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S
(i)
n

Transmit antenna

r̃n, 1

r̃n,Nr

Receive antennas

Figure 2.19: Signal model for fading channels with receive diversity.

an M -ary constellation. The signal received at the Nr receive antennas can be
written in vector form as:

r̃n
∆
=






r̃n, 1
...

r̃n,Nr




 = S(i)

n






h̃n, 1

...

h̃n,Nr




+






w̃n, 1

...
w̃n,Nr






∆
= S(i)

n h̃n + w̃n (2.292)

where h̃n, j denotes the time-varying channel gain (or fade coefficient) between
the transmit antenna and the jth receive antenna. The signal model given
in (2.292) is typically encountered in wireless communication. This kind of
a channel that introduces multiplicative distortion in the transmitted signal,
besides additive noise is called a fading channel. When the received signal at
time n is a function of the transmitted symbol at time n, the channel is said to
be frequency non-selective (flat). On the other hand, when the received signal
at time n is a function of the present as well as the past transmitted symbols,
the channel is said to be frequency selective. We assume that the channel gains
in (2.292) are zero-mean complex Gaussian random variables whose in-phase
and quadrature components are independent of each other, that is

h̃n, j
∆
= hn, j, I + jhn, j,Q

E[hn, j, Ihn, j,Q] = E[hn, j, I ]E[hn, j, Q] = 0. (2.293)

We also assume the following relations:

1

2
E
[

h̃n, j h̃
∗
n, k

]

= σ2
f δK(j − k)

1

2
E
[
w̃n, jw̃

∗
n, k

]
= σ2

wδK(j − k)

1

2
E
[

h̃n, j h̃
∗
m, j

]

= σ2
f δK(n−m)

1

2
E
[
w̃n, jw̃

∗
m, j

]
= σ2

wδK(n−m). (2.294)



K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in 65

Since the channel gain is zero-mean Gaussian, the magnitude of the channel
gain given by

∣
∣
∣h̃n, j

∣
∣
∣ =

√

h2
n, j, I + h2

n, j,Q for 1 ≤ j ≤ Nr (2.295)

is Rayleigh distributed. Due to the independence assumption on the channel

gains, it is quite unlikely that at any time n, all
∣
∣
∣h̃n, j

∣
∣
∣ are close to zero simul-

taneously. Thus intuitively we can expect a receiver with multiple antennas to
perform better than a single antenna receiver. This method of improving the
receiver performance by using multiple antennas is known as antenna diversity.
Other commonly used forms of diversity are frequency, time and polarization

diversity. In all cases, the signal model in (2.292) is valid.
The task of the receiver is to optimally detect the transmitted symbol given

r̃n. This is given by the MAP rule

max
j

P
(

S(j)|r̃n
)

for 1 ≤ j ≤ M (2.296)

where M denotes an M -ary constellation. When all symbols in the constellation
are equally likely, the MAP detector becomes an ML detector with the detection
rule:

max
j

p
(

r̃n|S(j)
)

for 1 ≤ j ≤ M. (2.297)

Since we have assumed a coherent detector, the receiver has perfect knowledge
of the fade coefficients. Therefore, the conditional pdf in (2.297) can be written
as:

max
j

p
(

r̃n|S(j), h̃n

)

for 1 ≤ j ≤ M. (2.298)

Following the method given in (2.108), (2.298) becomes:

max
j

1

(2πσ2
w)

Nr
exp




−

∑Nr

l=1

∣
∣
∣r̃n, l − S(j)h̃n, l

∣
∣
∣

2

2σ2
w




 (2.299)

which after simplification reduces to:

min
j

Nr∑

l=1

∣
∣
∣r̃n, l − S(j)h̃n, l

∣
∣
∣

2

. (2.300)

When ∣
∣
∣S(j)

∣
∣
∣ = a constant independent of j (2.301)

as in the case of M -ary PSK constellations, the detection rule reduces to

max
j

Nr∑

l=1

ℜ
{

r̃∗n, lS
(j)h̃n, l

}

. (2.302)

The detection rule in (2.302) forM -ary PSK signalling is also known asmaximal
ratio combining.
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2.8.1 Performance Analysis

In order to compute the average probability of symbol error we proceed as
follows.

1. We first compute the pairwise probability of symbol error for a given h̃n.

2. Next we compute the average pairwise probability of symbol error by
averaging over all h̃n.

3. Finally we use the union bound to compute the average probability of
symbol error.

Given that S(i) has been transmitted, the receiver decides in favour of S(j) when

Nr∑

l=1

∣
∣
∣r̃n, l − S(j)h̃n, l

∣
∣
∣

2

<
Nr∑

l=1

∣
∣
∣r̃n, l − S(i)h̃n, l

∣
∣
∣

2

. (2.303)

Substituting for r̃n, l on both sides and simplifying, we get

P
(

S(j)|S(i), h̃n

)

= P
(
Z < −d2

)
(2.304)

where

Z = 2ℜ
{

Nr∑

l=1

(

S(i) − S(j)
)

h̃n, lw̃
∗
n, l

}

d2 =
∣
∣
∣S(i) − S(j)

∣
∣
∣

2
Nr∑

l=1

∣
∣
∣h̃n, l

∣
∣
∣

2

. (2.305)

Clearly Z is a real-valued Gaussian random variable with respect to w̃n (since
in the first step h̃n is assumed known) with

E
[

Z|h̃n

]

= 0

E
[

Z2|h̃n

]

= 4d2σ2
w. (2.306)

Therefore

P
(

S(j)|S(i), h̃n

)

=
1√
π

∫ ∞

x=y

e−x2

dx

∆
= P

(

S(j)|S(i), y
)

(2.307)

where

y =
d

2
√
2σw
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=

∣
∣S(i) − S(j)

∣
∣

2
√
2σw

√
√
√
√

Nr∑

l=1

h2
n, l, I + h2

n, l, Q . (2.308)

Thus

P
(

S(j)|S(i)
)

=

∫ ∞

y=0

P
(

S(j)|S(i), y
)

pY (y) dy

=
1√
π

∫ ∞

y=0

∫ ∞

x=y

e−x2

pY (y) dx dy. (2.309)

We know that if R is a random variable given by

R =

√
√
√
√

N∑

i=1

X2
i (2.310)

where Xi are real-valued independent zero-mean Gaussian random variables,
each with variance σ2, the pdf of R is given by the generalized Rayleigh distri-
bution as follows [3]

pR(r) =
rN−1

2(N−2)/2σNΓ(N/2)
e−r2/(2σ2) for r ≥ 0 (2.311)

where Γ(·) denotes the gamma function which takes on values:

Γ(0.5) =
√
π

Γ(1.5) =
√
π/2

Γ(k) = (k − 1)! where k > 0 is an integer. (2.312)

For the special case when N = 2M , the cumulative distribution function (cdf)
of R is given by [3]:

FR(r) =

∫ r

α=0

pR(α) dα

= 1− e−r2/(2σ2)
M−1∑

k=0

1

k!

(
r2

2σ2

)k

. (2.313)

Now, interchanging the order of the integrals in (2.309) we get

P
(

S(j)|S(i)
)

=
1√
π

∫ ∞

x=0

e−x2

dx

∫ x

y=0

pY (y) dy

=
1√
π

∫ ∞

x=0

e−x2

FY (x) dx (2.314)

where FY (x) is the cdf of Y. For the given problem, the cdf of Y is given by
(2.313) with r replaced by x and

N = 2Nr
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σ2 =
E
[

h2
n, l, I

]

8σ2
w

∣
∣
∣S(i) − S(j)

∣
∣
∣

2

=
σ2
f

8σ2
w

∣
∣
∣S(i) − S(j)

∣
∣
∣

2

. (2.315)

Substituting for FY (x) in (2.314) we get

P
(

S(j)|S(i)
)

=
1√
π

∫ ∞

x=0

e−x2

[

1− e−x2/(2σ2)
Nr−1∑

k=0

1

k!

(
x2

2σ2

)k
]

dx

=
1√
π

∫ ∞

x=0

[

e−x2 − e−x2(1+1/(2σ2))
Nr−1∑

k=0

1

k!

(
x2

2σ2

)k
]

dx

=
1

2
− 1√

π

∫ ∞

x=0

e−x2(1+1/(2σ2))
Nr−1∑

k=0

1

k!

(
x2

2σ2

)k

dx. (2.316)

Substitute

x
√

1 + 1/(2σ2) = α

⇒ dx
√

1 + 1/(2σ2) = dα (2.317)

in (2.316) to get:

P
(

S(j)|S(i)
)

=
1

2
−
√

2σ2

1 + 2σ2

Nr−1∑

k=0

1

k!

1√
π

∫ ∞

α=0

e−α2

(
α2

1 + 2σ2

)k

dα. (2.318)

We know that if X is a zero-mean Gaussian random variable with variance σ2
1 ,

then for n > 0

1

σ1

√
2π

∫ ∞

x=−∞
x2ne−x2/(2σ2

1) dx = 1× 3× . . .× (2n− 1)σ2n
1

⇒ 1

σ1

√
2π

∫ ∞

x=0

x2ne−x2/(2σ2
1) dx =

1

2
× 1× 3× . . .× (2n− 1)σ2n

1 . (2.319)

Note that in (2.318) 2σ2
1 = 1. Thus for Nr = 1 we have

P
(

S(j)|S(i)
)

=
1

2
− 1

2

√

2σ2

1 + 2σ2
(2.320)

For Nr > 1 we have:

P
(

S(j)|S(i)
)

=
1

2
− 1

2

√

2σ2

1 + 2σ2

− 1

2

√

2σ2

1 + 2σ2

Nr−1∑

k=1

1× 3 . . . (2k − 1)

k! 2k

(
1

1 + 2σ2

)k

. (2.321)
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Thus we find that the average pairwise probability of symbol error depends on
the squared Euclidean distance between the two symbols.

Finally, the average probability of error is upper bounded by the union bound
as follows:

P (e) ≤
M∑

i=1

P
(

S(i)
) M∑

j=1
j 6=i

P
(

S(j)|S(i)
)

. (2.322)

If we assume that all symbols are equally likely then the average probability of
error reduces to:

P (e) ≤ 1

M

M∑

i=1

M∑

j=1
j 6=i

P
(

S(j)|S(i)
)

. (2.323)

The theoretical and simulation results for 8-PSK and 16-QAM are plotted in
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Figure 2.20: Theoretical and simulation results for 8-PSK in Rayleigh flat fading
channel for various diversities.

Figures 2.20 and 2.21 respectively. Note that there is a slight difference between
the theoretical and simulated curves for first-order diversity. However for second
and fourth-order diversity, the theoretical and simulated curves nearly overlap,
which demonstrates the accuracy of the union bound.

The average SNR per bit is defined as follows. For M -ary signalling, κ =
log2(M) bits are transmitted to Nr receive antennas. Therefore, each receive
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Figure 2.21: Theoretical and simulation results for 16-QAM in Rayleigh flat fading
channel for various diversities.



K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in 71

antenna gets κ/Nr bits per transmission. Hence the average SNR per bit is:

SNRav, b =

NrE

[∣
∣
∣S

(i)
n

∣
∣
∣

2 ∣
∣
∣h̃n, l

∣
∣
∣

2
]

κE
[

|w̃n, l|2
]

=
2NrPavσ2

f

2κσ2
w

=
NrPavσ

2
f

κσ2
w

(2.324)

where Pav denotes the average power of the M -ary constellation.

2.8.2 Performance Analysis for BPSK

For the case of BPSK we note that
∣
∣
∣S(1) − S(2)

∣
∣
∣

2

= 4Pav, b (2.325)

where Pav, b denotes the average power of the BPSK constellation. Let us define
the average SNR for each receive antenna as:

γ =

E

[∣
∣
∣S

(i)
n

∣
∣
∣

2 ∣
∣
∣h̃n, l

∣
∣
∣

2
]

E
[

|w̃n, l|2
]

=
2Pav, bσ2

f

2σ2
w

=
Pav, bσ2

f

σ2
w

(2.326)

where we have assumed that the symbols and fade coefficients are independent.
Comparing (2.315) and (2.326) we find that

2σ2 = γ. (2.327)

We also note that when both the symbols are equally likely, the pairwise prob-
ability of error is equal to the average probability of error. Hence, substituting
(2.327) in (2.321) we get (for Nr = 1)

P (e) =
1

2
− 1

2

√
γ

1 + γ
. (2.328)

For Nr > 1 we have

P (e) =
1

2
− 1

2

√
γ

1 + γ
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− 1

2

√
γ

1 + γ

Nr−1∑

k=1

1× 3 . . . (2k − 1)

k! 2k

(
1

1 + γ

)k

.

(2.329)

Further, if we define

µ =

√
γ

1 + γ
(2.330)

the average probability of error is given by (for Nr = 1):

P (e) =
1

2
(1− µ). (2.331)

For Nr > 1 the average probability of error is given by:

P (e) =
1

2
(1− µ)

− µ

2

Nr−1∑

k=1

1× 3 . . . (2k − 1)

k! 2k
(
1− µ2

)k
. (2.332)

Interestingly, the average probability of error is also given by [3]:

P (e) =

[
1

2
(1− µ)

]Nr Nr−1∑

k=0

(
Nr − 1 + k

k

)[
1

2
(1 + µ)

]k

. (2.333)

Both formulas are identical. The theoretical and simulated curves for BPSK
are shown in Figure 2.22. Observe that the theoretical and simulated curves
overlap.

Example 2.8.1 Consider a digital communication system with one transmit
and Nr > 1 receive antennas. The received signal at time n is given by (2.292).

Now consider the following situation. The receiver first computes:

r′n =
Nr∑

k=1

rn, k (2.334)

and then performs coherent detection.

1. State the coherent detection rule.

2. Compute P
(
S(j)|S(i)

)
in terms of the result given in (2.320).

Comment on your answer.

Solution: Observe that:

r′n =
Nr∑

k=1

rn, k
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Figure 2.22: Theoretical and simulation results for BPSK in Rayleigh flat fading
channels for various diversities.
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= S(i)
n

Nr∑

k=1

h̃n, k +
Nr∑

k=1

w̃n, k

= S(i)
n h̃′

n + w̃′
n (2.335)

where h̃′
n is CN (0, Nrσ

2
f ) and w̃′

n is C N (0, Nrσ
2
w).

The coherent detection rule is (assuming that h̃′
n is known at the receiver):

min
i

∣
∣
∣r̃′n − h̃′

nS
(i)
n

∣
∣
∣

2

(2.336)

The receiver reduces to a single antenna case and the pairwise probability of
error is given by:

P
(

S(j)|S(i)
)

=
1

2
− 1

2

√

2σ2
1

1 + 2σ2
1

(2.337)

where

σ2
1 =

∣
∣
∣S(i) − S(j)

∣
∣
∣

2 Nrσ
2
f

8Nrσ2
w

= σ2 (2.338)

given in (2.315).
Thus we find that there is no diversity advantage using this approach. In

spite of having Nr receive antennas, we get the performance of a single receive
antenna.

Example 2.8.2 Consider the received signal given by:

r = hS + w (2.339)

where h denotes the random variable that represents fading, S ∈ ±1 and w
denotes noise. All variables are real-valued. The random variables h and w are
independent of each other and each is uniformly distributed in [−1, 1].

Assume that the (coherent) detection rule is given by:

min
i

(r − hai)
2 (2.340)

where ai ∈ ±1.

1. Compute P (−1|+ 1, h).

2. Compute P (−1|+ 1).

Solution: For the first part, we assume that h is a known constant at the receiver
which can take any value in [−1, 1]. Therefore, given that +1 was transmitted,
the receiver decides in favour of −1 when

(r − h)2 > (r + h)2
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⇒ (h+ w − h)2 > (h+ w + h)2

⇒ hw < −h2. (2.341)

Let

y = hw. (2.342)

Then

p(y|h) =
{

1/(2|h|) for −|h| < y < |h|
0 otherwise.

(2.343)

Hence

P
(
y < −h2|h

)
=

1

2|h|

∫ −h2

y=−|h|
dy

=
1

2
(1− |h|)

= P (−1|+ 1, h). (2.344)

Finally

P (−1|+ 1) =

∫ 1

h=−1

P (−1|+ 1, h)p(h) dh

=
1

2

∫ 1

h=−1

(1− |h|) p(h) dh

=
1

4

∫ 0

h=−1

(1 + h) dh+
1

4

∫ 1

h=0

(1− h) dh

=
1

4
. (2.345)

2.8.3 Approximate Performance Analysis

In this section we obtain the expression for the average probability of symbol
error using the Chernoff bound. From (2.307) we have

P
(

S(j)|S(i), h̃n

)

=
1

2
erfc

(√

d2

8σ2
w

)

≤ exp

(

− d2

8σ2
w

)

= exp

(

−
∣
∣S(i) − S(j)

∣
∣
2∑Nr

l=1 h
2
n, l, I + h2

n, l, Q

8σ2
w

)

(2.346)
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where we have used the Chernoff bound and substituted for d2 from (2.305).
Therefore the average pairwise probability of error (averaged over all h̃n) is:

P
(

S(j)|S(i)
)

≤
∫

h̃n

exp

(

−
∣
∣S(i) − S(j)

∣
∣
2∑Nr

l=1 h
2
n, l, I + h2

n, l, Q

8σ2
w

)

× p
(

h̃n

)

dh̃n (2.347)

where p
(

h̃n

)

denotes the joint pdf of the fade coefficients. Since the fade

coefficients are independent by assumption, the joint pdf is the product of the
marginal pdfs. Let

x =

∫ ∞

hn, l, I=−∞
exp

(

−
∣
∣S(i) − S(j)

∣
∣
2
h2
n, l, I

8σ2
w

)

p (hn, l, I) dhn, l, I . (2.348)

It is clear that (2.347) reduces to:

P
(

S(j)|S(i)
)

≤ x2Nr . (2.349)

Substituting for p(hn, l, I) in (2.348) we get:

x =
1

σf

√
2π

∫ ∞

hn, l, I=−∞
exp

(

−
∣
∣S(i) − S(j)

∣
∣
2
h2
n, l, I

8σ2
w

−
h2
n, l, I

2σ2
f

)

dhn, l, I

=
1

√

1 + 2Aσ2
f

(2.350)

where

A =

∣
∣S(i) − S(j)

∣
∣
2

8σ2
w

. (2.351)

The average probability of error is obtained by substituting (2.349) in (2.322).
The Chernoff bound for various constellations is depicted in Figures 2.20, 2.21
and 2.22.

2.8.4 Multiple Input Multiple Output (MIMO) Systems

Consider the signal model given by:

r̃n
∆
=






r̃n, 1
...

r̃n,Nr




 =






h̃n, 1

...

h̃n,Nr




S(i)

n +






w̃n, 1

...
w̃n,Nr






∆
= H̃nS

(i)
n + w̃n (2.352)
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where again n denotes time and

S(i)
n =







S
(i)
n, 1
...

S
(i)
n,Nt







h̃n, k =
[
h̃n, k, 1 . . . h̃n, k, Nt

]
for 1 ≤ k ≤ Nr (2.353)

where Nt and Nr denote the number of transmit and receive antennas respec-

tively. The symbols S
(i)
n,m, 1 ≤ m ≤ Nt, are drawn from an M -ary QAM

constellation and are assumed to be independent. Therefore 1 ≤ i ≤ MNt . The
complex noise samples w̃n, k, 1 ≤ k ≤ Nr, are independent, zero mean Gaussian
random variables with variance per dimension equal to σ2

w, as given in (2.294).
The complex channel gains, h̃n, k,m, are also independent zero mean Gaussian
random variables, with variance per dimension equal to σ2

f . In fact

1

2
E
[

h̃n, k,mh̃∗
n, k, l

]

= σ2
fδK(m− l)

1

2
E
[

h̃n, k,mh̃∗
n, l, m

]

= σ2
fδK(k − l)

1

2
E
[

h̃n, k,mh̃∗
l, k,m

]

= σ2
fδK(n− l). (2.354)

Note that h̃n, k,m denotes the channel gain between the kth receive antenna and
the mth transmit antenna, at time instant n. The channel gains and noise are
assumed to be independent of each other. We also assume, as in section 2.8, that
the real and imaginary parts of the channel gain and noise are independent. Such
systems employing multiple transmit and receive antennas are called multiple
input multiple output (MIMO) systems.

Following the procedure in section 2.8, the task of the receiver is to optimally

detect the transmitted symbol vector S
(i)
n given r̃n. This is given by the MAP

rule
max

j
P
(

S(j)|r̃n
)

for 1 ≤ j ≤ MNt (2.355)

where M denotes the M -ary constellation and S(j) denotes an Nt × 1 vector,
whose elements are drawn from the sameM -ary constellation. When all symbols
in the constellation are equally likely, the MAP detector becomes an ML detector
with the detection rule:

max
j

p
(

r̃n|S(j)
)

for 1 ≤ j ≤ MNt . (2.356)

Since we have assumed a coherent detector, the receiver has perfect knowledge
of the fade coefficients (channel gains). Therefore, the conditional pdf in (2.297)
can be written as:

max
j

p
(

r̃n|S(j), H̃n

)

for 1 ≤ j ≤ MNt . (2.357)
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Following the method given in (2.108), (2.357) becomes:

max
j

1

(2πσ2
w)

Nr
exp




−

∑Nr

k=1

∣
∣
∣r̃n, k − h̃n, kS

(j)
∣
∣
∣

2

2σ2
w




 (2.358)

which after simplification reduces to:

min
j

Nr∑

k=1

∣
∣
∣r̃n, k − h̃n, kS

(j)
∣
∣
∣

2

. (2.359)

Let us now compute the probability of detecting S(j) given that S(i) was trans-
mitted, that is

P
(

S(j)|S(i)
)

. (2.360)

We proceed as follows:

1. We first compute the pairwise probability of error in the symbol vector
for a given H̃n.

2. Next we compute the average pairwise probability of error in the symbol
vector, by averaging over all H̃n.

3. Thirdly, the average probability of error in the symbol vector is computed
using the union bound.

4. Finally, the average probability of error in the symbol is computed by
assuming at most one symbol error in an erroneously estimated symbol
vector. Note that this is an optimistic assumption.

Given that S(i) has been transmitted, the receiver decides in favour of S(j) when

Nr∑

k=1

∣
∣
∣r̃n, k − h̃n, kS

(j)
∣
∣
∣

2

<
Nr∑

k=1

∣
∣
∣r̃n, k − h̃n, kS

(i)
∣
∣
∣

2

. (2.361)

Substituting for r̃n, k on both sides and simplifying, we get

P
(

S(j)|S(i), H̃n

)

= P
(
Z < −d2

)
(2.362)

where

Z = 2ℜ
{

Nr∑

k=1

d̃kw̃
∗
n, k

}

d̃k = h̃n, k

(

S(i) − S(j)
)

d2 =
Nr∑

k=1

∣
∣
∣d̃k

∣
∣
∣

2

. (2.363)
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Clearly Z is a real-valued Gaussian random variable with respect to w̃n (since
in the first step H̃n, and hence d̃k, is assumed known) with

E
[

Z|H̃n

]

= 0

E
[

Z2|H̃n

]

= 4d2σ2
w . (2.364)

Therefore

P
(

S(j)|S(i), H̃n

)

=
1√
π

∫ ∞

x=y

e−x2

dx

∆
= P

(

S(j)|S(i), y
)

(2.365)

where

y =
d

2
√
2σw

=
1

2
√
2σw

√
√
√
√

Nr∑

k=1

d2k, I + d2k, Q (2.366)

which is similar to (2.308). Note that dk, I and dk, Q are the real and imaginary

parts of d̃k. We now proceed to average over H̃n (that is, over d̃k).
Note that d̃k is a linear combination of independent zero-mean, complex

Gaussian random variables (channel gains), hence d̃k is also a zero-mean, com-
plex Gaussian random variable. Moreover, dk, I and dk, Q are each zero mean,
mutually independent Gaussian random variables with variance:

σ2
d = σ2

f

Nt∑

l=1

∣
∣
∣S

(i)
l − S

(j)
l

∣
∣
∣

2

. (2.367)

Following the procedure in section 2.8.1, P
(
S(j)|S(i)

)
, is given by (2.320) for

Nr = 1 and (2.321) for Nr > 1 with

σ2 =
σ2
d

8σ2
w

. (2.368)

The pairwise probability of error using the Chernoff bound can be computed
as follows. We note from (2.362) that

P
(

S(j)|S(i), H̃n

)

=
1

2
erfc

√

d2

8σ2
w

< exp

(

− d2

8σ2
w

)
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Figure 2.23: Theoretical and simulation results for coherent QPSK in Rayleigh flat
fading channels for Nr = 1, Nt = 1.
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Figure 2.24: Theoretical and simulation results for coherent QPSK in Rayleigh flat
fading channels for Nr = 1, Nt = 2.
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Figure 2.25: Theoretical and simulation results for coherent QPSK in Rayleigh flat
fading channels for Nr = 2, Nt = 1.
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Figure 2.26: Theoretical and simulation results for coherent QPSK in Rayleigh flat
fading channels for Nr = 2, Nt = 2.
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Figure 2.27: Theoretical and simulation results for coherent QPSK in Rayleigh flat
fading channels for Nr = 4, Nt = 1.
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Figure 2.28: Theoretical and simulation results for coherent QPSK in Rayleigh flat
fading channels for Nr = 4, Nt = 2.



K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in 83

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

 4  6  8  10  12  14  16  18  20

1- Chernoff bound 2- Union bound 3- Simulation
Average SNR per bit (dB)

1

2
3

S
y
m
b
o
l-
er
ro
r-
ra
te

Figure 2.29: Theoretical and simulation results for coherent QPSK in Rayleigh flat
fading channels for Nr = 4, Nt = 4.
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Figure 2.30: Theoretical and simulation results for coherent 16-QAM in Rayleigh
flat fading channels for Nr = 2, Nt = 2.
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Figure 2.31: Simulation results for coherent detectors in Rayleigh flat fading chan-
nels for various constellations, transmit and receive antennas.
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= exp




−

∑Nr

k=1

∣
∣
∣d̃k

∣
∣
∣

2

8σ2
w




 (2.369)

where we have used the Chernoff bound and substituted for d2 from (2.363).
Following the procedure in (2.347) we obtain:

P
(

S(j)|S(i)
)

≤
∫

d1, I , d1, Q, ..., dNr, I , dNr,Q

exp

(

−
Nr∑

k=1

d2k, I + d2k, Q
8σ2

w

)

× p (d1, I , d1, Q, . . . , dNr, I , dNr, Q)

× dd1, I dd1, Q . . . ddNr, I ddNr , Q. (2.370)

where p (·) denotes the joint pdf of dk, I ’s and dk, Q’s. Since the dk, I ’s and dk, Q’s
are independent, the joint pdf is the product of the marginal pdfs. Let

x =

∫ ∞

dk, I=−∞
exp

(

−
d2k, I
8σ2

w

)

p (dk, I) ddk, I . (2.371)

It is clear that (2.370) reduces to:

P
(

S(j)|S(i)
)

≤ x2Nr . (2.372)

Substituting for p(dk, I) in (2.371) we get:

x =
1

σd

√
2π

∫ ∞

dk, I=−∞
exp

(

−
d2k, I
8σ2

w

−
d2k, I
2σ2

d

)

ddk, I

=
1

√

1 + 2Bσ2
f

(2.373)

where

B =

∑Nt

l=1

∣
∣
∣S

(i)
l − S

(j)
l

∣
∣
∣

2

8σ2
w

. (2.374)

Having computed the pairwise probability of error in the transmitted vector,
the average probability of error (in the transmitted vector) can be found out as
follows:

Pv(e) ≤
(
1/MNt

)
MNt
∑

i=1

MNt
∑

j=1
j 6=i

P
(

S(j)|S(i)
)

(2.375)

where we have assumed all vectors to be equally likely and the subscript “v”
denotes “vector”. Assuming at most one symbol error in an erroneously esti-
mated symbol vector (this is an optimistic assumption), the average probability
of symbol error is

P (e) ≈ Pv(e)

Nt
. (2.376)
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Assuming M = 2κ-ary signaling from each transmit antenna, the average
SNR per bit is computed as follows. Observe that each receive antenna gets
κNt/Nr bits per transmission. Hence

SNRav, b =

NrE

[∣
∣
∣h̃n, kS

(i)
n

∣
∣
∣

2
]

κNtE
[

|w̃n, l|2
]

=
2NrNtPavσ2

f

2κNtσ2
w

=
NrPavσ

2
f

κσ2
w

(2.377)

where Pav denotes the average power of the M -ary constellation.
In Figures 2.23 to 2.30 we present theoretical and simulation results for co-

herent detection of QPSK in Rayleigh flat fading channels, for various transmit
and receive antenna configurations. We observe that the theoretical estimate
of the symbol-error-rate, matches closely with that of simulation. All the sim-
ulation results are summarized in Figure 2.31. The following are the important
conclusions from Figure 2.31:

1. Sending QPSK from a two transmit antennas is better than sending 16-
QAM from a single transmit antenna, in terms of the symbol-error-rate
and peak-to-average power ratio (PAPR) of the constellation. Observe
that in both cases we have four bits per transmission. It is desirable to
have low PAPR, so that the dynamic range of the RF amplifiers is reduced.

Similarly, transmitting QPSK from four antennas is better than sending
16-QAM from two antennas, in terms of the symbol-error-rate and PAPR,
even though the spectral efficiency in both cases is eight bits per trans-
mission.

2. Having more number of transmit antennas increases the throughput (bits
per transmission) of the system for a fixed symbol-error-rate, e.g., see the
results for Nr = 4 and Nt = 4.

2.9 Differential Detectors for Flat Fading Chan-
nels

Consider the signal model in (2.292). Let us assume that S
(i)
n is drawn from an

M -ary PSK constellation with
Pav = C. (2.378)

Furthermore, we assume that the symbols are differentially encoded so that the
received vector over two consecutive symbol durations is given by (similar to
(2.292)):

r̃n−1 =
√
C h̃n−1 + w̃n−1
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r̃n =
√
C e jφi h̃n + w̃n (2.379)

where

φi =
2πi

M
for 1 ≤ i ≤ M (2.380)

is the transmitted phase change. In the signal model given by (2.379) we as-
sume that the channel gains are correlated over a given diversity path (receive
antenna). However, we continue to assume the channel gains to be uncorrelated
across different receive antennas. In view of the above assumptions, the third
equation in (2.294) must be rewritten as:

1

2
E
[

h̃n, j h̃
∗
n−m, j

]

= Rh̃h̃,m for 0 ≤ j < Nr (2.381)

which is assumed to be real-valued. In other words, we assume that the in-
phase and quadrature components of the channel gain to be independent of
each other [59] as given in (2.293). Let

Rh̃h̃, 0 = σ2
f

Rh̃h̃, 1

Rh̃h̃, 0

= ρ (2.382)

where ρ is real-valued. The other equations that characterize the statistical
properties of the variables in (2.379) are identical to those given in (2.294).

Define the signal-to-noise ratio as:

γs =
2Cσ2

f

2σ2
w

=
Cσ2

f

σ2
w

. (2.383)

Consider the differential detection rule given by [59]:

max
j

Nr∑

l=1

ℜ
{
r̃n, lr̃

∗
n−1, le

−jφj
}

for 1 ≤ j ≤ M (2.384)

and φj is given by (2.380) with i replaced by j. We wish to compute the
probability of deciding in favour of φj given that φi was transmitted. This
happens when

Nr∑

l=1

ℜ
{
r̃n, lr̃

∗
n−1, l

(
e−jφi − e−jφj

)}
< 0

⇒
Nr∑

l=1

ℜ
{
r̃n, lr̃

∗
n−1, l e

−jφi
(
1− e j δi, j

)}
< 0
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⇒
Nr∑

l=1

ℜ
{
r̃n, lr̃

∗
n−1, l e

−jφiBe jα
}
< 0

⇒
Nr∑

l=1

ℜ
{
r̃n, lr̃

∗
n−1, l e

−jφie jα
}
< 0 (2.385)

where δi, j and Be jα are defined in (2.227) and (2.229) respectively. Let

Z =
Nr∑

l=1

ℜ
{
r̃n, lr̃

∗
n−1, l e

−jφie jα
}
. (2.386)

Then

P (φj |φi) = P (Z < 0|φi)

=

∫

r̃n−1

P (Z < 0|r̃n−1, φi) p (r̃n−1) dr̃n−1. (2.387)

Given the vector r̃n−1, Z is a Gaussian distributed random variable, since it is
a linear combination of the elements of r̃n. Let us now compute the conditional
mean and variance of Z.

We begin by making the following observations:

1. The elements of r̃n are independent of each other, for a given value of φi.

2. The elements of r̃n−1 are independent of each other.

3. The random variables r̃n, l and r̃n−1, j are independent for j 6= l. However,
r̃n, l and r̃n−1, l are correlated. Therefore the following relations hold:

p (r̃n, l|r̃n−1, φi) = p (r̃n, l|r̃n−1, l, φi)

⇒ E [r̃n, l|r̃n−1, φi] = E [r̃n, l|r̃n−1, l, φi]

∆
= m̃l. (2.388)

4. Again due to the independence between r̃n, l and r̃n−1, j we have

E [(r̃n, l − m̃l) (r̃n, j − m̃j) |r̃n−1, φi]

= E [(r̃n, l − m̃l) (r̃n, j − m̃j) |r̃n−1, l, r̃n−1, j , φi]

= E [(r̃n, l − m̃l) |r̃n−1, l, φi]E [(r̃n, j − m̃j) |r̃n−1, j , φi]

= 0. (2.389)

Now

p (r̃n, l|r̃n−1, l, φi) =
p (r̃n, l, r̃n−1, l|φi)

p (r̃n−1, l|φi)

=
p (r̃n, l, r̃n−1, l|φi)

p (r̃n−1, l)
(2.390)
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since r̃n−1, l is independent of φi. Let

x̃ =
[
r̃n, l r̃n−1, l

]T
. (2.391)

Clearly

E [x̃|φi] =
[
0 0

]T
. (2.392)

Then the covariance matrix of x̃ is given by:

R̃x̃x̃ =
1

2
E
[
x̃ x̃H |φi

]

=

[
R̃x̃x̃, 0 R̃x̃x̃, 1

R̃∗
x̃x̃, 1 R̃x̃x̃, 0

]

(2.393)

where

R̃x̃x̃, 0 =
1

2
E
[
r̃n, lr̃

∗
n, l|φi

]

=
1

2
E
[
r̃n−1, lr̃

∗
n−1, l

]

= Cσ2
f + σ2

w

R̃x̃x̃, 1 =
1

2
E
[
r̃n, lr̃

∗
n−1, l|φi

]

= Ce j φiRh̃h̃, 1. (2.394)

Now

p (r̃n, l, r̃n−1, l|φi) =
1

(2π)2 ∆
exp

(

−1

2
x̃H R̃−1

x̃x̃ x̃

)

(2.395)

where

∆ = R̃2
x̃x̃, 0 −

∣
∣
∣R̃x̃x̃, 1

∣
∣
∣

2

= det
(

R̃x̃x̃

)

. (2.396)

Observe that r̃n−1, l is a Gaussian random variable with

E [r̃n−1, l] = 0

E
[
r2n−1, l, I

]
= R̃x̃x̃, 0

= E
[
r2n−1, l, Q

]
. (2.397)

Therefore

p (r̃n−1, l) =
1

(

2πR̃x̃x̃, 0

) exp

(

−|r̃n−1, l|2

2R̃x̃x̃, 0

)

. (2.398)

Then it can be shown from (2.390), (2.395) and (2.398) that

p (r̃n, l|r̃n−1, l, φi) =
R̃x̃x̃, 0

(2π∆)
exp



− R̃x̃x̃, 0

2∆

∣
∣
∣
∣
∣
r̃n, l −

r̃n−1, lR̃x̃x̃, 1

R̃x̃x̃, 0

∣
∣
∣
∣
∣

2


 . (2.399)
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Hence r̃n, l is conditionally Gaussian with (conditional) mean and variance given
by:

E [r̃n, l|r̃n−1, l, φi] =
r̃n−1, lR̃x̃x̃, 1

R̃x̃x̃, 0

= m̃l

= ml, I + jml, Q

var (r̃n, l|r̃n−1, l, φi) =
1

2
E
[

|r̃n, l − m̃l|2 |r̃n−1, l, φi

]

= E
[

(rn, l, I −ml, I)
2 |r̃n−1, l, φi

]

= E
[

(rn, l, Q −ml, Q)
2 |r̃n−1, l, φi

]

=
∆

R̃x̃x̃, 0

(2.400)

which is obtained by the inspection of (2.399). Note that (2.399) and the pdf
in (2.13) have a similar form. Hence we observe from (2.399) that the in-phase
and quadrature components of r̃n, l are conditionally uncorrelated, that is

E [(rn, l, I −ml, I) (rn, l, Q −ml, Q) |r̃n−1, l, φi] = 0 (2.401)

and being Gaussian, they are also statistically independent.
Having obtained these results, we are now in a position to evaluate the

conditional mean and variance of Z as defined in (2.386). Using (2.388), the
conditional mean is [59]

E [Z|r̃n−1, φi] =
Nr∑

l=1

ℜ
{
E [r̃n, l|r̃n−1, φi] r̃

∗
n−1, l e

−jφie jα
}

=
Nr∑

l=1

ℜ
{
E [r̃n, l|r̃n−1, l, φi] r̃

∗
n−1, l e

−jφie jα
}

=
Nr∑

l=1

|r̃n−1, l|2 ℜ
{

R̃x̃x̃, 1

R̃x̃x̃, 0

e−jφie jα

}

=
Nr∑

l=1

|r̃n−1, l|2 ℜ
{

CRh̃h̃, 1

CRh̃h̃, 0 + σ2
w

e jα

}

=
Nr∑

l=1

|r̃n−1, l|2
CRh̃h̃, 1

Cσ2
f + σ2

w

cos(α)

=
ρ γs

1 + γs
cos(α)

Nr∑

l=1

|r̃n−1, l|2

∆
= mZ . (2.402)
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Now we need to compute the conditional variance of Z.
Consider a set of independent complex-valued random variables x̃l with mean

m̃l for 1 ≤ l ≤ Nr. Let Ãl (1 ≤ l ≤ Nr) denote a set of complex constants. We
also assume that the in-phase and quadrature components of x̃l are uncorrelated,
that is

E [(xl, I −ml, I)(xl, Q −ml, Q)] = 0. (2.403)

Let the variance of x̃l be denoted by

var (x̃l) =
1

2
E
[

|x̃l − m̃l|2
]

= E
[
(xl, I −ml, I)

2
]

= E
[
(xl, Q −ml, Q)

2
]

∆
= σ2

x. (2.404)

Then

E

[
Nr∑

l=1

ℜ
{

x̃lÃl

}
]

=
Nr∑

l=1

ℜ
{

E [x̃l] Ãl

}

=
Nr∑

l=1

ℜ
{

m̃lÃl

}

=
Nr∑

l=1

ml, IAl, I −ml, QAl, Q. (2.405)

Therefore using (2.403) and independence between x̃l and x̃j for j 6= l, we have

var

(
Nr∑

l=1

ℜ
{

x̃lÃl

})

= var

(
Nr∑

l=1

xl, IAl, I − xl, QAl, Q

)

= E





(
Nr∑

l=1

(xl, I −ml, I)Al, I − (xl, Q −ml, Q)Al, Q

)2




= σ2
x

Nr∑

l=1

∣
∣
∣Ãl

∣
∣
∣

2

. (2.406)

Using the above analogy for the computation of the conditional variance of Z
we have from (2.386), (2.400)

x̃l = r̃n, l

σ2
x =

∆

R̃x̃x̃, 0
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Ãl = r̃∗n−1, l e
−jφie jα

m̃l =
r̃n−1, lR̃x̃x̃, 1

R̃x̃x̃, 0

. (2.407)

Therefore using (2.389) and (2.401) we have [59]

var (Z|r̃n−1, φi) =
∆

R̃x̃x̃, 0

Nr∑

l=1

|r̃n−1, l|2

= σ2
w

[
(1 + γs)

2 − (ργs)
2

1 + γs

] Nr∑

l=1

|r̃n−1, l|2

∆
= σ2

Z . (2.408)

Hence the conditional probability in (2.387) can be written as:

P (Z < 0|r̃n−1, φi) =
1

σZ

√
2π

∫ 0

Z=−∞
exp

(

− (Z −mZ)2

2σ2
Z

)

dZ. (2.409)

Substituting
(Z −mZ)

σZ

√
2

= x (2.410)

we get

P (Z < 0|r̃n−1, φi) =
1√
π

∫ ∞

x=y

e−x2

dx

=
1

2
erfc (y) (2.411)

where

y =
mZ

σZ

√
2

=
ργs cos(α)

σw

√
2(1 + γs)((1 + γs)2 − (ργs)2)

√
√
√
√

Nr∑

l=1

|r̃n−1, l|2 (2.412)

which is similar to (2.308). Finally

P (φj |φi) = P (Z < 0|φi)

=

∫

r̃n−1

P (Z < 0|r̃n−1, φi) p (r̃n−1) dr̃n−1

=

∫ ∞

y=0

P (Z < 0|y, φi) pY (y) dy

=
1√
π

∫ ∞

y=0

∫ ∞

x=y

e−x2

pY (y) dx dy (2.413)
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which is similar to the right-hand-side of (2.309). Hence the solution to (2.413)
is given by (2.320) and (2.321) with

σ2 =
(ργs cos(α))

2

2σ2
w (1 + γs) ((1 + γs)2 − (ργs)2)

E
[
r2n−1, l, I

]

=
(ργs cos(α))

2

2σ2
w (1 + γs) ((1 + γs)2 − (ργs)2)

R̃x̃x̃, 0. (2.414)

Note that when ρ = 0 (the channel gains are uncorrelated), from (2.320) and
(2.321) we get

P (φj |φi) =
1

2
. (2.415)

Thus it is clear that the detection rule in (2.384) makes sense only when the
channel gains are correlated.

The average probability of error is given by (2.323). However due to sym-
metry in the M -ary PSK constellation (2.323) reduces to:

P (e) ≤
M∑

j=1
j 6=i

P (φj |φi) . (2.416)

There is an alternate solution for the last integral in (2.413). Define

µ =

√

2σ2

1 + 2σ2
(2.417)

where σ2 is defined in (2.414). Then [3, 59]

P (φj |φi) =

(
1− µ

2

)Nr Nr−1∑

l=0

(
Nr − 1 + l

l

)(
1 + µ

2

)l

. (2.418)

The theoretical and simulation results for the differential detection of M -
ary PSK in Rayleigh flat fading channels are plotted in Figures 2.32 to 2.34.
The in-phase and quadrature components of the channel gains are generated as
follows:

hn, j, I = ahn−1, j, I +
√

1− a2un, I

hn, j,Q = ahn−1, j, Q +
√

1− a2un,Q for 0 ≤ j < Nr (2.419)

where un, I and un,Q are independent zero-mean Gaussian random variables
with variance σ2

f .

2.10 Summary

In this chapter, we have derived and analyzed the performance of coherent de-
tectors for both two-dimensional and multi-dimensional signalling schemes. A
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Figure 2.32: Theoretical and simulation results for differential BPSK in Rayleigh
flat fading channels for various diversities, with a = 0.995 in (2.419).
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Figure 2.33: Theoretical and simulation results for differential QPSK in Rayleigh
flat fading channels for various diversities, with a = 0.995 in (2.419).
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Figure 2.34: Theoretical and simulation results for differential 8-PSK in Rayleigh
flat fading channels for various diversities, with a = 0.995 in (2.419).

procedure for optimizing a binary two-dimensional constellation is discussed.
The error-rate analysis for non-equiprobable symbols is done. The minimum
SNR required for error-free coherent detection of multi-dimensional orthogo-
nal signals is studied. We have also derived and analyzed the performance of
noncoherent detectors for multidimensional orthogonal signals and M -ary PSK
signals. The problem of optimum detection of signals in coloured Gaussian noise
is investigated. Finally, the performance of coherent and differential detectors
in Rayleigh flat-fading channels is analyzed. A notable feature of this chapter is
that the performance of various detectors is obtained in terms of the minimum
Euclidean distance (d), instead of the usual signal-to-noise ratio. In fact, by
adopting the minimum Euclidean distance measure, we have demonstrated that
the average probability of error for coherent detection is (A/2)erfc (

√
d2/(8σ2

w)),
where A is a scale factor that depends of the modulation scheme. Observe that
all the detection rules presented in this chapter can be implemented in software.

The next chapter is devoted to the study of error control coding schemes,
which result in improved symbol-error-rate or bit-error-rate performance over
the uncoded schemes discussed in this chapter.



Chapter 3

Channel Coding

The purpose of error control coding or channel coding is to reduce the bit-
error-rate (BER) compared to that of an uncoded system, for a given SNR. The
channel coder achieves the BER improvement by introducing redundancy in the
uncoded data. Channel coders can be broadly classified into two groups:

(a) Block coders.

(b) Convolutional coders.

In this chapter, we deal with only convolutional codes since it has got several
interesting extensions like the two-dimensional trellis coded modulation (TCM),
multidimensional trellis coded modulation (MTCM) and last but not the least
– turbo codes – which yield very low bit-error-rates at average signal-to-noise
ratio per bit close to 0 dB. Low density parity check codes (LDPC) are block
coders which are as powerful as turbo codes. There are two different strategies
for decoding convolutional codes:

(a) Maximum likelihood (ML) decoding.

(b) Sequential decoding.

The Viterbi decoder corresponds to maximum likelihood decoding and the Fano
decoder corresponds to sequential decoding. In this chapter we will deal with
only ML decoding and the Viterbi decoder, which is by far the most popularly
used decoder for convolutional codes. The block diagram of the communication
system under consideration is shown in Figure 3.1. The subscript m in the
figure denotes time index. Observe that the uncoded bit sequence is grouped
into non-overlapping blocks of k bits by the serial-to-parallel converter, and n
coded bits are generated for every k-bit uncoded block. The code-rate is defined
as k/n < 1. Thus if the uncoded bit rate is R bits/s then the coded bit-rate
is Rn/k bits/sec. Hence it is clear that channel coding results in an expansion
of bandwidth. Note that the receiver can be implemented in many ways, which
will be taken up in the later sections.
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Figure 3.1: Block diagram of a general convolutional coder.

It is often necessary to compare the performance of different coding schemes.
It is customary to select uncoded BPSK with average power denoted by Pav, b,
as the reference. We now make the following proposition:

Proposition 3.0.1 The energy transmitted by the coded and uncoded modula-
tion schemes over the same time duration must be identical.

The above proposition looks intuitively satisfying, since it would be unfair for
a coding scheme to increase the energy above that of uncoded BPSK and then
claim a coding gain. As an example, assume that k bits are encoded at a time.
If the uncoded bit-rate is R then the duration of k uncoded bits is Tk = k/R.
The transmitted energy of uncoded BPSK in the duration Tk is then Pav, bk.
Then the transmitted energy of any coding scheme in the duration Tk should
also be Pav, bk. This is illustrated in Figure 3.2. A formal proof of the above
proposition using continuous-time signals is given in Chapter 4, section 4.1.3.

Proposition 3.0.2

The average decoded bit error rate performance of any coding scheme must be
expressed in terms of the average power of uncoded BPSK (Pav, b).

This proposition would not only tell us the improvement of a coding scheme with
respect to uncoded BPSK, but would also give information about the relative
performance between different coding schemes. In the next section, we describe
the implementation of the convolutional encoder. The reader is also advised to
go through Appendix C for a brief introduction to groups and fields.
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Figure 3.2: Illustrating Proposition 3.0.1. Note that kA2 = nA′ 2.

3.1 The Convolutional Encoder

Consider the encoder shown in Figure 3.3 [5]. For every uncoded bit, the encoder
generates two coded bits, hence the code rate is 1/2. The encoded outputs at
time m are given by:

c1,m = b1,mg1, 1, 0 + b1,m−1g1, 1, 1 + b1,m−2g1, 1, 2

∆
=

2∑

l=0

g1, 1, lb1,m−l

c2,m = b1,mg1, 2, 0 + b1,m−1g1, 2, 1 + b1,m−2g1, 2, 2

∆
=

2∑

l=0

g1, 2, lb1,m−l (3.1)

where it is understood that all operations are over GF(2), that is

0 + 0 = 0

0 + 1 = 1 + 0 = 1

1 + 1 = 0

⇒ 1 = −1

1 · 1 = 1

0 · 0 = 1 · 0 = 0 · 1 = 0. (3.2)

Observe that addition in GF(2) is an XOR operation whereas multiplication is
an AND operation. Moreover, subtraction in GF(2) is the same as addition.



K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in 99

Input

bit
stream
b1, m

XOR

c1, m

1 bit
memory

1 bit
memory

XOR c2, m

bm = [b1, m]T
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Figure 3.3: A rate-1/2 convolutional encoder.

It must be emphasized that whether ‘+’ denotes real addition or addition over
GF(2), will be clear from the context. Where there is scope for ambiguity, we
explicitly use ‘⊕’ to denote addition over GF(2). In (3.1), bi,m denotes the ith

parallel input at timem, cj,m denotes the jth parallel output at timem and gi, j, l
denotes a connection from the lth memory element along the ith parallel input,
to the jth parallel output. More specifically, gi, j, l = 1 denotes a connection and
gi, j, l = 0 denotes no connection. Note also that bi,m and cj,m are elements of
the set {0, 1}. In the above example, there is one parallel input, two parallel
outputs and the connections are:

g1, 1, 0 = 1

g1, 1, 1 = 1

g1, 1, 2 = 1

g1, 2, 0 = 1

g1, 2, 1 = 0

g1, 2, 2 = 1. (3.3)

Since the expressions in (3.1) denote a convolution sum, the D-transform of the
encoded outputs can be written as:

C1(D) = B1(D)G1, 1(D)

C2(D) = B1(D)G1, 2(D) (3.4)

where B1(D) denotes the D-transform of b1,m and G1, 1(D) and G1, 2(D) denote
the D-transforms of g1, 1, l and g1, 2, l respectively. G1, 1(D) and G1, 2(D) are
also called the generator polynomials. For example in Figure 3.3, the generator
polynomials for the top and bottom XOR gates are given by:

G1, 1(D) = 1 +D +D2
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G1, 2(D) = 1 +D2. (3.5)

For example if
B1(D) = 1 +D +D2 +D3 (3.6)

then using the generator polynomials in (3.5)

C1(D) = (1 +D +D2 +D3)(1 +D +D2)

= 1 +D2 +D3 +D5

∆
=

5∑

m=0

c1,mDm

C2(D) = (1 +D +D2 +D3)(1 +D2)

= 1 +D +D4 +D5

∆
=

5∑

m=0

c2,mDm. (3.7)

The state of the convolutional encoder depends on the contents of the memory
elements. In Figure 3.3 there are two memory elements, hence there are 22 = 4
states which can be labeled 00, 01, 10, 11. According to our convention, the left
bit denotes the contents of the left memory element and the right bit denotes
the contents of the right memory element in Figure 3.3. This convention is
arbitrary, what we wish to emphasize here is that whatever convention is used,
must be consistently followed.

Each encoded bit is a function of the encoder state and the input bit(s).
The encoded bits that are obtained due to different combinations of the encoder
state and the input bit(s), can be represented by a trellis diagram. The trellis
diagram for the encoder in Figure 3.3 is shown in Figure 3.4. The black dots
denote the state of the encoder and the lines connecting the dots denote the
transitions of the encoder from one state to the other. The transitions are
labeled b1,m/c1,mc2,m. The readers attention is drawn to the notation used
here: at time m, the input b1,m in combination with the encoder state yields
the encoded bits c1,m and c2,m. With these basic definitions, we are now ready
to generalize the convolutional encoder. A k/n convolutional encoder can be
represented by a k × n generator matrix:

G(D) =








G1, 1(D) · · · G1, n(D)
G2, 1(D) · · · G2, n(D)

...
...

...
Gk, 1(D) · · · Gk, n(D)








(3.8)

where Gi, j(D) denotes the generator polynomial corresponding to the ith input
and the jth output. Thus the code vector C(D) and the input vector B(D) are
related by:

C(D) = GT (D)B(D) (3.9)
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Figure 3.4: Trellis diagram for the convolutional encoder in Figure 3.3.

where

C(D) =
[
C1(D) . . . Cn(D)

]T

B(D) =
[
B1(D) . . . Bk(D)

]T
. (3.10)

The generator matrix for the rate-1/2 encoder in Figure 3.3 is given by:

G(D) =
[
1 +D +D2 1 +D2

]
. (3.11)

A rate-2/3 convolutional encoder is shown in Figure 3.5. The corresponding
generator matrix is given by:

G(D) =

[
D2 +D3 D +D3 1 +D2

1 +D2 D2 D +D2

]

. (3.12)

The encoder in Figure 3.5 has 25 = 32 states, since there are five memory
elements.

Any convolutional encoder designed using XOR gates is linear since the
following condition is satisfied:

C1(D) = GT (D)B1(D)

C2(D) = GT (D)B2(D)

⇒ (C1(D) +C2(D)) = GT (D) (B1(D) +B2(D))

⇒ C3(D) = GT (D)B3(D). (3.13)

The above property implies that the sum of two codewords is a codeword. Lin-
earity also implies that if

C3(D) = C1(D) +C2(D)

B3(D) = B1(D) +B2(D) (3.14)
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Figure 3.5: A rate-2/3 convolutional encoder.

then

C3(D) + (−C2(D)) = GT (D) (B3(D) + (−B2(D)))

⇒ C3(D) +C2(D) = GT (D) (B3(D) +B2(D))

⇒ C1(D) = GT (D)B1(D) (3.15)

since in GF(2), subtraction is the same as addition. Thus, subtraction of two
codewords gives another codeword. Note that the XOR operation cannot be
replaced by an OR operation, since, even though the OR operation satisfies
(3.13), it does not satisfy (3.15). This is because subtraction (additive inverse)
is not defined in OR operation. Technically speaking, the OR operation does
not constitute a field, in fact, it does not even constitute a group. Thus, an
encoder implemented using OR gates is not linear.

A rate-k/n convolutional encoder is systematic if

G(D) =








1 0 · · · 0 G1, k+1(D) · · · G1, n(D)
0 1 · · · 0 G2, k+1(D) · · · G2, n(D)
...

...
...

...
...

...
...

0 0 · · · 1 Gk, k+1(D) · · · Gk, n(D)








(3.16)

that is, Gi, i(D) = 1 for 1 ≤ i ≤ k and Gi, j(D) = 0 for i 6= j and 1 ≤ i, j ≤ k,
otherwise the encoder is non-systematic. Observe that for a systematic encoder
Ci(D) = Bi(D) for 1 ≤ i ≤ k.
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A rate-1/n non-systematic encoder can be converted to a systematic encoder
by dividing all the elements of G(D) by G1, 1(D). When G1, 1(D) does not ex-
actly divide the remaining elements of G(D), the encoder becomes recursive
due to the presence of the denominator polynomial G1, 1(D). A recursive en-
coder has both feedforward and feedback taps, corresponding to the numerator
and denominator polynomials respectively. A non-recursive encoder has only
feedforward taps. The encoders in Figures 3.3 and 3.5 are non-recursive and
non-systematic. We now explain how to obtain a recursive encoder from an
non-recursive one, with an example.

Consider the generator matrix in (3.11). Dividing all the elements of G(D)
by 1 +D +D2 we get:

G(D) =
[

1 1+D2

1+D+D2

]

. (3.17)

Since 1 +D2 is not divisible by 1+D+D2 the encoder is recursive. The block

Input
bit

stream
b1, m

c1, m

c2, m

bm = [b1, m]T

cm = [c1, m c2,m]T

1 bit
memory

1 bit
memory

ym−2

ym−1

ym

Figure 3.6: Block diagram of a rate-1/2 recursive systematic encoder.

diagram of the encoder is illustrated in Figure 3.6. Note that in the D-transform
domain we have

C2(D) = (1 +D2)Y (D). (3.18)

However

Y (D) = B1(D) +DY (D) +D2Y (D)

⇒ Y (D)−DY (D)−D2Y (D) = B1(D)

⇒ Y (D) +DY (D) +D2Y (D) = B1(D)

⇒ Y (D) =
B1(D)

1 +D +D2
. (3.19)

Substituting (3.19) in (3.18) we get

G1, 2(D) =
C2(D)

B1(D)
=

1 +D2

1 +D +D2
. (3.20)



104 K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in

Since
1 +D2

1 +D +D2
= 1 +D +D2 +D4 +D5 + . . . (3.21)

the encoder has infinite memory.
A convolutional encoder is non-catastrophic if there exists at least one k×n

decoding matrix H(D) whose elements have no denominator polynomials such
that

H(D)GT (D) = Di · Ik. (3.22)

Note that H(D) has kn unknowns, whereas we have only k2 equations (the
right-hand-side is a k × k matrix), hence there are in general infinite solutions
for H(D). However, only certain solutions (if such a solution exists), yield
H(D) whose elements have no denominator polynomials. The absence of any
denominator polynomials in H(D) ensures that the decoder is feedback-free,
hence there is no propagation of errors in the decoder [60]. Conversely, if there
does not exist any “feedback-free” H(D) that satisfies (3.22) then the encoder
is said to be catastrophic. One of the solutions for H(D) is obtained by noting
that

(
G(D)GT (D)

)−1
G(D)GT (D) = Ik. (3.23)

Hence
H(D) =

(
G(D)GT (D)

)−1
G(D). (3.24)

Such a decoding matrix is known as the left pseudo-inverse and almost always
has denominator polynomials (though this does not mean that the encoder is
catastrophic).

Theorem 3.1.1 A necessary and sufficient condition for the existence of a
feedback-free H(D) is that the greatest common divisor of the minors (the de-
terminants of the

(
n
k

)
, k × k matrices) of G(D) should be of equal to Dl for

l ≥ 0 [60,61].

Example 3.1.1 Let

G(D) =

[
1 +D 1 1 +D
D 1 +D 0

]

. (3.25)

Check if the corresponding encoder is catastrophic.

Solution: The minors are:

D1 =

∣
∣
∣
∣

1 +D 1
D 1 +D

∣
∣
∣
∣
= 1+D +D2

D2 =

∣
∣
∣
∣

1 1 +D
1 +D 0

∣
∣
∣
∣
= 1+D2

D3 =

∣
∣
∣
∣

1 +D 1 +D
D 0

∣
∣
∣
∣
= D +D2. (3.26)
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Since
GCD

(
1 +D +D2, 1 +D2, D +D2

)
= 1 (3.27)

the encoder specified by (3.25) is not catastrophic.
Obviously, a systematic encoder cannot be catastrophic, since the input

(uncoded) bits are directly available. In other words, one of the solutions for
the decoding matrix is:

H(D) =








1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 1 0 · · · 0







. (3.28)

Thus, as a corollary, a non-systematic, non-catastrophic convolutional encoder
can always be converted to a systematic convolutional encoder by a series of
matrix operations.

Consider two code sequences C1(D) and C2(D). The error sequence E(D)
is defined as:

E(D) = C1(D) + (−C2(D))

= C1(D) + C2(D) (3.29)

since subtraction in GF(2) is the same as addition. The Hamming distance
between C1(D) and C2(D) is equal to the number of non-zero terms in E(D).
A more intuitive way to understand the concept of Hamming distance is as

follows. Let

L− 1 = max {degree of C1(D), degree of C2(D)} (3.30)

Then E(D) can be represented as a L× 1 vector e, as follows:

e =








e0
e1
...

eL−1








(3.31)

where ei ∈ {0, 1}, for 0 ≤ i ≤ L− 1. Then

dH, c1, c2
∆
= eT · e

=
L−1∑

i=0

ei · ei (3.32)

where the superscript T denotes transpose and the subscript H denotes the
Hamming distance. Note that in the above equation, the addition and multipli-
cation are real. The reader is invited to compare the definition of the Hamming
distance defined above with that of the Euclidean distance defined in (2.121).
Observe in particular, the consistency in the definitions. In the next section we
describe hard decision decoding of convolutional codes.
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Figure 3.7: Alternate structure for the convolutional encoder in Figure 3.3.

3.2 Are the Encoded Symbols Correlated?

In this section we analyze the correlation properties of the encoded symbol
stream. This is necessary because we will show in Chapter 4 that the power
spectral density of the transmitted signal depends on the correlation between
the symbols. In fact it is desirable that the symbols are uncorrelated. In order
to analyze the correlation properties of the encoded bit stream, it is convenient
to develop an alternate structure for the convolutional encoder. An example
is shown in Figure 3.7. Note that the XOR gates have been replaced by real
multiplication and the mapper has been shifted before the convolutional encoder.
Bit 0 gets mapped to +1 and bit 1 gets mapped to −1. The encoded symbols
are related to the input symbols as follows:

S1,m = Sb, 1,mSb, 1, m−1Sb, 1,m−2

S2,m = Sb, 1,mSb, 1, m−2. (3.33)

The important point to note here is that every convolutional encoder (that uses
XOR gates) followed by a mapper can be replaced by a mapper followed by an
alternate “encoder” that uses multipliers instead of XOR gates. Moreover the
mapping operation must be defined as indicated in Figure 3.7.

Let us assume that the input symbols are statistically independent and
equally likely. Then

E[Sb, 1,mSb, 1,m−i] = δK(i). (3.34)

Then clearly
E[S1,m] = E[S2,m] = 0. (3.35)

The various covariances of the encoded symbols are computed as

E[S1,mS1,m−i] = δK(i)

E[S2,mS2,m−i] = δK(i)

E[S1,mS2,m−i] = 0 for all i. (3.36)
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Figure 3.8: Block diagram of hard decision decoding of convolutional codes.

Thus we see that the encoded symbols are uncorrelated. This leads us to con-
clude that error control coding does not in general imply that the encoded
symbols are correlated, though the encoded symbols are not statistically inde-
pendent. We will use this result later in Chapter 4.

3.3 Hard Decision Decoding of CC

Figure 3.8 shows the block diagram for hard decision decoding of convolutional
codes (CC). The encoder is assumed to be rate-k/n. We do not make any
assumptions about the initial state of the encoder. Let us assume that L
uncoded blocks are transmitted. Each block consists of k bits. Then the uncoded
bit sequence can be written as:

b(i) =
[

b
(i)
1, 1 . . . b

(i)
k, 1 . . . b

(i)
1, L . . . b

(i)
k, L

]T

(3.37)

where b
(i)
l,m is taken from the set {0, 1} and the superscript (i) denotes the ith

possible sequence. Observe that there are 2kL possible uncoded sequences and
S possible starting states, where S denotes the total number of states in the
trellis. Hence the superscript i in (3.37) lies in the range

1 ≤ i ≤ S × 2kL. (3.38)

The corresponding coded bit and symbol sequences can be written as:

c(i) =
[

c
(i)
1, 1 . . . c

(i)
n, 1 . . . c

(i)
1, L . . . c

(i)
n,L

]T

S(i) =
[

S
(i)
1, 1 . . . S

(i)
n, 1 . . . S

(i)
1, L . . . S

(i)
n,L

]T

(3.39)

where the symbols S
(i)
l, m are taken from the set {±a} (antipodal constellation)

and again the superscript (i) denotes the ith possible sequence. Just to be
specific, we assume that the mapping from an encoded bit to a symbol is given
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by:

S
(i)
l,m =

{

+a if c
(i)
l,m = 0

−a if c
(i)
l,m = 1

(3.40)

Note that for the code sequence to be uniquely decodeable we must have

S × 2kL ≤ 2nL. (3.41)

In other words, there must be a one-to-one mapping between an input sequence-
starting state combination and the encoded sequence. Note that when

S × 2kL = 2nL (3.42)

the minimum Hamming distance between the encoded sequences is unity (which
is also equal to the minimum Hamming distance between the uncoded sequences)
and there is no coding gain. Thus, a uniquely decodeable code can achieve any
coding gain only when

S × 2kL < 2nL. (3.43)

Since
S = 2M (3.44)

where M is the number of memory elements in the encoder, (3.43) can be
written as:

2kL+M < 2nL

⇒ kL+ M < nL

⇒ L >

⌊
M

n− k

⌋

. (3.45)

Thus, the above equation sets a lower limit on the block length L that can be
considered for decoding. For example, let us consider the encoder in Figure 3.3
having the trellis diagram in Figure 3.4. When the received encoded sequence
is 00 (L = 1), clearly we cannot decide whether a 0 or a 1 has been transmitted.
When the received encoded sequence is 00 00 (L=2), then we can uniquely
decode the sequence to 00. However note that there are two encoded sequences
given by 00 01 and 00 10 which are at the minimum distance of 1 from 00 00.
Thus we cannot get any coding gain by decoding a length two sequence. In
other words, to achieve any coding gain L must be greater than 2.

The received signal can be written as:

r = S(i) +w (3.46)

where

r =
[
r1, 1 . . . rn, 1 . . . r1, L . . . rn,L

]T

=
[
rT1 . . . rTL

]T
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w =
[
w1, 1 . . . wn, 1 . . . w1, L . . . wn, L

]T
(3.47)

where rm is defined in Figure 3.8. We assume that wl, m are samples of AWGN
with zero-mean and variance σ2

w. Observe that all signals in the above equation
are real-valued. The hard decision device shown in Figure 3.8 optimally detects

S
(i)
l,m from rl, m as discussed in section 2.1 and de-maps them to bits (1s and

0s). Hence the output of the hard decision device can be written as

ce = c(i) ⊕ e (3.48)

where ce is not necessarily a code sequence and

e =
[
e1, 1 . . . en, 1 . . . e1, L . . . en,L

]T
(3.49)

denotes the error sequence. Obviously

el,m =

{
0 denotes “no error”
1 denotes “an error”.

(3.50)

The probability of error (which is equal to the probability that el, m = 1) will be

denoted by p and is given by (2.20) with d̃ = 2a. Now the maximum a posteriori
detection rule can be written as (for 1 ≤ j ≤ S × 2kL):

Choose ĉ = c(j) if P (c(j)|ce) is the maximum (3.51)

or more simply:
max

j
P (c(j)|ce). (3.52)

Using Bayes’ rule the above maximization can be rewritten as:

max
j

P (ce|c(j))P (c(j))

P (ce)
. (3.53)

Once again, assuming that all code sequences are equally likely and noting that
the denominator term in the above equation is independent of j, the MAP
detection rule can be simplified to the ML detection rule as follows:

max
j

P (ce|c(j)). (3.54)

Assuming that the errors occur independently, the above maximization reduces
to:

max
j

L∏

m=1

n∏

l=1

P (ce, l, m|c(j)l,m). (3.55)

Let

P (ce, l,m|c(j)l, m) =

{

p for ce, l, m 6= c
(j)
l, m

1− p for ce, l, m = c
(j)
l, m

(3.56)
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where p denotes the probability of error in the coded bit. If dH, j denotes the
Hamming distance between ce and c(j), that is

dH, j =
(

ce ⊕ c(j)
)T

·
(

ce ⊕ c(j)
)

(3.57)

then (3.55) reduces to:

max
j

pdH, j (1 − p)nL−dH, j

⇒ max
j

(
p

1− p

)dH, j

(1− p)nL

⇒ max
j

(
p

1− p

)dH, j

. (3.58)

If p < 0.5 (which is usually the case), then the above maximization is equivalent
to:

min
j

dH, j for 1 ≤ j ≤ S × 2kL. (3.59)

In other words, the maximum likelihood detector decides in favour of that code
sequence c(j), which is nearest in the Hamming distance sense, to ce. The chan-
nel “as seen” by the maximum likelihood detector is called the binary symmetric
channel (BSC). This is illustrated in Figure 3.9. From (3.59), it is clear that

Transmitted
bit bit

Received

0

1

1− p

1− p

p

p

0

1

P (1|1) = P (0|0) = 1− p

P (0|1) = P (1|0) = p

Figure 3.9: The binary symmetric channel. The transition probabilities are given by
p and 1− p.

the complexity of the ML detector increases exponentially with the length of the
sequence to be detected. The Viterbi algorithm is a practical implementation of
the ML detector whose complexity increases linearly with the sequence length.
This is described in the next section.

3.3.1 The Viterbi Algorithm (VA)

Though the decoding matrix H in (3.22) can be used for hard decision decoding
of convolutional codes, we will nevertheless describe the Viterbi decoding algo-
rithm in this section, since it has got applications elsewhere. However, it must
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be emphasized that using the decoding matrix may not always be optimal, in
the sense of minimizing the uncoded bit error rate. A typical example is the de-
coding matrix in (3.28), since it does not utilize the parity bits at all. Consider
a rate-k/n convolutional code. Then k is the number of parallel inputs and n
is the number of parallel outputs. To develop the Viterbi algorithm we use the
following terminology:

(a) Let S denote the number of states in the trellis.

(b) Let Dv denote the detection delay of the Viterbi algorithm.

(c) Let “Weight[S][T]” denote an array representing the accumulated Ham-
ming weight or more generally, the accumulated metric, at state “S” and
time “T”.

(d) Let “PrevState[S][T]” denote the previous state (at time T-1) that leads
to state “S” at time “T”.

(e) Let “PrevInput[S][T]” denote the previous input (at time T-1) that
leads to state “S” at time “T”.

The Viterbi algorithm is now explained below:

1. For State=1 to S
set Weight[State][0]=0

2. From time T1=0, do forever:

2.1 For State=1 to S
set Weight[State][T1+1]=A very large value

2.2 Get the next n bits from the hard decision device.

2.3 For State=1 to S , do the following:

2.3.1 For Input=1 to 2k, do the following:

2.3.1.1 Compute the n code bits corresponding to State and Input.

2.3.1.2 Compute the Hamming distance between the received n bits
in item (2.2) and the code bits in item (2.3.1.1). Call this
distance as dH (dH is also called the branch metric or branch
weight).

2.3.1.3 Compute the NextState corresponding to State and
Input.

2.3.1.4 Let wH = Weight[State][T1]+dH . Note that “+” denotes
real addition.

2.3.1.5 If Weight[NextState][T1+1]> wH then
set Weight[NextState][T1+1]= wH . Note down the
State that leads to NextState as follows:
PrevState[NextState][T1+1]=State.
Note down the Input as follows:
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PrevInput[NextState][T1+1]=Input.
The path leading from State to NextState is called the sur-
viving path and Input is called the surviving input.

2.4 If T1 > Dv then do the following:

2.4.1 For State=1 to S
find the minimum of Weight[State][T1+1]. Denote the mini-
mum weight state as MinWghtState.

2.4.2 Set State=MinWghtState and T=T1+1.

2.4.3 For index=1 to Dv + 1 do the following:

2.4.3.1 PreviousState=PrevState[State][T]

2.4.3.2 input=PrevInput[State][T]

2.4.3.3 State=PreviousState

2.4.3.4 T=T-1

2.4.4 De-map input to bits and declare these bits as the estimated
uncoded bits that occurred at time T1− Dv.

Since the accumulated metrics are real numbers, it is clear that an eliminated
path cannot have a lower weight than the surviving path at a later point in
time. The branch metrics and survivor computation as the VA evolves in time
is illustrated in Figure 3.10 for the encoder in Figure 3.3. Let us now compare
the computational complexity of the VA with that of the ML decoder, for a
block length L. For every block of n received bits, the VA requires O(S × 2k)
operations to compute the survivors. There is an additional Dv operations for
backtracking. Thus for a block length of L the total operations required by the
VA is O(L(S × 2k + Dv)). However, the computational complexity of the ML
decoder is S × 2kL. Thus we see that the complexity of the VA is linear in L
whereas the complexity of the ML detector is exponential in L. In Figure 3.11,
we illustrate the concept of error events and the reason why the VA requires
a detection delay for obtaining reliable decisions. An error event occurs when
the VA decides in favour of an incorrect path that diverges from the correct
path at some point of time and remerges back at a later point of time. This
happens when an incorrect path has a lower weight than the correct path. We
also observe from Figure 3.11 that the survivors at all states at time m have
diverged from the correct path at some previous instant of time. Hence it is
quite clear that if Dv is made sufficiently large [4], then all the survivors at time
m would have merged back to the correct path, resulting in correct decisions by
the VA. Typically, Dv is equal to [3, 61]

Dv = 5 (Length of the minimum distance error event− 1) . (3.60)

For example, the length of the minimum distance error event in Figure 3.13 is 3
time units. In the next section we provide an analysis of hard decision Viterbi
decoding of convolutional codes.
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time 0 time 1 time 0 time 1

Survivors at time 1received bits: 00

Status of VA at time 2

time 0 time 1
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10(0)

01(1)
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0/00(1)

1/11(1)

1/01(2)

time 2

10(0)

01(1)

11(1)

time 1 time 2

received bits: 10 Survivors at time 2

time 2

00(0)

10(0)

01(0)

11(0)

10(0)

01(1)

11(1)

00(0)

00(1)

10(1)

01(0)

11(1)

00(1)

10(1)

01(0)

11(1)

Eliminated path
Survivor path

0/11(2)

1/00(2)
0/10(0)
0/01(3)

1/10(1)

Figure 3.10: Survivor computation in the Viterbi algorithm. Number in bracket
denotes Hamming weight of a branch or state.
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m− 9 m− 8 m− 7 m− 6 m− 5 m− 4 m− 3 m− 2 m− 1 m

duration of
error event Dv = 4

Time

Decoded path (coincides with the correct path most of the time)

Correct path

Survivors at time m

error
event

Figure 3.11: Illustration of the error events and the detection delay of the Viterbi
algorithm.

3.3.2 Performance Analysis of Hard Decision Decoding

In this section we provide a performance analysis of hard decision decoding
of the rate-1/2 encoder shown in Figure 3.3. We begin by first studying the
distance properties of the code words generated by the encoder in Figure 3.3.
The study of distance properties of a code involves the following:

(a) To find out the minimum (Hamming) distance between any two code se-
quences that constitute an error event.

(b) Given a transmitted sequence, to find out the number of code sequences
(constituting an error event) that are at a minimum distance from the
transmitted sequence.

(c) To find out the number of code sequences (constituting an error event)
that are at other distances from the transmitted sequence.

To summarize, we need to find out the distance spectrum [49] with respect to
the transmitted sequence. Note that for linear convolutional encoders, the dis-
tance spectrum is independent of the transmitted sequence. The reasoning is as
follows. Consider (3.13). Let B1(D) denote the reference sequence of length kL
bits that generates the code sequence C1(D). Similarly B2(D), also of length
kL, generates C2(D). Now, the Hamming distance between C3(D) and C1(D)
is equal to the Hamming weight of C2(D), which in turn is dependent only on
B2(D). Extending this concept further, we can say that all the 2kL combina-
tions of B2(D) would generate all the valid codewords C2(D). In other words,
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the distance spectrum is generated merely by taking different combinations of
B2(D). Thus, it is clear that the distance spectrum is independent of B1(D) or
the reference sequence.

At this point we wish to emphasize that only a subset of the 2kL combinations
of B2(D) generates the distance spectrum. This is because, we must consider
only those codewords C3(D) that merges back to C1(D) (and does not diverge
again) within L blocks. It is assumed thatC1(D) andC3(D) start from the same
state. Hence, for convenience we will assume that the all-zero uncoded sequence
has been transmitted. The resulting coded sequence is also an all-zero sequence.
We now proceed to compute the distance spectrum of the codes generated by
the encoder in Figure 3.3. In Figure 3.12 we show the state diagram for the

X2Y
X

Y

Sb (10)

Sd (11)

Sc (01) Se (00)

X

XY

Sa (00)

XY

X2

Figure 3.12: The state diagram for the encoder of Figure 3.3.

encoder in Figure 3.3. The state diagram is just an alternate way to represent
the trellis. The transitions are labeled as exponents of the dummy variables X
and Y . The exponent of X denotes the number of 1s in the encoded bits and
the exponent of Y denotes the number of 1s in the uncoded (input) bit. Observe
that state 00 has been repeated twice in Figure 3.12. The idea here is to find out
the transfer function between the output state 00 and the input state 00 with
the path gains represented as X iY j . Moreover, since the reference path is the
all-zero path, the self-loop about state zero is not shown in the state diagram.
In other words, we are interested in knowing the characteristics of all the other
paths that diverge from state zero and merge back to state zero, excepting the
all-zero path. The required equations to derive the transfer function are:

Sb = X2Y Sa + Y Sc

Sc = XSb +XSd

Sd = XY Sb +XY Sd

Se = X2Sc. (3.61)

From the above set of equations we have:

Se

Sa
=

X5Y

1− 2XY

= (X5Y ) · (1 + 2XY + 4X2Y 2
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+ 8X3Y 3 + . . .)

= X5Y + 2X6Y 2 + 4X7Y 3 + . . .

=
∞∑

dH=dH,min

AdHX
dHY dH−dH,min+1 (3.62)

where AdH is the multiplicity [49], which denotes the number of sequences that
are at a Hamming distance dH from the transmitted sequence. The series ob-
tained in the above equation is interpreted as follows (recall that the all-zero
sequence is taken as the reference):

(a) There is one encoded sequence of weight 5 and the corresponding weight
of the uncoded (input) sequence is 1.

(b) There are two encoded sequences of weight 6 and the corresponding weight
of the uncoded sequence is 2.

(c) There are four encoded sequences of weight 7 and the corresponding weight
of the uncoded sequence is 3 and so on.

From the above discussion it is clear that the minimum distance between any
two code sequences is 5. A minimum distance error event (MDEE) is said to
occur when the VA decides in favour of a code sequence that is at a minimum
distance from the transmitted code sequence. The MDEE for the encoder in
Figure 3.3 is shown in Figure 3.13. The distance spectrum for the code generated

0/00 0/00 0/00

m− 3 m− 2 m− 1 mTime

1/11

0/10

0/11

Figure 3.13: The minimum distance error event for the encoder in Figure 3.3.

by the encoder in Figure 3.3 is shown in Figure 3.14. We emphasize that for
more complex convolutional encoders (having a large number of states), it may
be too difficult to obtain closed-form expressions for the distance spectrum, like
the one given in (3.62). In such situations, one has to resort to a computer
search through the trellis, to arrive at the distance spectrum for the code.

We now derive a general expression for the probability of an uncoded bit
error when the Hamming distance between code sequences constituting an error
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1
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4

3

5 6 7

dH

AdH

Figure 3.14: The distance spectrum for the code generated by encoder in Figure 3.3.

event is dH . We assume that the error event extends over L blocks, each block
consisting of n coded bits. Let c(i) be a nL × 1 vector denoting a transmitted
code sequence (see (3.39)). Let c(j) be another nL× 1 vector denoting a a code
sequence at a distance dH from c(i). Note that the elements of c(i) and c(j)

belong to the set {0, 1}. We assume that c(i) and c(j) constitute an error event.
Let the received sequence be denoted by ce. Then (see also (3.48))

ce = c(i) ⊕ e (3.63)

where e is the nL× 1 error vector introduced by the channel and the elements
of e belong to the set {0, 1}. The VA makes an error when

(

ce ⊕ c(i)
)T

·
(

ce ⊕ c(i)
)

>
(

ce ⊕ c(j)
)T

·
(

ce ⊕ c(j)
)

⇒ eT · e > (ei, j ⊕ e)T · (ei, j ⊕ e) (3.64)

where
ei, j = c(i) ⊕ c(j) (3.65)

and · denotes real multiplication. Note that the right hand side of (3.64) cannot
be expanded. To overcome this difficulty we replace ⊕ by − (real subtraction).
It is easy to see that

(ei, j ⊕ e)T · (ei, j ⊕ e) = (ei, j − e)T · (ei, j − e) . (3.66)

Thus (3.64) can be simplified to:

eT · e > dH − 2eTi, j · e+ eT · e
⇒ eTi, j · e > dH/2

⇒
nL∑

l=1

ei, j, l · el > dH/2. (3.67)

Observe that in the above equation, we have used the relationship:

eTi, j · ei, j = dH . (3.68)
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We can draw the following conclusions from (3.67):

(a) When ei, j, l = 0, there is no contribution to the summation independent
of whether el is equal to one or zero (independent of whether the channel
introduces an error or not).

(b) When ei, j, l = 1, then el = 1 contributes to the summation. This state-
ment and the statement in item (a) imply that only those encoded bit
errors are considered, which occur in locations where the ith and jth code-
words differ. Note that according to (3.68), the ith and jth codewords
differ in dH locations. Suppose there are k (k ≤ dH) locations where
el = ei, j, l = 1. This can happen in

(
dH

k

)
ways.

(c) The maximum value of the summation is dH .

Assuming that dH is odd, let

dH, 1 = (dH + 1)/2. (3.69)

Based on the conclusions in items (a)–(c), the probability of the error event can
be written as:

P
(

c(j)|c(i)
)

=
dH∑

k=dH, 1

(
dH
k

)

pk(1 − p)dH−k

≈
(

dH
dH, 1

)

pdH, 1 for p ≪ 1. (3.70)

Substituting for p from (2.20) with d̃ = 2a (refer to (3.40)) we get

P
(

c(j)|c(i)
)

=

(
dH
dH, 1

)[

0.5× erfc

(√

a2

2σ2
w

)]dH, 1

. (3.71)

Using the Chernoff bound for the complementary error function, we get

P (c(j)|c(i)) <
(

dH
dH, 1

)

exp

(

−a2dH, 1

2σ2
w

)

. (3.72)

Next we observe that a2 is the average transmitted power for every encoded bit.
Following Propositions 3.0.1 and 3.0.2 we must have

kPav, b = a2n. (3.73)

Substituting for a2 from the above equation into (3.72) we get:

P (c(j)|c(i)) <
(

dH
dH, 1

)

exp

(

−Pav, bkdH, 1

2nσ2
w

)

. (3.74)
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When dH is even, then it can be similarly shown that

P (c(j)|c(i)) < 1

2

(
dH
dH, 1

)

exp

(

−Pav, bkdH, 1

2nσ2
w

)

(3.75)

where the factor 1/2 is due to the fact that the VA decides in favour of c(i) or
c(j) with equal probability and

dH, 1 = dH/2. (3.76)

From equations (3.74) and (3.75) it is clear that P (c(j)|c(i)) is independent of
c(i) and c(j), and is dependent only on the Hamming distance dH , between the
two code sequences. Hence for simplicity we write:

P (c(j)|c(i)) = Pee,HD(dH) (3.77)

where Pee,HD(dH) denotes the probability of error event characterized by Ham-
ming distance dH between the code sequences. The subscript “HD” denotes
hard decisions. We now proceed to compute the probability of bit error. Let

0 t1 tm L1 − 1

Decoded path

Correct path

1st error event mth error event

Figure 3.15: Relation between the probability of error event and bit error probability.

b(i) denote the kL× 1 uncoded vector that yields c(i). Similarly, let b(j) denote
the kL× 1 uncoded vector that yields c(j). Let

(

b(i) ⊕ b(j)
)T

·
(

b(i) ⊕ b(j)
)

= wH(dH). (3.78)

Now consider Figure 3.15, where we have shown a sequence of length L1 blocks
(nL1 coded bits), where L1 is a very large number. Let us assume that m
identical (in the sense that c(j) is detected instead of c(i)) error events have
occurred. We assume that the Hamming distance between the code sequences
constituting the error event is dH and the corresponding Hamming distance
between the information sequences is wH(dH). Observe that the error events
occur at distinct time instants, namely t1, . . . , tm. In computing the probability
of bit error, we assume that the error event is a random process [2, 22, 62–64]
which is stationary and ergodic. Stationarity implies that the probability of the
error event is independent of time, that is, t1, . . . , tm. Ergodicity implies that
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the ensemble average is equal to the time average. Note that the error event
probability computed in (3.75) is actually an ensemble average.

Using ergodicity, the probability of error event is

Pee,HD(dH) =
m

L1
. (3.79)

The probability of bit error is

Pb,HD(dH) =
mwH(dH)

kL1
(3.80)

since there are kL1 information bits in a block length of L1 and each error event
contributes wH(dH) errors in the information bits. Thus the probability of bit
error is

Pb,HD(dH) =
wH(dH)

k
Pee,HD(dH). (3.81)

Observe that this procedure of relating the probability of bit error with the
probability of error event is identical to the method of relating the probability
of symbol error and bit error for Gray coded PSK constellations. Here, an error
event can be considered as a “symbol” in an M -PSK constellation.

Let us now assume that there are AdH sequences that are at a distance dH
from the transmitted sequence i. In this situation, applying the union bound
argument, (3.81) must be modified to

Pb,HD(dH) ≤ Pee,HD(dH)

k

AdH∑

l=1

wH, l(dH) (3.82)

where wH, l(dH) denotes the Hamming distance between b(i) and any other
sequence b(j) such that (3.68) is satisfied. The average probability of uncoded
bit error is given by the union bound:

Pb,HD(e) ≤
∞∑

dH=dH,min

Pb,HD(dH) (3.83)

When p ≪ 1 then Pb,HD(e) is dominated by the minimum distance error event
and can be approximated by:

Pb,HD(e) ≈ Pb,HD(dH,min). (3.84)

For the encoder in Figure 3.3 dH,min = 5, dH, 1 = 3, k = 1, n = 2, wH, 1(5) = 1,
and AdH, min = 1. Hence (3.84) reduces to:

Pb,HD(e) < 10 exp

(

−3Pav, b

4σ2
w

)

(3.85)

Note that the average probability of bit error for uncoded BPSK is given by
(from (2.20) and the Chernoff bound):

Pb,BPSK,UC(e) < exp

(

−Pav, b

2σ2
w

)

(3.86)
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where the subscript “UC” denotes uncoded and we have substituted

∣
∣
∣d̃
∣
∣
∣

2

= 4Pav, b (3.87)

in (2.20). Ignoring the term outside the exponent (for high SNR) in (3.85) we
find that the performance of the convolutional code in Figure 3.3, with hard
decision decoding, is better than uncoded BPSK by

10 log

(
0.75

0.5

)

= 1.761 dB. (3.88)

However, this improvement has been obtained at the expense of doubling the
transmitted bandwidth. In Figure 3.16 we compare the theoretical and simu-
lated performance of hard decision decoding for the convolutional encoder in
Figure 3.3. In the figure, SNRav, b denotes the SNR for uncoded BPSK, and is
computed as (see also (2.32))

SNRav, b =
Pav, b

2σ2
w

. (3.89)

The theoretical performance was obtained as follows. Note that both dH =
5, 6 yield dH, 1 = 3. Hence we need to consider the first two spectral lines
in the expression for the bit error probability. From (3.62) we note that the
multiplicity of the first spectral line (dH = 5) is one and the Hamming weight
of the information sequence is also one. The multiplicity of the second spectral
line (dH = 6) is two (A6 = 2) and the corresponding Hamming weight of the
information sequence is also two (wH, l(6) = 2 for l = 1, 2). Thus the average
probability of bit error can be obtained from the union bound as

Pb,HD(e) ≈
(
5

3

)

p3 +
1

2

(
6

3

)

p3
A6∑

l=1

wH, l(6) (3.90)

where p is the probability of error at the output of the hard decision device and
is given by

p = 0.5× erfc

(√

a2

2σ2
w

)

= 0.5× erfc

(√

Pav, b

4σ2
w

)

. (3.91)

We have not used the Chernoff bound for p in the plot since the bound is loose
for small values of SNRav, b. Substituting A6 = 2 and wH, l(6) = 2 for l = 1, 2
in (3.90) we get

Pb,HD(e) ≈ 50p3. (3.92)

We find that the theoretical performance given by (3.92) coincides with the
simulated performance. In Figure 3.17 we illustrate the performance of the VA
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Figure 3.16: Theoretical and simulated performance of hard decision decoding.
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Figure 3.17: Simulated performance of VA hard decision for different decoding de-
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using hard decisions for different decoding delays. We find that there is no
difference in performance for Dv = 10, 40. Note that Dv = 10 corresponds to
five times the memory of the encoder. For Dv = 4 the performance degradation
is close to 1.5 dB. In the next section we study the performance of soft decision
decoding of convolutional codes which achieves a better performance than hard
decision decoding.

3.4 Soft Decision Decoding of CC

From

rm = [r1, m . . . rn,m]T

ViterbiSerial
to

parallel
converter

(soft
algorithm

n

rm

samples
decision)

channel

b̂m−Dv

b̂m = [b̂1, m . . . b̂k,m]T

Figure 3.18: Block diagram of soft decision decoding of convolutional codes.

The block diagram of soft decision decoding of convolutional codes (CC) is
given in Figure 3.18. Note that the VA operates directly on the received samples
r. Following the developments in section 3.3, let the received signal be given by
(3.46). Let S denote the number of trellis states. The MAP detection rule can
be written as:

max
j

P (S(j)|r) for 1 ≤ j ≤ S × 2kL (3.93)

which, due to the usual arguments results in

max
j

p(r|S(j)) for 1 ≤ j ≤ S × 2kL. (3.94)

Since the noise samples are assumed to be uncorrelated (see (3.47)), the above
equation can be written as:

max
j

1

(2πσ2
w)

nL/2
exp




−

∑L
m=1

∑n
l=1

(

rl, m − S
(j)
l,m

)2

2σ2
w






⇒min
j

L∑

m=1

n∑

l=1

(

rl, m − S
(j)
l,m

)2

for 1 ≤ j ≤ S × 2kL. (3.95)

Thus the soft decision ML detector decides in favour of the sequence that is
closest, in terms of the Euclidean distance, to the received sequence.

Once again, we notice that the complexity of the ML detector increases
exponentially with the length of the sequence (kL) to be detected. The Viterbi
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algorithm is a practical way to implement the ML detector. The only difference
is that the branch metrics are given by the inner summation of (3.95), that is:

n∑

l=1

(

rl, m − S
(j)
l

)2

for 1 ≤ j ≤ S × 2k (3.96)

where the superscript j now varies over all possible states and all possible inputs.
Observe that due to the periodic nature of the trellis, the subscript m is not

required in S
(j)
l in (3.96). It is easy to see that a path eliminated by the VA

cannot have a lower metric (or weight) than the surviving path at a later point
in time.

The performance of the VA based on soft decisions depends on the Euclidean
distance properties of the code, that is, the Euclidean distance between the sym-
bol sequences S(i) and S(j). There is a simple relationship between Euclidean
distance (d2E) and Hamming distance dH as given below:

(

S(i) − S(j)
)T

·
(

S(i) − S(j)
)

= 4a2 ·
(

c(i) ⊕ c(j)
)T

·
(

c(i) ⊕ c(j)
)

⇒ d2E = 4a2dH . (3.97)

Due to the above equation, it is easy to verify that the distance spectrum is
independent of the reference sequence. In fact, the distance spectrum is simi-
lar to that for the VA based on hard decisions (see for example Figure 3.14),
except that the distances have to be scaled by 4a2. The relationship between
multiplicities is simple:

AdE = AdH (3.98)

where AdE denotes the number of sequences at a Euclidean distance dE from
the reference sequence. It is customary to consider the symbol sequence S(i)

corresponding to the all-zero code sequence, as the reference.

3.4.1 Performance Analysis of Soft Decision Decoding

In this section we compute the probability that the VA decides in favour of
sequence S(j) given that sequence S(i) has been transmitted. We assume that
S(i) and S(j) constitute an error event. The VA decides in favour of S(j) when

L∑

m=1

n∑

l=1

(

rl, m − S
(j)
l,m

)2

<
L∑

m=1

n∑

l=1

(

rl, m − S
(i)
l,m

)2

⇒
L∑

m=1

n∑

l=1

(el,m + wl,m)2 <
L∑

m=1

n∑

l=1

w2
l, m

⇒
L∑

m=1

n∑

l=1

(
e2l,m + 2el,mwl, m

)
< 0 (3.99)
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where wl, m are the noise samples in (3.47) and

el,m = S
(i)
l,m − S

(j)
l,m. (3.100)

Let

Z
∆
= 2

L∑

m=1

n∑

l=1

el,mwl, m. (3.101)

Then Z is a Gaussian random variable with mean and variance given by:

E[Z] = 0

E
[
Z2
]
= 4σ2

wd
2
E (3.102)

where

d2E
∆
=

L∑

m=1

n∑

l=1

e2l,m. (3.103)

The probability of the error event is given by:

P
(

S(j)|S(i)
)

= P
(
Z < −d2E

)

=
1

2
erfc

(√

d2E
8σ2

w

)

. (3.104)

Substituting for d2E from (3.97) and for a2 from (3.73) and using the Chernoff
bound in the above equation, we get

P
(

S(j)|S(i)
)

=
1

2
erfc

(√

4a2dH
8σ2

w

)

=
1

2
erfc

(√

Pav, bkdH
2nσ2

w

)

< exp

(

−Pav, bkdH
2nσ2

w

)

= Pee, SD(dH) (say). (3.105)

The subscript “SD” in Pee,SD(·) denotes soft decision. Comparing (3.105) and
(3.74) we see that the VA based on soft decisions straightaway gives approxi-
mately 3 dB improvement in performance over the VA based on hard decisions.
Once again, if b(i) denotes the input (uncoded) sequence that maps to S(i), and
similarly if b(j) maps to S(j), the probability of uncoded bit error corresponding
to the error event in (3.105) is given by

Pb, SD(dH) =
wH(dH)

k
Pee,SD(dH) (3.106)
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which is similar to (3.81) with wH(dH) given by (3.78). When the multiplicity
at distance dH is equal to AdH , the probability of bit error in (3.106) must be
modified to

Pb, SD(dH) ≤ Pee, SD(dH)

k

AdH∑

l=1

wH, l(dH) (3.107)

where wH, l(dH) denotes the Hamming distance between b(i) and any other
sequence b(j) such that the Hamming distance between the corresponding code
sequences is dH . The average probability of uncoded bit error is given by the
union bound

Pb, SD(e) ≤
∞∑

dH=dH,min

Pb, SD(dH) (3.108)

which, for large values of signal-to-noise ratios, Pav, b/(2σ2
w), is well approxi-

mated by:
Pb, SD(e) ≈ Pb, SD(dH,min). (3.109)

Let us once again consider the encoder in Figure 3.3. Noting that wH(5) = 1,
AdH,min = 1, k = 1, n = 2 and dH,min = 5, we get the average probability of bit
error as:

Pb, SD(e) < exp

(

−5Pav, b

4σ2
w

)

. (3.110)

Ignoring the term outside the exponent in the above equation and comparing
with (3.86), we find that the performance of the convolutional code in Figure 3.3
is better than uncoded BPSK by

10 log

(
5× 2

4

)

= 3.98 dB (3.111)

which is a significant improvement over hard decision decoding. However, note
that the improvement is still at the expense of doubling the bandwidth. In
Figure 3.19 we have plotted the theoretical and simulated performance of VA
with soft decision, for the encoder in Figure 3.3. The theoretical performance
was plotted using the first three spectral lines (dH = 5, 6, 7) in (3.62). Using
the union bound we get

Pb, SD(e) ≈
1

2
erfc

(√

5Pav, b

4σ2
w

)

+
4

2
erfc

(√

6Pav, b

4σ2
w

)

+
12

2
erfc

(√

7Pav, b

4σ2
w

)

. (3.112)

Once again we find that the theoretical and simulated curves nearly overlap.
In Figure 3.20 we have plotted the performance of the VA with soft decisions
for different decoding delays. It is clear that Dv must be equal to five times
the memory of the encoder, to obtain the best performance. We have so far
discussed coding schemes that increase the bandwidth of the transmitted signal,
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Figure 3.19: Theoretical and simulated performance of VA with soft decision.
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since n coded bits are transmitted in the same duration as k uncoded bits. This
results in bandwidth expansion. In the next section, we discuss Trellis Coded
Modulation (TCM), wherein the n coded bits are mapped onto a symbol in a
2n-ary constellation. Thus, the transmitted bandwidth remains unchanged.

3.5 Trellis Coded Modulation (TCM)

Uncoded

bit
stream

to
Convolutional

Encoder
set

Mapping

by

partitioning

One symbol

S
(i)
m

Decoded

stream

Viterbi
Algorithm

(soft
decision)

AWGN

bm =
[
b1, m · · · bk,m

]T

cm = [c1, m · · · cn,m]T

rm

Serial

parallel
converter

k

bits

bm cm

n

bits

bit

Figure 3.21: Block diagram of a trellis coded modulation scheme (TCM).

The concept of trellis coded modulation was introduced by Ungerboeck
in [65]. A tutorial exposition can be found in [66, 67]. A more general class
of TCM codes known as coset codes is discussed in [68–70]. An interesting
review of trellis codes can also be found in [71, 72]. A detailed performance
analysis of trellis codes can be found in [73]. In practical situations, the carrier
synchronization procedures at the receiver exhibit 90o-phase ambiguities. This
implies that the received symbol sequence gets multiplied by e j θ where θ is an
integer multiple of 90o. The decoder at the receiver should be able to correctly
estimate the symbol sequence, in spite of this impairment. This calls for proper
design of trellis codes, such that they are insensitive to such rotations. These
aspects are discussed in detail in [74, 75]. The concept of rotational invari-
ance is also required in the design of convolutional codes, and this is dealt with
in [76, 77]. Comparing Figures 3.21 and 3.18 we find that a new block called
mapping by set partitioning as been included. This block maps the n coded
bits to a symbol in a 2n-ary constellation. The mapping is done in such a way
that the squared Euclidean distance between symbol sequences constituting an
error event, is maximized. Note that if TCM was not used, the k uncoded bits
would get mapped onto a 2k-ary constellation. From Proposition 3.0.1 we have:

kPav, b = Average power of the M = 2n-ary constellation. (3.113)
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Using (3.113) it can be shown that the minimum Euclidean distance of the
M -ary constellation is less than that of uncoded BPSK. This suggests that
symbol-by-symbol detection would be suboptimal, and we need to go for se-
quence detection (detecting a sequence of symbols) using the Viterbi algorithm.
We now proceed to describe the concept of mapping by set partitioning.

3.5.1 Mapping by Set Partitioning

Set partitioning essentially involves dividing the constellation into subsets with
increasing minimum distance between symbols. This is illustrated in Figure 3.22
for the QPSK constellation, in Figure 3.23 for the 8-PSK constellation and in
Figure 3.24 for the 16-QAM constellation. The number of levels into which a
constellation is to be partitioned is determined by the encoder design, as we
shall see below [73]. The next step is to map the n coded bits into symbols

Level 0: d2E,min = a21

Level 1: d2E,min = 2a21

00

11 10

01

Figure 3.22: Set partitioning of the QPSK constellation.

Level 0 d2E,min = 4R2 sin2(π/8)

d2E,min = 2R2

d2E,min = 4R2

101001

110

000

100

010

111

011

Level 2

Level 1

Figure 3.23: Set partitioning of the 8-PSK constellation.

in the partitioned constellation. At this point we need to identify two kinds of
TCM encoders. The first kind of encoder has systematic bits, as illustrated in
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Figure 3.24: Set partitioning of the 16-QAM constellation.
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Figure 3.25: Illustration of mapping by set partitioning for first type of encoder.
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Figure 3.25. Here there are k2 systematic (uncoded) bits. Observe that the k2
uncoded bits result in 2k2 parallel transitions between states, since these bits
have no effect on the encoder state. Here the maximum level of partitioning
required is equal to n−k2. There are 2k2 points in each subset at partition level
n− k2. The total number of subsets at partition level n− k2 is equal to 2n−k2 .

We now have to discuss the rules for mapping the codewords to symbols.
These rules are enumerated below for the first type of encoder (having systematic
bits).

(a) In the trellis diagram there are 2k distinct encoder outputs diverging from
any state. Hence, all encoder outputs that diverge from a state must be
mapped to points in a subset at partition level n− k.

(b) The encoded bits corresponding to parallel transitions must be mapped
to points in a subset at the partition level n−k2. The subset, at partition
level n−k2, to which they are assigned is determined by the n1 coded bits.
The point in the subset is selected by the k2 uncoded bits. The subsets
selected by the n1 coded bits must be such that the rule in item (a) is
not violated. In other words, the subset at partition level n− k must be
a parent of the subset at partition level n− k2.

to subset

bits

Convolutional

encoder
n

bits

Mapping by

set partitioning

Map

at level

n− k

Output

symbol

k
uncoded

Figure 3.26: Illustration of mapping by set partitioning for second type of encoder.

The second type of encoder has no systematic bits. This is illustrated in Fig-
ure 3.26. Here again we observe that there are 2k distinct encoder outputs that
diverge from any state. Hence these outputs must be mapped onto a subset at
level n − k. Observe that there are 2k points in each subset, at partition level
n− k. The number of subsets at partition level n− k is equal to 2n−k.

These rules ensure that the minimum squared Euclidean distance between
the encoded symbol sequences constituting an error event, is maximized. To
illustrate the above ideas let us again consider the trellis diagram in Figure 3.27
corresponding to the encoder in Figure 3.3. In this case k = 1 and n = 2.
Hence the coded bits must be mapped to a QPSK constellation. Moreover,
k2 = 0, therefore we need to only follow the rule in item (a). Thus the encoded
bits 00 and 11 must be mapped to a subset in partition level n − k = 1. The
encoded bits 01 and 10 must be mapped to the other subset in partition level 1.
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This is illustrated in Figure 3.22. As another example, consider the encoder in
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1111
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10

0/00

0/11
1/11

1/00

0/10

0/01
1/01

1/10

state at
time m+ 1

state at
time m

Figure 3.27: Trellis diagram for the convolutional encoder in Figure 3.3.

Figure 3.28. The corresponding trellis diagram is shown in Figure 3.29. Since
n = 3, the coded bits must be mapped to an 8-PSK constellation (note that the
8-QAM constellation cannot be used since it cannot be set partitioned). In this
case k2 = 1 and the rules in item (a) and (b) are applicable. Thus, following
rule (a), the encoded bits 000, 100, 010 and 110 must be mapped to a subset
in partition level n − k = 1. The encoded bits 001, 101, 011 and 111 must be
mapped to the other subset in partition level 1. Following rule (b), the encoded
bits 000 and 100 must be mapped to a subset in partition level n− k2 = 2. The
encoded bits 010 and 110 must be mapped to another subset in partition level 2
such that rule (a) is satisfied. This is illustrated in Figure 3.23. Note that once
the subset is selected, the mapping of the k2 uncoded bits to points within the
subset, can be done arbitrarily. In the next section we study the performance
of some TCM schemes.

3.5.2 Performance of TCM Schemes

Just as in the case of convolutional codes with soft decision decoding, the per-
formance of TCM schemes depends on the Euclidean distance spectrum of the
codes generated by the encoder. In general, TCM codes are not regular, that
is, the Hamming distance between between any two encoded bit sequences may
not be proportional to the Euclidean distance between the corresponding sym-
bol sequences. This is illustrated in Figure 3.30. The trellis corresponds to the
encoder in Figure 3.28. The encoded symbols are mapped to the 8-PSK con-
stellation in Figure 3.23. The Hamming distance between parallel transitions is
one. The corresponding squared Euclidean distance between parallel transitions
is 4R2. Thus the ratio of Euclidean to Hamming distance is 4R2. Let us now
consider an error event extending over three symbols, as shown in Figure 3.30.
The Hamming distance between the code sequences is four (assuming the all
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Figure 3.28: A rate-2/3 convolutional encoder.
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Figure 3.29: Trellis diagram for encoder in Figure 3.28.
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Figure 3.30: Illustration of non-regularity of TCM codes.
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zero sequence as the reference), whereas the squared Euclidean distance is

d2E = 4R2
(
1 + sin2(π/8)

)
. (3.114)

The ratio of Euclidean to Hamming distance in this case is

4R2
(
1 + sin2(π/8)

)

4
6= 4R2. (3.115)

Hence the TCM code specified by Figure 3.28 and the mapping in Figure 3.23
is not regular.

In general for TCM codes (3.97) is not satisfied excepting for a special case
where a rate-1/2 encoder is used and the two code bits are mapped to a QPSK
constellation. This will be clear from the following theorems.

Theorem 3.5.1 The necessary and sufficient condition for a TCM code (using
a rate-k/n encoder) to be regular is that the mapping of the n-bit codeword to
the 2n-ary constellation should be regular.

Proof: Consider the mapping

c(i) → S̃(i) for 1 ≤ i ≤ 2n (3.116)

where c(i) is a n × 1 codeword and S̃(i) is a symbol in a 2n-ary two-
dimensional constellation. The mapping of codewords to symbols is said
to be regular if

∣
∣
∣S̃(i) − S̃(j)

∣
∣
∣

2

= C
(

c(i) ⊕ c(j)
)T (

c(i) ⊕ c(j)
)

(3.117)

where C is a constant. Let us now consider the ith code sequence denoted
by the nL× 1 vector

C(i) =

[
(

c
(i)
1

)T

. . .
(

c
(i)
L

)T
]T

(3.118)

and the corresponding symbol sequence

S(i) =
[

S
(i)
1 . . . S

(i)
L

]T

. (3.119)

Then clearly

(

S(i) − S(j)
)H (

S(i) − S(j)
)

=
L∑

k=1

∣
∣
∣S̃

(i)
k − S̃

(j)
k

∣
∣
∣

2

= C
L∑

k=1

(

c
(i)
k ⊕ c

(j)
k

)T (

c
(i)
k ⊕ c

(j)
k

)

= C
(

C(i) ⊕C(j)
)T (

C(i) ⊕C(j)
)

.

(3.120)
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Thus, if the mapping is regular then the Euclidean distance between sym-
bols sequences is proportional to the Hamming distance between the cor-
responding code sequences (sufficient condition). The condition in (3.117)
is also necessary because if the mapping is not regular then the TCM code
is also not regular ((3.120) is not satisfied). In [73], this property is re-
ferred to as strong sense regularity. Note that weak sense regularity [73]
(as opposed to strong sense regularity) implies that the Euclidean distance
is proportional to the Hamming distance between the symbols in a subset
of the constellation. This property is valid for the first type of encoder
having at most two systematic bits k2 ≤ 2. Thus, it is easy to see that for
any subset at level n − k2, the Euclidean distance is proportional to the
Hamming distance.

Regularity is a property that is nice to have, since we are guaranteed
that the Euclidean distance spectrum is independent of the reference se-
quence, therefore we can take the all-zero information sequence (b(i)) as
the reference. However, this may not be always possible as we shall see
below.

Theorem 3.5.2 There cannot be a regular mapping of n-bit codeword to a two-
dimensional constellation for n ≥ 3 [49].

Proof: The number of nearest neighbours for an n-bit codeword is n (at a Ham-
ming distance of unity). This is true for all the 2n codewords. However
in two-dimensional space there cannot be n nearest neighbours, for all the
2n symbols, for n ≥ 3. Hence proved. As a corollary, TCM codes for
n ≥ 3 are not regular, therefore the Euclidean distance spectrum cannot
be obtained from the Hamming distance spectrum.

However, most TCM codes are quasiregular, that is, the Euclidean distance
spectrum is independent of the reference sequence even though (3.97) is not
satisfied. Quasiregular codes are also known as geometrically uniform codes
[78]. Hence we can once again assume that the all-zero information sequence
to be the reference sequence. We now proceed to compute the probability of an
error event. We assume that the error event extends over L symbol durations.
Let the received symbol sequence be denoted by:

r̃ = S(i) + w̃ (3.121)

where

S(i) =
[

S
(i)
1 . . . S

(i)
L

]T

(3.122)

denotes the ith possible L× 1 vector of complex symbols drawn from an M -ary
constellation and

w̃ =
[
w̃1 . . . w̃L

]T
(3.123)

denotes an L× 1 vector of AWGN samples having zero-mean and variance

1

2
E
[

|w̃i|2
]

= σ2
w. (3.124)
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Let

S(j) =
[

S
(j)
1 . . . S

(j)
L

]T

(3.125)

denote the jth possible L× 1 vector that forms an error event with S(i). Let

(

S(i) − S(j)
)H (

S(i) − S(j)
)

= d2E (3.126)

denote the squared Euclidean distance between sequences S(i) and S(j). Then
the probability that the VA decides in favour of S(j) given that S(i) was trans-
mitted, is:

P
(

S(j)|S(i)
)

=
1

2
erfc

(√

d2E
8σ2

w

)

= Pee,TCM

(
d2E
)

(say). (3.127)

Assuming that b(i) maps to S(i) and b(j) maps to S(j), the probability of un-
coded bit error corresponding to the above error event is given by

Pb,TCM(d2E) =
wH(d2E)

k
Pee,TCM(d2E) (3.128)

where wH(d2E) is again given by (3.78). Note that wH(d2E) denotes the Ham-
ming distance between the information sequences when the squared Euclidean
distance between the corresponding symbol sequences is d2E . When the multi-
plicity at d2E is AdE , (3.128) must be modified to

Pb,TCM(d2E) ≤
Pee,TCM(d2E)

k

AdE∑

l=1

wH, l(d
2
E). (3.129)

The average probability of uncoded bit error is given by the union bound (as-
suming that the code is quasiregular)

Pb,TCM(e) ≤
∞∑

d2
E=d2

E,min

Pb,TCM(d2E) (3.130)

which at high signal-to-noise ratio is well approximated by

Pb,TCM(e) ≈ Pb,TCM(d2E,min). (3.131)

3.5.3 Analysis of a QPSK TCM Scheme

Let us now analyze the performance of the TCM code characterized by the
encoder in Figure 3.3. The two encoded bits are mapped to the QPSK con-
stellation, as shown in Figure 3.22. The minimum distance error event is given
in Figure 3.13 with d2E,min = 5a21. The multiplicity at the minimum Euclidean
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distance is AdE,min = 1 and the corresponding distance between the information
sequences is wH, 1(5a21) = 1. Substituting these values in (3.131) and using the
Chernoff bound, we get

Pb,TCM(e) ≈ 1

2
erfc

(√

5a21
8σ2

w

)

< exp

(

− 5a21
8σ2

w

)

. (3.132)

We now need to compare the performance of the above TCM scheme with
uncoded BPSK.

Firstly we note that the average power of the QPSK constellation is a21/2.
Since k = 1 we must have (see Propositions 3.0.1 and 3.0.2):

Pav, b = a21/2. (3.133)

Substituting for a21 from the above equation into (3.132) we get

Pb,TCM(e) < exp

(

−5Pav, b

4σ2
w

)

(3.134)

which is identical to (3.110). Therefore, for this particular example we see that
the performance of TCM is identical to the rate-1/2 convolutional code with soft
decisions. The difference however lies in the transmission bandwidth. Whereas
the bandwidth of the TCM scheme is identical to that of uncoded BPSK, the
bandwidth of the rate-1/2 convolutional code is double that of uncoded BPSK.

When a TCM scheme uses a rate-k/n encoder, it may not make sense to
compare the performance of TCM with uncoded BPSK. This is because if the
uncoded bit-rate is R then the baud-rate of TCM is R/k. Thus, we need to
compare the performance of TCM with uncoded signalling having the same
baud-rate. This motivates us to introduce the concept of asymptotic coding
gain of a TCM scheme. This is defined as

Ga
∆
= 10 log

(

d2E,min,TCM

d2E,min,UC

)

(3.135)

where d2E,min,TCM denotes the minimum squared Euclidean distance of the rate-

k/n TCM scheme (that uses a 2n-ary constellation) and d2E,min,UC denotes the

minimum squared Euclidean distance of the uncoded scheme (that uses a 2k-
ary constellation) transmitting the same average power as the TCM scheme. In
other words

Pav,TCM = Pav,UC = kPav, b (3.136)

where we have used Proposition 3.0.1, Pav,TCM is the average power of the 2n-
ary constellation and Pav,UC is the average power of the 2k-ary constellation
(see the definition for average power in (2.30)).
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For the QPSK TCM scheme discussed in this section, the coding gain is over
uncoded BPSK. In this example we have (refer to Figure 3.22)

Pav,TCM = a21/2 = Pav,UC. (3.137)

Hence

d2E,min,UC = 2a21

d2E,min,TCM = 5a21 (3.138)

and the asymptotic coding gain is

Ga = 10 log

(
5a21
2a21

)

= 3.98 dB. (3.139)

In the next section, we analyze the performance of a 16-QAM TCM scheme.

3.5.4 Analysis of a 16-QAM TCM Scheme

Consider the rate-3/4 encoder shown in Figure 3.31. The corresponding trellis
is shown in Figure 3.32. Since there are two uncoded bits, there are four parallel
transitions between states. For the sake of clarity, the parallel transitions are
represented by a single transition and labeled by the four encoded bits. Let

b1, m = c1,m

b2, m = c2,m

c3, m

XOR

b3, m 1 bit
memory

c4, m

bm = [b1, m b2, m b3, m]T

cm = [c1,m c2, m c3,m c4, m]T

1 bit
memory

Figure 3.31: A rate-3/4 convolutional encoder.

us first discuss the mapping of encoded bits on to symbols in the 16-QAM
constellation. According to the set partition rule (a) in section 3.5.1, the encoded
bits 0000, 0100, 1000, 1100, 0010, 0110, 1010, 1110 emerge from or merge into
a common state in the trellis. Hence they must be mapped onto a subset in
partition level n − k = 4 − 3 = 1 in Figure 3.24. Similarly, the encoded bits
0001, 0101, 1001, 1101, 0011, 0111, 1011, 1111 must be mapped onto the other
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state at
time m

state at
time m+ 1

0000, 0100, 1000, 1100
00

10

01

11
0001, 0101, 1001, 1101

11

01

10

00
0010, 0110, 1010, 1110

0010, 0110, 1010, 1110

0000, 0100, 1000, 1100

0001, 0101, 1001, 1101

0011, 0111, 1011, 1111

0011, 0111, 1011, 1111

Figure 3.32: Trellis diagram for the rate-3/4 convolutional encoder in Figure 3.31.

subset in partition level 1. Next, according to set partition rule (b), the encoded
bits corresponding to parallel transitions must be mapped to the same subset
in partition level n − k2 = 4 − 2 = 2. The subset is selected by the n1 coded
bits such that rule (a) is not violated. This is illustrated in Figure 3.24. The k2
uncoded bits are used to select a point in the subset in partition level 2, and this
can be done by Gray coding so that the nearest neighbours differ by at most one
bit. Let us now evaluate the performance of the TCM scheme in Figure 3.31.
The minimum squared Euclidean distance between parallel transitions is 4a21.
The minimum squared Euclidean distance between non-parallel transitions is
5a21 (see Figure 3.33). Hence, the effective minimum distance is

d2E,min = min{4a21, 5a21} = 4a21. (3.140)

The corresponding multiplicity, AdE,min = 2 and wH, l(4a21) = 1 for l = 1, 2.

0000 0000 0000

0010
0001

0010

00

10

01

11 11

01

10

00

Figure 3.33: Minimum distance between non-parallel transitions for the rate-3/4
convolutional encoder in Figure 3.31.

Since the TCM scheme in Figure 3.31 is quasiregular, the average probability
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of uncoded bit error at high SNR is given by (3.131) which is repeated here for
convenience:

Pb,TCM(e) ≈ Pb,TCM

(
d2E,min

)

=
2

3
Pee,TCM

(
d2E,min

)

=
2

3
· 1
2
erfc

(√

4a21
8σ2

w

)

<
2

3
exp

(

− a21
2σ2

w

)

(3.141)

where we have used the Chernoff bound. The average transmit power for the
16-QAM constellation in Figure 3.24 is 5a21/2. Hence following Proposition 3.0.1
we have (note that k = 3)

Pav, b = 5a21/6. (3.142)

Substituting for a21 from the above equation into (3.141) we get

Pb,TCM(e) <
2

3
exp

(

−6Pav, b

10σ2
w

)

. (3.143)

Comparing the above equation with (3.86) we find that at high SNR, the per-
formance of the 16-QAM TCM scheme considered here is better than uncoded
BPSK by only

10 log

(
0.6

0.5

)

= 0.792 dB. (3.144)

Note however, that the bandwidth of the TCM scheme is less than that of
uncoded BPSK by a factor of three (since three uncoded bits are mapped onto
a symbol). Let us now compute the asymptotic coding gain of the 16-QAM
TCM scheme with respect to uncoded 8-QAM. Since (3.136) must be satisfied,
we get (refer to the 8-QAM constellation in Figure 2.3)

d2E,min,UC =
12Pav, b

3 +
√
3
. (3.145)

Similarly from Figure 3.24

d2E,min,TCM = 4a21 =
24Pav, b

5
. (3.146)

Therefore the asymptotic coding gain of the 16-QAMTCM scheme over uncoded
8-QAM is

Ga = 10 log

(

2(3 +
√
3)

5

)

= 2.77 dB. (3.147)

From this example it is quite clear that TCM schemes result in bandwidth reduc-
tion at the expense of BER performance (see (3.144)) with respect to uncoded
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BPSK. Though the 16-QAM TCM scheme using a rate-3/4 encoder discussed
in this section may not be the best (there may exist other rate-3/4 encoders
that may give a larger minimum squared Euclidean distance between symbol
sequences), it is clear that if the minimum squared Euclidean distance of the
16-QAM constellation had been increased, the BER performance of the TCM
scheme would have improved. However, according to Proposition 3.0.1, the av-
erage transmit power of the TCM scheme cannot be increased arbitrarily. How-
ever, it is indeed possible to increase the minimum squared Euclidean distance
of the 16-QAM constellation by constellation shaping.

Constellation shaping involves modifying the probability distribution of the
symbols in the TCM constellation. In particular, symbols with larger energy are
made to occur less frequently. Thus, for a given minimum squared Euclidean
distance, the average transmit power is less than the situation where all symbols
are equally likely. Conversely, for a given average transmit power, the minimum
squared Euclidean distance can be increased by constellation shaping. This is
the primary motivation behind Multidimensional TCM (MTCM) [79–83]. The
study of MTCM requires knowledge of lattices, which can be found in [84].
An overview of multidimensional constellations is given in [85]. Constellation
shaping can also be achieved by another approach called shell mapping [86–92].
However, before we discuss shell mapping, it is useful to compute the maximum
possible reduction in transmit power that can be achieved by constellation shap-
ing. This is described in the next section.

3.6 Maximization of the Shape Gain

For the purpose of computing the maximum attainable shape gain, we need
to consider continuous sources. Note that an information source that emits
symbols from an M -ary constellation is a discrete source. As a reference, we
consider a source X that has a uniform probability density function (pdf) in the
interval [−a, a]. This is illustrated in Figure 3.34 where x denotes the amplitude
of the transmitted symbol and p(x) denotes the pdf of x. Note that we have not
assumed quadrature modulation, that is, all symbols transmitted by the source
are real-valued. However, it can be shown that an identical shape gain can be
achieved in two dimensions (and for that matter, in N dimensions) as well. The

−a a

p(x)

1/(2a)

x

Figure 3.34: A source with a uniform probability density function.
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average transmit power of the source X is

Pav,X =
1

2a

∫ a

x=−a

x2 dx

=
a2

3
. (3.148)

The differential entropy of X is

hX =
1

2a
log2(2a)

∫ a

x=−a

dx

= log2(2a). (3.149)

Note that entropy signifies the number of bits required to represent a discrete
source. For example, in the case of a discrete source that emits symbols from
the 16-QAM constellation with equal probability, the entropy is

16∑

k=1

1

16
log2(16) = 4 bits. (3.150)

However, differential entropy for a continuous source is not analogous to entropy
of a discrete source. Nevertheless, the concept of differential entropy serves as
a useful measure to characterize a continuous source.

Let us now consider any other source Y with pdf p(y). The statement of
the problem is as follows: Find out the pdf p(y) such that the transmit power of
Y is minimized, for the same differential entropy h(X ). Mathematically, the
problem can be stated as

min

∫

y

y2p(y) dy (3.151)

subject to the constraints
∫

y

p(y) dy = 1

hY = hX . (3.152)

This is a constrained optimization problem which can be solved using Lagrange
multipliers. Thus the given problem can be reformulated as

min

[∫

y

y2p(y) dy + λ1

(∫

y

p(y) dy − 1

)

+ λ2

(∫

y

p(y) log2

(
1

p(y)

)

dy − log2(2a)

)]

(3.153)

where the minimization is done with respect to p(y) and λ1 and λ2 are constants.
Differentiating the above equation with respect to p(y) we get

∫

y

y2 dy + λ1

∫

y

dy + λ2

∫

y

(

log2

(
1

p(y)

)

− log2(e)

)

dy = 0
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⇒
∫

y

(

y2 + λ2 log2

(
1

p(y)

)

+ λ1 − λ2 log2(e)

)

dy = 0. (3.154)

Now, the simplest possible solution to the above integral is to make the integrand
equal to zero. Thus (3.154) reduces to

y2 + λ2 log2

(
1

p(y)

)

+ λ1 − λ2 log2(e) = 0

⇒ p(y) = exp

(
y2

λ2 log2(e)
+

λ1

λ2 log2(e)
− 1

)

(3.155)

which is similar to the Gaussian pdf with zero mean. Let us write p(y) as

p(y) =
1

σ
√
2π

exp

(

− y2

2σ2

)

(3.156)

where the variance σ2 is to be determined. We now need to satisfy the differ-
ential entropy constraint:

∫ ∞

y=−∞
p(y) log2

(
1

p(y)

)

dy = log2(2a). (3.157)

Substituting for p(y) in the above equation and simplifying we get

∫ ∞

y=−∞

− log2(e)

σ
√
2π

exp

(−y2

2σ2

)

ln

(
1

σ
√
2π

exp

(−y2

2σ2

))

dy = log2(2a)

⇒ log2(e)

(
1

2
− ln

(
1

σ
√
2π

))

= log2(2a)

⇒ exp

(
1

2
− ln

(
1

σ
√
2π

))

= 2a

⇒ σ2 =
2a2

πe

⇒
∫ ∞

y=−∞
y2p(y) dy =

2a2

πe
. (3.158)

Thus the Gaussian pdf achieves a reduction in transmit power over the uniform
pdf (for the same differential entropy) by

a2

3
× πe

2a2
=

πe

6
. (3.159)

Thus the limit of the shape gain in dB is given by

10 log
(πe

6

)

= 1.53 dB. (3.160)

For an alternate derivation on the limit of the shape gain see [80]. In the next
section we discuss constellation shaping by shell mapping.
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The important conclusion that we arrive at is that shaping can only be done
on an expanded constellation (having more number of points than the original
constellation). In other words, the peak-to-average power ratio increases over
the original constellation, due to shaping (the peak power is defined as the
square of the maximum amplitude). Observe that the Gaussian distribution
that achieves the maximum shape gain, has an infinite peak-to-average power
ratio, whereas for the uniform distribution, the peak-to-average power ratio is
3.

Example 3.6.1 Consider a one-dimensional continuous (amplitude) source X
having a uniform pdf in the range [−a, a]. Consider another source Y whose
differential entropy is the same as X and having a pdf

p(y) = b e−c|y| for −∞ < y < ∞. (3.161)

1. Find b and c in terms of a.

2. Compute the shape gain.

Solution: Firstly we observe that

∫ ∞

y=−∞
p(y) dy = 1

⇒ 2b

∫ ∞

y=0

e−cy dy = 1

⇒ 2b/c = 1. (3.162)

Next we equate the entropies

−
∫ ∞

y=−∞
p(y) log2(p(y)) dy = log2(2a)

⇒ − log2(e)

∫ ∞

y=−∞
p(y) ln(p(y)) dy = log2(2a)

⇒ 2c log2(e)

∫ ∞

y=0

yp(y) dy − log2(b) = log2(2a)

⇒ 2bc log2(e)

{∣
∣
∣
∣

ye−cy

−c

∣
∣
∣
∣

∞

y=0

−
∫ ∞

y=0

e−cy

−c
dy

}

= log2(2ab)

⇒ 2(b/c) log2(e) = log2(2ab)

⇒ e = 2ab (3.163)

where we have used integration by parts. The average power of Y can be
similarly found to be:

Pav, Y =

∫ ∞

y=−∞
y2 p(y) dy
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parallel

converter

b

bits mapper

ShellUncoded

bit
stream

Serial

to
L

symbols

Parallel

to

serial

converter

output

symbol

stream

Figure 3.35: Block diagram of shell mapping.

=
2

c2

=
2a2

e2
. (3.164)

Therefore the shape gain in decibels is

Gshape = 10 log10

(
Pav,X

Pav,Y

)

= 10 log10
(
e2/6

)

= 0.9 dB (3.165)

where Pav,X is given by (3.148).

3.7 Constellation Shaping by Shell Mapping

The shell mapping procedure is used in the V.34 voiceband modem [86] for
date transmission of upto 33.6 kbps over the telephone network (whose typical
bandwidth is 3.4 kHz). Voiceband modems are commonly used in fax machines.
The basic idea behind shell mapping is to make the symbols with larger energy
occur less frequently than the symbols with smaller energy, thus reducing the
average transmit power for the same minimum distance between the symbols.
Since transmit power is a premium resource, shell mapping could be used in
wireless communications as well. At this point it must be emphasized that
shell mapping has got nothing to to with error control coding. In fact, shell
mapping is done on an uncoded bit stream and error control coding is done
after shell mapping. The block diagram of the shell mapping scheme is shown
in Figure 3.35. The shell mapping concept is best explained with an example.
Consider a 5-ary, two-tuple {R1 R0}, where R1, R0 ∈ [0, 1, 2, 3, 4]. All the
52 = 25 possible two-tuples R1 R0 are illustrated in Table 3.1. We assume
that R1 denotes the most significant digit and R0 denotes the least significant
digit. Observe that the R1 R0 two-tuple is arranged in the ascending order of
their sum. In case the sums are identical, the R1 R0 two-tuples are arranged in
the ascending order of their decimal representation. For example, the decimal
representation of R1 R0 = (13)5 is

1 · 51 + 3 · 50 = 810. (3.166)
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Table 3.1: Illustrating the concept of shell mapping.

3

Index R1 R0
∑1

i=0 Ri

0 0 0 0

1 0 11

1

3 0 2 2

4 1 1 2

5 2 0 2

6 0 3

7 1 2 3

8

9

2 1 3

3 0 3

10 0 4 4

11 1 3 4

12 2 2 4

13 3 1 4

14 4 0 4

24

23

22

21

19

18

17

16

∑1
i=0 RiR1

1 4 5

3 5

3 2 5

4 1 5

2 4 6

3 6

4 2 6

3 4 7

4 3 7

4 4 8

2

3

Occurrences of 0 in R1 R0: 10

Occurrences of 1 in R1 R0: 10

Occurrences of 2 in R1 R0: 10

Occurrences of 4 in R1 R0: 10

Occurrences of 3 in R1 R0: 10

Index

0

15

20

2 1

R0
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From Table 3.1 it is clear that the probability of occurrence of all the digits
is equal to 10/50. Let us now consider the first 2k entries in Table 3.1, with
k = 4. The number of occurrences of each of the digits in the truncated table
is given in Table 3.2. Clearly, the probability of occurrence of the digits is
not uniform. Now consider the 20-point constellation in Figure 3.36. This is

Table 3.2: Number of occurrences of various digits in the first 16 entries of Table 3.1.

Digit

Number

of

occurrences

Probability

of

occurrence

0

1

2

3

4

10

9

6

4

3

10/32

9/32

6/32

4/32

3/32

essentially the 16-QAM constellation in Figure 2.3 plus four additional points
on the axes. The constellation consists of five rings or shells, with each ring (or
shell) having four points. We will see later that it is essential for each ring to
have the same number of points. Though the rings R1 and R2 are identical,
they can be visualized as two different rings, with each ring having four of the
alternate points as indicated in Figure 3.36. The minimum distance between the
points is equal to unity. The mapping of the rings to the digits is also shown.
It is now clear from Table 3.2 that rings with larger radius (larger power) occur
with less probability than the rings with smaller radius. The exception is of
course the rings R1 and R2, which have the same radius and yet occur with
different probabilities. Having discussed the basic concept, let us now see how
shell mapping is done.

The incoming uncoded bit stream is divided into frames of b bits each. Out
of the b bits, k bits are used to select the L-tuple ring sequence denoted by
RL−1 . . . R0. Observe that Ri ∈ D , where D denotes the set

D = {0, 1, . . . , N − 1}. (3.167)

In the example considered L = 2, N = 5, with a one-to-one mapping between
the elements of D and the radii (or rings) of the constellation in Figure 3.36.
The remaining b− k bits are used to select the points in each of the L rings. In
general there are 2P points in each ring (P bits are required to select a point in
the ring). Hence we must have:

b− k = P × L. (3.168)
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ℑ
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Figure 3.36: A 20-point constellation. The minimum distance between two points is
unity.

In the example that we have considered, P = 2, L = 2, k = 4, hence b = 8.
Hence if the uncoded bit sequence is 1000 11 01, then the ring sequence to
be selected corresponds to 1000 ≡ 8 in Table 3.1. Hence R1 R0 = 2 1, which
correspond to rings R2 and R1 respectively. The last four bits are used to select
a point in the two rings (this is precisely the reason why we require each ring to
have the same number of points). Thus finally the points A and B in Figure 3.36
may be transmitted. Note that we are transmitting L = 2 “shaped symbols” in
b bit durations. The other important inequality that needs to be satisfied is

2k < NL (3.169)

that is, the number of ring combinations must be strictly greater than the
number of k-bit combinations.

The average transmitted power due to shaping is given by:

Pav =
N−1∑

i=0

R2
i P (Ri) (3.170)

where P (Ri) denotes the probability of occurrence of ring Ri, which is equal
to the probability of occurrence of the digit i. In order to compare the power
savings due to constellation shaping, we need to compare with a reference con-
stellation that does not use shaping. The criteria used to select the reference
constellation are as follows:

1. We require the reference scheme to have the same symbol-rate as the shap-
ing scheme, which implies that the reference scheme must also transmit
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L symbols in b bit durations. Hence, the reference scheme must use a
2b/L-ary constellation.

2. The additional constraint that needs to be imposed is that the minimum
distance of the reference constellation must be identical to that used by
the shaping scheme. This ensures that the probability of symbol error
for the two schemes are identical (ignoring the factor outside the erfc (·)
term). Thus for the same probability of error, the shaping scheme would
require less transmit power than the reference scheme.

In the example considered, it is clear that the reference scheme must use a 16-
QAM constellation shown in Figure 2.3. In the reference scheme, all points in the
constellation occur with equal probability, since all the 2b bit combinations occur
with equal probability. For the rectangular 16-QAM constellation in Figure 2.3
the average transmit power is (assuming that the minimum distance between
the points is unity):

Pav, ref,16−QAM = 2.5. (3.171)

For the 20-point constellation shown in Figure 3.36, the average transmit power
is (with minimum distance between points equal to unity and probability dis-
tribution of the rings given in Table 3.2):

Pav, shape, 20−point = 2.4154. (3.172)

Thus the shape gain over the reference scheme is a modest:

Gshape = 10 log

(
2.5

2.4154

)

= 0.15dB. (3.173)

The shape gain can however be improved by increasing L. Let L = 8, that
is, we wish to transmit eight symbols in b bit durations. Our reference scheme
continues to be 16-QAM, hence b/L = 4, which in turn implies b = 32. If we
continue to assume four points in a ring, then b − k = 2L = 16. This implies
that k = 16. To compute the number of rings (N) required in the “shaped”
constellation we need to use (3.169) to obtain:

216 < N8

⇒ N > 22. (3.174)

Let us take N = 5. Hence we can continue to use the 20-point constellation in
Figure 3.36. However, it is clear that we need a table lookup of size 216 = 65536.
In fact in the V.34 modem, k is as large as 30, hence the table size is 230. Obvi-
ously the table lookup method of finding the ring sequence becomes infeasible.
Hence we need an algorithmic approach to compute the ring sequence. We now
proceed to describe the shell mapping algorithm [86].

Let us now summarize the important points in this section.

• The size of the constellation after shell mapping is larger than the reference
constellation.
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• The size of the expanded constellation is no longer a power of two (in the
example considered, the size of the expanded constellation is 20).

• The entropy of the 16-QAM constellation (with all symbols equally likely)
is 4 bits (see (3.150)). However, assuming that the probability of oc-
currence of a symbol is one-fourth the probability of occurrence of the
corresponding ring, the entropy of the 20-point constellation is 4.187 bits.
Thus we find that the entropies are slightly different. This is because, it
is not possible to incorporate the entropy constraint in the shell mapping
algorithm. It is due to this reason that we had to introduce constraints
on the symbol-rate and the minimum distance to determine the reference
constellation, in lieu of the entropy constraint.

3.7.1 The Shell Mapping Algorithm

In this section, we assume that L = 8 [86]. In particular, for the shell mapping
algorithm described below, L must be a power of 2. Let G2(p) denote the
number of two-ring combinations of weight p. Then we have

G2(p) =







p+ 1 for 0 ≤ p ≤ N − 1
N − (p−N + 1) for N ≤ p ≤ 2(N − 1)
0 for p > 2(N − 1).

(3.175)

For example in Table 3.1, G2(2) = 2 + 1 = 3 and G2(6) = 5 − (6 − 5 + 1) = 3.
Let G4(p) denote the number of four-ring combinations of weight p. Since a
four-ring combination can be broken up into two two-ring combinations, we
have

G4(p) =

{ ∑p
k=0 G2(k)G2(p− k) for 0 ≤ p ≤ 4(N − 1)

0 for p > 4(N − 1).
(3.176)

Similarly, let G8(p) denote the number of eight-ring combinations of weight p.
Clearly

G8(p) =

p∑

k=0

G4(k)G4(p− k) for 0 ≤ p ≤ 8(N − 1) (3.177)

Let Z8(p) denote the number of eight-ring combinations of weight less than p.
Then we have

Z8(p) =

p−1
∑

k=0

G8(k) for 1 ≤ p ≤ 8(N − 1). (3.178)

Note that
Z8(0) = 0. (3.179)

The construction of the eight-ring table is evident from equations (3.175)-
(3.179). Eight ring sequences of weight p are placed before eight-ring sequences
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Table 3.3: Table of entries for G2(p), G4(p), G8(p) and Z8(p) for N = 5 and L = 8.

p G2(p) G4(p) G8(p) Z8(p)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1

2

3

4

5

4

3

2

1

1

4

10

20

35

52

68

80

85

80

68

52

35

20

10

4

1

1

8

36

120

330

784

1652

3144

5475

8800

13140

18320

23940

29400

34000

37080

38165

34000

37080

29400

23940

18320

13140

8800

5475

3144

1652

784

330

120

36

8

1

0

1

9

45

165

495

1279

2931

6075

11550

20350

33490

51810

75750

105150

139150

176230

214395

251475

285475

314875

338815

357135

370275

379075

384550

387694

389346

390130

390460

390580

390616

390624
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of weight p + 1. Amongst the eight-ring sequences of weight p, the sequences
whose first four rings have a weight zero and next four rings have a weight p,
are placed before the sequences whose first four rings have a weight of one and
the next four rings have a weight of p − 1, and so on. Similarly, the four-ring
sequences of weight p are constructed according to (3.176).

The shell mapping algorithm involves the following steps:

(1) First convert the k bits to decimal. Call this number I0. We now need to
find out the ring sequence corresponding to index I0 in the table. In what
follows, we assume that the arrays G2(·), G4(·), G8(·) and Z8(·) have been
precomputed and stored, as depicted in Table 3.3 for N = 5 and L = 8.
Note that the sizes of these arrays are insignificant compared to 2k.

(2) Find the largest number A such that Z8(A) ≤ I0. This implies that the
index I0 corresponds to the eight-ring combination of weight A. Let

I1 = I0 − Z8(A). (3.180)

We have thus restricted the search to those entries in the table with weight
A. Let us re-index these entries, starting from zero, that is, the first ring
sequence of weight A is indexed zero, and so on. We now have to find the
ring sequence of weight A corresponding to the Ith1 index in the reduced
table.

(3) Next, find the largest number B such that

B−1∑

k=0

G4(k)G4(A− k) ≤ I1. (3.181)

Note that

G4(0)G4(A) > I1

⇒ B = 0. (3.182)

Now (3.181) and (3.182) together imply that the first four rings corre-
sponding to index I1 have a weight of B and the next four rings have a
weight of A−B. Let

I2 =

{

I1 −
∑B−1

k=0 G4(k)G4(A− k) for B > 0
I1 for B = 0.

(3.183)

We have now further restricted the search to those entries in the table
whose first four rings have a weight of B and the next four rings have a
weight of A−B. We again re-index the reduced table, starting from zero,
as illustrated in Table 3.4. We now have to find out the ring sequence
corresponding to the Ith2 index in this reduced table.
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(4) Note that according to our convention, the first four rings of weight B
correspond to the most significant rings and last four rings of weight A−B
correspond to the lower significant rings. We can also now obtain two
tables, the first table corresponding to the four-ring combination of weight
B and the other table corresponding to the four-ring combination of weight
A−B. Once again, these two tables are indexed starting from zero. The
next task is to find out the indices in the two tables corresponding to I2.
These indices are given by:

I3 = I2 mod G4(A−B)

I4 = the quotient of (I2/G4(A−B)) . (3.184)

Table 3.4: Illustration of step 4 of the shell mapping algorithm with B = 4, A−B = 5
and N = 5. Here G4(A−B) = x, G4(B) = y.

? ?

Index
in

Table 1

0

0

1

1

I4

y − 1

R7 R6 R5 R4

0 0 0 4

0 0 0 4

0 0 1 3

0 0 1 3

4 0 0 0

0 0 1 4

4 1 0 0

0 0 1 4

4 1 0 0

4 1 0 0

R3 R2 R1 R0

Index
in

Table 2

0

x− 1

0

x− 1

I3

x− 1

Index

0

x− 1

x

2x− 1

I2

xy − 1

(5) Next, find out the largest integers C and D such that

C−1∑

k=0

G2(k)G2(B − k) ≤ I4
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D−1∑

k=0

G2(k)G2(A−B − k) ≤ I3. (3.185)

Again note that

G2(0)G2(B) > I4

⇒ C = 0

G2(0)G2(A−B) > I3

⇒ D = 0. (3.186)

Equations (3.185) and (3.186) together imply that index I4 corresponds
to that four-ring combination whose first two rings have a weight C and
the next two rings have a weight B−C. Likewise, index I3 corresponds to
that four-ring combination whose first two rings have a weight of D and
the next two rings have a weight of A−B−D. The indices I3 and I4 have
to re-initialized as follows:

I5 =

{

I3 −
∑D−1

k=0 G2(k)G2(A−B − k) for D > 0
I3 for D = 0.

I6 =

{

I4 −
∑C−1

k=0 G2(k)G2(B − k) for C > 0
I4 for C = 0.

(3.187)

(6) We can now construct four tables of two-ring combinations. In the first
table, we compute the index corresponding to I6, of the two-ring com-
bination of weight C. Denote this index as I10. In the second table we
compute the index corresponding to I6, of the two-ring combination of
weight B − C. Denote this index as I9. This is illustrated in Table 3.5.
Similarly, from the third and fourth tables, we compute the indices corre-
sponding to I5, of the two-ring combination of weight D and A − B −D
respectively. Denote these indices as I8 and I7 respectively. Then we have
the following relations:

I7 = I5 mod G2(A −B −D)

I8 = the quotient of (I5/G2(A−B −D))

I9 = I6 mod G2(B − C)

I10 = the quotient of (I6/G2(B − C)) . (3.188)

We now have the scenario shown in Table 3.6.

(7) In the final step, we use the ring indices and their corresponding weights
to arrive at the actual two-ring combinations. For example, with the ring
index I10 corresponding to weight C in Table 3.6, the rings R7 and R6 are
given by:

R7 =

{
I10 if C ≤ N − 1
C − (N − 1) + I10 if C > N − 1
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Table 3.5: Illustration of step 6 of the shell mapping algorithm with B = 11, C = 6
and N = 5. Here G2(B − C) = x, G2(C) = y.

Index
Index
in

Table 1 R7 R6 R5 R4

Index
in

Table 2

0 0 2 4 1 4 0

x− 1 0 2 4 4 1 x− 1

x 1 3 3 1 4 0

2x− 1 1 3 3 4 1 x− 1

I6 I10 ? ? I9

xy − 1 y − 1 4 2 4 1 x− 1

Table 3.6: Situation after computing the indices I7, I8, I9 and I10.

Most
significant
two ring

combination

Least
significant
two ring

combination

Weight

Index
in the

corresponding
two ring
table

I10 I9 I8 I7

C B − C D A− B −D

(R5, R4) (R3, R2)(R7, R6) (R1, R0)
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R6 = C −R7. (3.189)

The above relation between the ring numbers, indices and the weights is

Table 3.7: Illustration of step 7 of the shell mapping algorithm for N = 5 for two
different values of C.

C = 4 C = 6

Index R7 R6 Index R7 R6

0 0 4 0 2 4

1 1 3 1 3 3

2 2 2 2 4 2

3 3 1

4 4 0

shown in Table 3.7 for C = 4 and C = 6. The expressions for the other
rings, from R0 to R5, can be similarly obtained by substituting the ring
indices and their corresponding weights in (3.189). This completes the
shell mapping algorithm.

Example 3.7.1 Compute the eight-ring sequence corresponding to the index
100.

Solution: From Table 3.3 we get:

A = 3 I1 = 55

B = 1 I2 = 35

I3 = 5 I4 = 3

C = 1 D = 1

I6 = 1 I5 = 2

I10 = 1 I9 = 0

I8 = 1 I7 = 0. (3.190)

Therefore the eight-ring sequence is: 1 0 0 0 1 0 0 1.

Using the shell mapping algorithm, the probability of occurrence of various
digits (and hence the corresponding rings in Figure 3.36) is given in Table 3.8.
Hence the average transmit power is obtained by substituting the various prob-
abilities in (3.170), which results in

Pav, shape, 20−point = 2.2136 (3.191)
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Table 3.8: Probability of occurrence of various digits for L = 8 and k = 16.

Digit

Number

of

occurrences

Probability

of

occurrence

0

1

2

3

4

192184

139440

95461

60942

36261

0.366562

0.265961

0.182077

0.116238

0.069162

and the shape gain becomes:

Gshape = 10 log

(
2.5

2.2136

)

= 0.528 dB. (3.192)

Thus, by increasing L (the number of dimensions) we have improved the shape
gain. In fact, as L and N (the number of rings) tend to infinity, the probability
distribution of the rings approaches that of a Gaussian pdf and shape gain
approaches the maximum value of 1.53 dB. Incidentally, the entropy of the 20-
point constellation with the probability distribution in Table 3.8 is 4.1137 bits,
which is closer to that of the reference 16-QAM constellation, than with the
distribution in Table 3.2.

3.8 Turbo Codes

Turbo codes are a class of powerful error correcting codes that achieve very
low bit-error-rates at signal-to-noise ratios that are close to 0 dB. These codes
were proposed by Berrou et. al. in [93, 94]. There are some recent books and
tutorials on turbo-codes [10,11,95] which are recommended for further reading.
The turbo principle has been applied to other areas like equalization, which has
been effectively dealt with in [9, 52, 96, 97]. Bandwidth efficient turbo-coding
schemes (also known as turbo trellis coded modulation (TTCM)) are discussed
in [98–105]. Noncoherent iterative decoding of turbo coded signals is presented
in [106–108]. Noncoherent iterative decoding of turbo trellis coded modulation
is presented in [109]. The performance of noncoherent iterative decoding on
Rayleigh fading channels is investigated in [110]. The problem of turbo decoding
in coloured noise has been addressed recently in [111–113]. We begin with a
description of the turbo encoder. Consider the encoder shown in Figure 3.37.
It consists of two recursive systematic encoders (similar to the one shown in
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bit
stream

Input

b2, m

Received signal Symbol stream

b1, m

c1, m

c2, m

bit
stream

EncodedChannel

AWGN

Recursive

systematic

encoder 1

Recursive

systematic

encoder 2

Parallel

to

serial

converter

(optional

puncturing)

Mapper

Interleaver

Figure 3.37: Block diagram of a turbo encoder.

Figure 3.6) and an interleaver. Thus, at any time instant m there are three
output bits, one is the input (systematic) bit denoted by b1,m and the other
two are the encoded bits, denoted by c1,m and c2,m. The interleaver is used to
randomly shuffle the input bits. The interleaved input bits, denoted by b2,m, are
not transmitted (see Figure 3.38 for an illustration of the interleaving operation).
Mathematically, the relationship between b2,m and b1, n can be written as:

b2,m = b2, π(n) = b1, n = b1, π−1(m) (3.193)

where π(·) denotes the interleaving operation. The turbo encoder operates on a

b1, 0 b1, 1 b1, 2 b1, 3 b1, 4

b2, 4b2, 3b2, 2b2, 1b2, 0

Figure 3.38: Illustration of the interleaving operation.

frame of L input bits and generates 3L bits at the output. Thus the code-rate is
1/3. Thus, if the input bit-rate is R, the output bit-rate is 3R. A reduction in
the output bit-rate (or an increase in the code-rate) is possible by puncturing.
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Puncturing is a process of discarding some of the output bits in every frame. A
commonly used puncturing method is to discard c1,m for every even m and c2,m
for every odd m, increasing the code-rate to 1/2. The output bits are mapped
onto a BPSK constellation with amplitudes ±1 and sent to the channel which
adds samples of AWGN with zero mean and variance σ2

w. The mapping is done
as follows:

b1,m → Sb1, m

c1,m → Sc1,m

c2,m → Sc2,m. (3.194)

We now turn our attention to the turbo decoder.

3.8.1 The Turbo Decoder

Demux

π

π−1

Decoder 1

Decoder 2

π
From

channel

r1

r2

(a priori)

(extrinsic info)
F1, π(k)+, F1, π(k)−

(a priori)

F1, k+, F1, k−

(extrinsic info)

b̂1, k (final decision)

F2, k+, F2, k−

F2, π(k)+, F2, π(k)−

Figure 3.39: The turbo decoder.

The turbo decoder is shown in Figure 3.39. Assuming a code-rate of 1/3
and a framesize of L, the output of the demultiplexer is:

rb1, m = Sb1,m + wb1,m

rc1,m = Sc1,m + wc1,m

rc2,m = Sc2,m + wc2,m

rb2, m = rb2, π(n) = rb1, n = rb1, π−1(m) for 0 ≤ m, n ≤ L− 1 (3.195)

where wb1,m, wc1,m and wc2, m are samples of zero-mean AWGN with vari-
ance σ2

w . Note that all quantities in (3.195) are real-valued. The first decoder
computes the a posteriori probabilities:

P (Sb1, k = +1|r1) and P (Sb1, k = −1|r1) (3.196)
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for 0 ≤ k ≤ L− 1 and r1 is a 2L× 1 matrix denoted by:

r1 =
[
rb1, 0 . . . rb1, L−1 rc1, 0 . . . rc1, L−1

]T
. (3.197)

In the above equation, rb1, k and rc1, k respectively denote the received samples
corresponding to the uncoded symbol and the parity symbol emanating from
the first encoder, at time k. Note that the a posteriori probabilities in (3.196)
make sense because the constituent encoders are recursive (they have infinite
memory). Thus c1, i for k ≤ i ≤ L − 1 depends on b1, i for k ≤ i ≤ L − 1
and the encoder state at time k. However, the encoder state at time k depends
on all the past inputs b1, i for 0 ≤ i ≤ k − 1. Again, c1, i depends on b1, i for
0 ≤ i ≤ k − 1. Thus, intuitively we can expect to get better information about
b1, k by observing the entire sequence r1, instead of just observing rb1, k and
rc1, k.

Now (for 0 ≤ k ≤ L− 1)

P (Sb1, k = +1|r1) =
p (r1|Sb1, k = +1)P (Sb1, k = +1)

p(r1)

P (Sb1, k = −1|r1) =
p (r1|Sb1, k = −1)P (Sb1, k = −1)

p(r1)
(3.198)

where p(·) denotes the probability density function and P (Sb1, k = +1) denotes
the a priori probability that Sb1, k = +1. Noting that p(r1) is a constant and
can be ignored, the above equation can be written as:

P (Sb1, k = +1|r1) = H1, k+P (Sb1, k = +1)

P (Sb1, k = −1|r1) = H1, k−P (Sb1, k = −1) (3.199)

where

H1, k+
∆
= p(r1|Sb1, k = +1)

=
S×2L−1
∑

j=1

p
(

r1|S(j)
b1, k+, S

(j)
c1, k+

)

P
(j)

k̄

H1, k−
∆
= p(r1|Sb1, k = −1)

=
S×2L−1
∑

j=1

p
(

r1|S(j)
b1, k−, S

(j)
c1, k−

)

P
(j)

k̄
(3.200)

where S denotes the number of encoder states and the L× 1 vectors

S
(j)
b1, k+ =

[

S
(j)
b1, 0 . . . +1 . . . S

(j)
b1, L−1

]T

S
(j)
b1, k− =

[

S
(j)
b1, 0 . . . −1 . . . S

(j)
b1, L−1

]T

(3.201)
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are constrained such that the kth symbol is +1 or −1 respectively, for all j.

Similarly the L× 1 vectors S
(j)
c1, k+ and S

(j)
c1, k− denote the parity sequences cor-

responding to S
(j)
b1, k+ and S

(j)
b1, k− respectively.

Note that the parity sequence depends not only on the input bits, but also on
the starting state, hence the summation in (3.200) is over S ×2L−1 possibilities.
Assuming that the uncoded symbols occur independently:

P
(j)

k̄
=

L−1∏

i=0
i6=k

P
(

S
(j)
b1, i

)

. (3.202)

Since the noise terms are independent, the joint conditional pdf in (3.200) can
be written as the product of the marginal pdfs, as shown by:

p
(

r1|S(j)
b1, k+, S

(j)
c1, k+

)

=
L−1∏

i=0

γ
(j)
1, sys, i, k+γ

(j)
1, par, i, k+

p
(

r1|S(j)
b1, k−, S

(j)
c1, k−

)

=
L−1∏

i=0

γ
(j)
1, sys, i, k−γ

(j)
1, par, i, k− (3.203)

where γ
(j)
1, sys, i, k+ and γ

(j)
1, sys, i, k− denote intrinsic information, γ

(j)
1, par, i, k+ and

γ
(j)
1, par, i, k− constitute the extrinsic information (to be defined later) at decoder

1 (represented by the subscript “1”) and are calculated as:

γ
(j)
1, sys, i, k+ = exp




−

(

rb1, i − S
(j)
b1, i

)2

2σ2
w






= γ
(j)
1, sys, i, k− for 0 ≤ i ≤ L− 1, i 6= k

γ
(j)
1, sys, k, k+ = exp

[

− (rb1, k − 1)2

2σ2
w

]

∀j

γ
(j)
1, sys, k, k− = exp

[

− (rb1, k + 1)2

2σ2
w

]

∀j

γ
(j)
1, par, i, k+ = exp




−

(

rc1, i − S
(j)
c1, i, k+

)2

2σ2
w






γ
(j)
1, par, i, k− = exp




−

(

rc1, i − S
(j)
c1, i, k−

)2

2σ2
w




 . (3.204)

The terms S
(j)
c1, i, k+ and S

(j)
c1, i, k− are used to denote the parity symbols at time

i that is generated by the first encoder when S
(j)
b1, k is a +1 or a −1 respectively.
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Substituting (3.203) in (3.200) we get

H1, k+ =
S×2L−1
∑

j=1

L−1∏

i=0

γ
(j)
1, sys, i, k+γ

(j)
1, par, i, k+P

(j)

k̄

H1, k− =
S×2L−1
∑

j=1

L−1∏

i=0

γ
(j)
1, sys, i, k−γ

(j)
1, par, i, k−P

(j)

k̄
(3.205)

Due to practical considerations the a posteriori probability computed using

(3.199) is not fed as a priori probability to the second decoder, since γ
(j)
1, sys, k, k+

and γ
(j)
1, sys, k, k− are common to all the terms in the two summations in (3.205).

In fact, the extrinsic information that is to be fed as a priori probabilities to
the second decoder, is computed as F1, k+ and F1, k− as follows (the common
term is removed):

G1, k+ = H1, k+/γ
(j)
1, sys, k, k+

G1, k− = H1, k−/γ
(j)
1, sys, k, k−

F1, k+ = G1, k+/(G1, k+ +G1, k−)

F1, k− = G1, k−/(G1, k+ +G1, k−). (3.206)

Note that F1, k+ and F1, k− are the normalized values of G1, k+ and G1, k−
respectively, such that they satisfy the fundamental law of probability:

F1, k+ + F1, k− = 1. (3.207)

The probabilities in (3.199) is computed only in the last iteration, and again
after appropriate normalization, are used as the final values of the symbol prob-
abilities.

The equations for the second decoder are identical, excepting that the re-
ceived vector is given by:

r2 =
[
rb2, 0 . . . rb2, L−1 rc2, 0 . . . rc2, L−1

]
. (3.208)

Clearly, the computation of G1, k+ and G1, k− is prohibitively expensive for large
values of L (L is typically about 1000). Let us now turn our attention to the
efficient computation of G1, k+ and G1, k− using the BCJR (named after Bahl,
Cocke, Jelinek and Raviv) algorithm [114] (also known as the forward-backward
algorithm).

3.8.2 The BCJR Algorithm

The BCJR algorithm has the following components:

1. The forward recursion

2. The backward recursion
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3. The computation of the extrinsic information and the final a posteriori
probabilities.

Note that since G1, k+ and G1, k− are nothing but a sum-of-products (SOP) and
they can be efficiently computed using the encoder trellis. Let S denote the
number of states in the encoder trellis. Let Dn denote the set of states that
diverge from state n. For example

D0 = {0, 3} (3.209)

implies that states 0 and 3 can be reached from state 0. Similarly, let Cn denote
the set of states that converge to state n. Let αi, n denote the forward SOP at
time i (0 ≤ i ≤ L− 2) at state n (0 ≤ n ≤ S − 1). Then the forward SOP for
decoder 1 can be recursively computed as follows (forward recursion):

α′
i+1, n =

∑

m∈Cn

αi,mγ1, sys, i, m, nγ1, par, i,m, nP (Sb, i,m, n)

α0, n = 1 for 0 ≤ n ≤ S − 1

αi+1, n = α′
i+1, n

/
(

S−1∑

n=0

α′
i+1, n

)

(3.210)

where

P (Sb, i, m,n) =

{
F2, i+ if Sb, i,m, n = +1
F2, i− if Sb, i,m, n = −1

(3.211)

denotes the a priori probability of the systematic bit corresponding to the tran-
sition from state m to state n, at decoder 1 at time i obtained from the 2nd

decoder at time l after deinterleaving (that is, i = π−1(l) for some 0 ≤ l ≤ L−1,
l 6= i) and

γ1, sys, i, m, n = exp

[

− (rb1, i − Sb,m, n)
2

2σ2
w

]

γ1, par, i, m, n = exp

[

− (rc1, i − Sc,m, n)
2

2σ2
w

]

. (3.212)

The terms Sb,m, n ∈ ±1 and Sc,m, n ∈ ±1 denote the uncoded symbol and the
parity symbol respectively that are associated with the transition from state
m to state n. The normalization step in the last equation of (3.210) is done
to prevent numerical instabilities [97]. Similarly, let βi, n denote the backward
SOP at time i (1 ≤ i ≤ L− 1) at state n (0 ≤ n ≤ S − 1). Then the recursion
for the backward SOP (backward recursion) at decoder 1 can be written as:

β′
i, n =

∑

m∈Dn

βi+1, mγ1, sys, i, n,mγ1, par, i, n,mP (Sb, i, n,m)

βL,n = 1 for 0 ≤ n ≤ S − 1
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βi, n = β′
i, n

/
(

S−1∑

n=0

β′
i, n

)

. (3.213)

Once again, the normalization step in the last equation of (3.213) is done to
prevent numerical instabilities.

Let ρ+(n) denote the state that is reached from state n when the input
symbol is +1. Similarly let ρ−(n) denote the state that can be reached from
state n when the input symbol is −1. Then

G1, norm, k+ =
S−1∑

n=0

αk, nγ1, par, k, n, ρ+(n)βk+1, ρ+(n)

G1, norm, k− =
S−1∑

n=0

αk, nγ1, par, k, n, ρ−(n)βk+1, ρ−(n). (3.214)

Note that

G1, norm, k+ = AkG1, k+

G1, norm, k− = AkG1, k− (3.215)

where Ak is a constant and G1, k+ and G1, k− are defined in (3.206). It can
be shown that in the absence of the normalization step in (3.210) and (3.213),
Ak = 1 for all k. It can also be shown that

F1, k+ = G1, norm, k+/(G1, norm, k+ +G1, norm, k−)

F1, k− = G1, norm, k−/(G1, norm, k+ +G1, norm, k−) (3.216)

is identical to F1, k+ and F1, k− in (3.206). Equations (3.210), (3.212), (3.213),
(3.214) and (3.216) constitute the MAP recursions for the first decoder. The
MAP recursions for the second decoder are similar.

After several iterations, the final decision regarding the kth information bit
obtained at the output of the 1st decoder is computed as:

P (Sb1, k = +1|r1) =
S−1∑

n=0

αk, nγ1, par, k, n, ρ+(n)γ1, sys, k, n, ρ+(n)

× F2, k+ βk+1, ρ+(n)

= F1, k+F2, k+ exp

(

− (rb1, k − 1)2

2σ2
w

)

P (Sb1, k = −1|r1) =
S−1∑

n=0

αk, nγ1, par, k, n, ρ−(n)γ1, sys, k, n, ρ−(n)

× F2, k− βk+1, ρ−(n)

= F1, k−F2, k− exp

(

− (rb1, k + 1)2

2σ2
w

)

(3.217)
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where again F2, k+ and F2, k− denote the a priori probabilities obtained at the
output of the 2nd decoder (after deinterleaving) in the previous iteration. Note
that:

1. One iteration involves decoder 1 followed by decoder 2.

2. Since the terms αk, n and βk, n depend on Fk+ and Fk−, they have to be
recomputed for every decoder in every iteration according to the recursion
given in (3.210) and (3.213) respectively.
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Figure 3.40: Simulation results for turbo codes with 4 iterations.

We have so far discussed the BCJR algorithm for a rate-1/3 encoder. In the
case of a rate-1/2 encoder, the following changes need to be incorporated in the
BCJR algorithm (we assume that c1, i is not transmitted for i = 2k and c2, i is
not transmitted for i = 2k + 1):

γ1, par, i,m, n =







exp

[

− (rc1, i − Sc,m, n)
2

2σ2
w

]

for i = 2k + 1

1 for i = 2k

γ2, par, i,m, n =







exp

[

− (rc2, i − Sc,m, n)
2

2σ2
w

]

for i = 2k

1 for i = 2k + 1.
(3.218)
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Figure 3.40 shows the simulation results for a rate-1/3 and rate-1/2 turbo code.
The generating matrix for the constituent encoders is given by:

G(D) =

[

1 1 +D2 +D3 +D4

1 +D +D4

]

. (3.219)

The framesize L = 1000 and the number of frames simulated is 104. Three kinds
of initializing procedures for α0, n and βL,n are considered:

1. The starting and ending states of both encoders are assumed to be known
at the receiver (this is a hypothetical situation). Thus only one of α0, n

and βL, n is set to unity for both decoders, the rest of α0, n and βL, n are
set to zero. We refer to this as initialization type 0. Note that in the case
of tailbiting turbo codes, the encoder start and end states are constrained
to be identical [115].

2. The starting states of both encoders are assumed to be known at the
receiver (this corresponds to the real-life situation). Here only one of
α0, n is set to unity for both decoders, the rest of α0, n are set to zero.
However βL,n is set to unity for all n for both decoders. We refer to this
as initialization type 1.

3. The receiver has no information about the starting and ending states (this
is a pessimistic assumption). Here α0, n and βL, n are set to unity for all
n for both decoders. This is referred to as initialization type 2.

From the simulation results it is clear that there is not much difference in the
performance between the three types of initialization, and type 1 lies midway
between type 0 and type 2.

Example 3.8.1 Consider a turbo code employing a generator matrix of the
form

G(D) =
[

1 1+D2

1+D+D2

]

. (3.220)

Assume that the turbo code employs a frame length L = 2. Let

r1 =
[
rb1, 0 rb1, 1 rc1, 0 rc1, 1

]T
. (3.221)

Let

P (Sb1, 0 = +1) = p0

P (Sb1, 1 = +1) = p1 (3.222)

denote the a priori probabilities of the systematic symbol equal to +1 at time
instants 0 and 1 respectively. The inputs to decoder 1 is the received vector r1
and the a priori probabilities. Assume that bit 0 maps to +1 and bit 1 maps to
−1. The noise variance is σ2

w.
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1. With the help of the trellis diagram compute G1, 0+ using the MAP rule.

2. With the help of the trellis diagram compute G1, 0+ using the BCJR algo-
rithm. Do not normalize αi, n and βi, n. Assume α0, n = 1 and β2, n = 1
for 0 ≤ n ≤ 3.

Solution: The trellis diagram of the encoder in (3.220) is illustrated in Fig-
ure 3.41 for three time instants. Transitions due to input bit 0 is indicated by
a solid line and those due to 1 by a dashed line. To begin with, we note that in
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11

0 1 2

(2)
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Figure 3.41: Trellis diagram for the convolutional encoder in (3.220).

order to compute G1, 0+ the data bit at time 0 must be constrained to 0. The
data bit at time 1 can be 0 or 1. There is also a choice of four different encoder
starting states. Thus, there are a total of 4×21 = 8 sequences that are involved
in the computation of G1, 0+. These sequences are shown in Table 3.9. Next we

observe that p0 and γ
(j)
1, sys, 0, 0+ are not involved in the computation of G1, 0+.

Finally we have
P (Sb1, 1 = −1) = 1− p1. (3.223)

With these observations, let us now compute G1, 0+ using the MAP rule. Using
(3.200) and (3.206) we get:

G1, 0+ = p1 exp

(

− (rc1, 0 − 1)2 + (rb1, 1 − 1)2 + (rc1, 1 − 1)2

2σ2
w

)

+ (1− p1) exp

(

− (rc1, 0 − 1)2 + (rb1, 1 + 1)2 + (rc1, 1 + 1)2

2σ2
w

)

+ p1 exp

(

− (rc1, 0 + 1)2 + (rb1, 1 − 1)2 + (rc1, 1 + 1)2

2σ2
w

)

+ (1− p1) exp

(

− (rc1, 0 + 1)2 + (rb1, 1 + 1)2 + (rc1, 1 − 1)2

2σ2
w

)
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Table 3.9: Valid code sequences for G1, 0+.

Starting
state

00

00

10

10

01

01

11

11

Data
seq.

Encoded
seq.

00

01

00

01

00

01

00

01

00 00

00 11

01 01

01 10

00 01

00 10

01 00

01 11

+ p1 exp

(

− (rc1, 0 − 1)2 + (rb1, 1 − 1)2 + (rc1, 1 + 1)2

2σ2
w

)

+ (1− p1) exp

(

− (rc1, 0 − 1)2 + (rb1, 1 + 1)2 + (rc1, 1 − 1)2

2σ2
w

)

+ p1 exp

(

− (rc1, 0 + 1)2 + (rb1, 1 − 1)2 + (rc1, 1 − 1)2

2σ2
w

)

+ (1− p1) exp

(

− (rc1, 0 + 1)2 + (rb1, 1 + 1)2 + (rc1, 1 + 1)2

2σ2
w

)

.

(3.224)

Let us now compute G1, 0+ using the BCJR algorithm. Note that we need not
compute α1, n. Only β1, n needs to be computed. Using the initial conditions
we have:

β1, 0 = p1 exp

(

− (rb1, 1 − 1)2 + (rc1, 1 − 1)2

2σ2
w

)

+ (1− p1) exp

(

− (rb1, 1 + 1)2 + (rc1, 1 + 1)2

2σ2
w

)

= β1, 1 (3.225)

and

β1, 2 = p1 exp

(

− (rb1, 1 − 1)2 + (rc1, 1 + 1)2

2σ2
w

)

+ (1− p1) exp

(

− (rb1, 1 + 1)2 + (rc1, 1 − 1)2

2σ2
w

)

= β1, 3. (3.226)
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Finally, G1, 0+ is computed using the BCJR algorithm as follows:

G1, 0+ = β1, 0 exp

(

− (rc1, 0 − 1)2

2σ2
w

)

+ β1, 3 exp

(

− (rc1, 0 + 1)2

2σ2
w

)

+ β1, 2 exp

(

− (rc1, 0 − 1)2

2σ2
w

)

+ β1, 1 exp

(

− (rc1, 0 + 1)2

2σ2
w

)

. (3.227)

It can be verified that G1, 0+ in (3.224) and (3.227) are identical. Once G1, 0+

has been computed, the a posteriori probability can be computed as:

P (Sb1, 0 = +1|r1) = G1, 0+p0 exp

(

− (rb1, 0 − 1)2

2σ2
w

)

. (3.228)

3.8.3 Performance of ML Decoding of Turbo Codes

The analysis of iterative decoding of turbo codes using the BCJR algorithm is
rather involved. The reader is referred to [116, 117] for a detailed treatment on
this subject. The convergence analysis of iterative decoding using extrinsic in-
formation transfer (EXIT) charts is presented in [118–120]. Instead, we analyze
the performance of ML decoding of turbo codes using the procedure outlined
in [121]. We assume that the code-rate is 1/3.

Firstly, we observe that the constituent recursive systematic encoders are
linear since they are implemented using XOR gates. The interleaver is also
linear since:

b
(i)
1

π−→ b
(i)
2 for 1 ≤ i ≤ 2L

b
(j)
1

π−→ b
(j)
2 for 1 ≤ j ≤ 2L

⇒ b
(i)
1 ⊕ b

(j)
1

π−→ b
(i)
2 ⊕ b

(j)
2 (3.229)

where b
(i)
1 and b

(j)
1 are L× 1 vectors denoting the input bits and b

(i)
2 and b

(j)
2

denote the corresponding interleaved input vector. Hence, the overall turbo
encoder is linear and the analysis can be carried out assuming without any loss

of generality that the transmitted sequence b
(i)
1 is an all zero sequence. Let us

denote the transmitted symbol sequences by the L× 1 vectors:

S
(i)
b1 =

[

S
(i)
b1, 0 . . . S

(i)
b1, L−1

]T

S
(i)
c1 =

[

S
(i)
c1, 0 . . . S

(i)
c1, L−1

]T

S
(i)
c2 =

[

S
(i)
c2, 0 . . . S

(i)
c2, L−1

]T

. (3.230)
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Assuming that the constituent encoders start from the all zero state, both S
(i)
c1

and S
(i)
c2 correspond to the all-zero parity vectors. Let us denote the 3L × 1

received vector by

r =
[
rb1, 0 . . . rb1, L−1 rc1, 0 . . . rc1, L−1 rc2, 0 . . . rc2, L−1

]T

(3.231)

Applying the MAP detection rule on r we get

max
j

P
(

S
(j)
b1 , S

(j)
c1 , S

(j)
c2 |r

)

for 1 ≤ j ≤ 2L (3.232)

where we have assumed that both encoders start from the all-zero state, hence

there are only 2L possibilities of j (and not S ×2L). Note that for a given S
(j)
b1 ,

the parity vectors S
(j)
c1 and S

(j)
c2 are uniquely determined. Assuming that all the

input sequences are equally likely, the MAP rule reduces to the ML rule which
is given by:

max
j

p
(

r|S(j)
b1 , S

(j)
c1 , S

(j)
c2

)

for 1 ≤ j ≤ 2L. (3.233)

Since the noise terms are assumed to be independent, with zero-mean and vari-
ance σ2

w, maximizing the pdf in (3.233) is equivalent to:

min
j

L−1∑

k=0

(

rb1, k − S
(j)
b1, k

)2

+
(

rc1, k − S
(j)
c1, k

)2

+
(

rc2, k − S
(j)
c2, k

)2

for 1 ≤ j ≤ 2L. (3.234)

Assuming ML soft decision decoding, we have (see also (3.105) with a = 1):

P
(

b
(j)
1 |b(i)

1

)

=
1

2
erfc

(√

4dH
8σ2

w

)

(3.235)

where
dH = dH, b1 + dH, c1 + dH, c2 (3.236)

denotes the combined Hamming distance between the ith and jth sequences.
Note that dH, b1 denotes the Hamming distance between the ith and jth system-
atic bit sequence and so on.

Let us now consider an example. Let each of the constituent encoders have
the generating matrix:

G(D) =
[

1 1+D2

1+D+D2

]

. (3.237)

Now

B
(j)
1 (D) = 1 +D +D2
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⇒ C
(j)
1 (D) = 1 +D2. (3.238)

Thus (recall that the reference sequence is the all-zero sequence)

dH, b1 = 3

dH, c1 = 2. (3.239)

However, when B
(j)
1 (D) is randomly interleaved to B

(j)
2 (D) then typically dH, c2

is very large (note that L is typically 1000). Thus due to random interleaving,
at least one term in (3.236) is very large, leading to a large value of dH , and
consequently a small value of the probability of sequence error.

3.9 Summary

In this chapter, we have shown how the performance of an uncoded scheme
can be improved by incorporating error correcting codes. The emphasis of this
chapter was on convolutional codes. The early part of the chapter was devoted to
the study of the structure and properties of convolutional codes. The later part
dealt with the decoding aspects. We have studied the two kinds of maximum
likelihood decoders – one based on hard decision and the other based on soft
decision. We have shown that soft decision results in about 3 dB improvement in
the average bit error rate performance over hard decision. The Viterbi algorithm
was described as an efficient alternative to maximum likelihood decoding.

Convolutional codes result in an increase in transmission bandwidth. Trellis
coded modulation (TCM) was shown to be a bandwidth efficient coding scheme.
The main principle behind TCM is to maximize the Euclidean distance between
coded symbol sequences. This is made possible by using the concept of mapping
by set partitioning. The shell mapping algorithm was discussed, which resulted
in the reduction in the average transmit power, at the cost of an increased peak
power.

The chapter concludes with the discussion of turbo codes and the BCJR
algorithm for iterative decoding of turbo codes. The analysis of ML decoding
of turbo codes was presented and an intuitive explanation regarding the good
performance of turbo codes was given.



Chapter 4

Transmission of Signals
through Distortionless
Channels

In the last two chapters we studied how to optimally detect points that are
corrupted by additive white Gaussian noise (AWGN). We now graduate to a
real-life scenario where we deal with the transmission of signals that are func-
tions of time. This implies that the sequences of points that were considered in
the last two chapters have to be converted to continuous-time signals. How this
is done is the subject of this chapter. We will however assume that the channel
is distortionless, which means that the received signal is exactly the transmitted
signal plus white Gaussian noise. This could happen only when the channel
characteristics correspond to one of the items below:

(a) The impulse response of the channel is given by a Dirac-Delta function e.g.
AδD(t− t0), where A denotes the gain and t0 is the delay. The magnitude
and phase response of this channel is shown in Figure 4.1.

(b) The magnitude response of the channel is flat and the phase response of the
channel is linear over the bandwidth (B) of the transmitted signal. This
is illustrated in Figure 4.2. Many channels encountered in real-life fall
into this category, for sufficiently small values of B. Examples include
telephone lines, terrestrial line-of-sight wireless communication and the
communication link between an earth station and a geostationary satellite.

In this chapter, we describe the transmitter and receiver structures for both
linear as well as non-linear modulation schemes. A modulation scheme is said
to be linear if the message signal modulates the amplitude of the carrier. In the
non-linear modulation schemes, the message signal modulates the frequency or
the phase of the carrier. More precisely, in a linear modulation scheme, if the
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Figure 4.1: Magnitude and phase response of a channel that is ideal over the entire
frequency range. C̃(F ) is the Fourier transform of the channel impulse
response.
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Figure 4.2: Magnitude and phase response of a channel that is ideal in the frequency
range ±B. C̃(F ) is the Fourier transform of the channel impulse re-
sponse.
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message m(t) produces the modulated signal s(t), as given by

m(t) → s(t) (4.1)

then the following relation holds for two message signals m1(t) and m2(t) and
their corresponding modulated signals s1(t) and s2(t)

am1(t) + bm2(t) → as1(t) + bs2(t) (4.2)

where a and b are constants. An important feature of linear modulation schemes
is that the carrier merely translates the spectrum of the message signal. This
is however not the case with non-linear modulation schemes—the spectrum of
the modulated carrier is completely different from that of the message signal.
Whereas linear modulation schemes require linear amplifiers, non-linear modula-
tion schemes are immune to non-linearities in the amplifiers. Linear modulation
schemes are easy to analyze even when they are passed through a distorting
channel. Analysis of non-linear modulating schemes transmitted through a dis-
torting channel is rather involved.

The next section deals with linear modulation. In this part, the emphasis
is on implementing the transmitter and the receiver using discrete-time signal
processing techniques. We also derive the bandpass sampling theorem which
has many practical applications.

4.1 Linear Modulation

4.1.1 Transmitter

Consider the signal:

s̃1(t) =
∞∑

k=−∞
Sk δD(t− kT )

= s1, I(t) + j s1, Q(t) (4.3)

where Sk denotes a complex symbol occurring at time kT and drawn from an
M -ary PSK/QAM constellation, δD(t) is the Dirac delta function defined by:

δD(t) = 0 if t 6= 0
∫ ∞

t=−∞
δD(t) = 1 (4.4)

and T denotes the symbol period. Note the 1/T is the symbol-rate. The symbols
could be uncoded or coded. Now, if s1(t) is input to a filter with the complex
impulse response p̃(t), the output is given by

s̃(t) =
∞∑

k=−∞
Sk p̃(t− kT )
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= sI(t) + j sQ(t) (say). (4.5)

The signal s̃(t) is referred to as the complex lowpass equivalent or the complex
envelope of the transmitted signal and p̃(t) is called the transmit filter or the
pulse shaping filter. Note that |s̃(t)| is referred to as the envelope of s̃(t). The
transmitted (passband) signal is given by:

sp(t) = ℜ{s̃(t) exp ( j 2πFct)}
= sI(t) cos(2πFct)− sQ(t) sin(2πFct) (4.6)

where Fc denotes the carrier frequency. In practice, it is not possible to obtain
Dirac-Delta functions, hence the discrete-time approach is adopted.

Let p̃(t) be bandlimited to ±B. Let p̃(nTs) denote the samples of p̃(t),
obtained by sampling p̃(t) at Fs = 1/Ts ≥ 2B. Construct the discrete-time
signal:

s̃1(nTs) =
∞∑

k=−∞
Sk δK(nTs − kT )

=
∞∑

k=−∞
Sk δK(nTs − kNTs)

= s1, I(nTs) + j s1, Q(nTs) (say) (4.7)

where
T

Ts
= N (4.8)

is an integer. The real and imaginary parts of s̃1(nTs) for N = 4 is shown in

s1, I (nTs)

s1, Q(nTs)

nTs

nTs

Figure 4.3: The real and imaginary parts of s̃1(nTs) for N = 4.

Figure 4.3. If s̃1(nTs) is input to p̃(nTs), then the output is given by:

s̃(nTs) =
∞∑

k=−∞
Sk p̃(nTs − kNTs)

∆
= sI(nTs) + j sQ(nTs). (4.9)
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Sk, I 0 Sk−1, I 0 Sk−2, I

sI(·)

p(0) p(Ts) p(2Ts) p(3Ts) p(4Ts)

s1, I(·)

Figure 4.4: Tapped delay line implementation of the transmit filter for N = 2. The
transmit filter coefficients are assumed to be real-valued.

In the above equation, it is assumed that the transmit filter has infinite length,
hence the limits of the summation are from minus infinity to infinity.

In practice, the transmit filter is causal and time-limited. In this situation,
the transmit filter coefficients are denoted by p̃(nTs) for 0 ≤ nTs ≤ (L − 1)Ts.
The complex baseband signal s̃(nTs) can be written as

s̃(nTs) =
k2∑

k=k1

Sk p̃(nTs − kNTs)

∆
= sI(nTs) + j sQ(nTs) (4.10)

where

k1 =

⌈
n− L+ 1

N

⌉

k2 =
⌊ n

N

⌋

. (4.11)

The limits k1 and k2 are obtained using the fact that p̃(·) is time-limited, that
is

0 ≤ nTs − kNTs ≤ (L− 1)Ts. (4.12)

The transmit filter can be implemented as a tapped delay line to obtain sI(·)
and sQ(·) as shown in Figure 4.4 for N = 2.

The discrete-time passband signal is then

sp(nTs) = ℜ{s̃(nTs) exp ( j 2πFcnTs)}
= sI(nTs) cos(2πFcnTs)− sQ(nTs) sin(2πFcnTs) (4.13)

which is converted to sp(t) by a digital-to-analog converter.
For the sake of implementation simplicity, 1/(FcTs) = P is chosen to be an

integer, so that the sinusoidal terms in the above equation are periodic with a
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period of P samples. Hence the sinusoidal terms can be precomputed and stored
in the memory of the DSP, thus saving on real-time computation. The block
diagram of the transmitter when p̃(t) is real-valued, is shown in Figure 4.5.

Up
conversion

to RF
(optional)

p(nTs)

p(nTs)

cos(2πFcnTs)

− sin(2πFcnTs)

D/A

channel
To

s1, I(nTs)

s1, Q(nTs)

sI(nTs)

sQ(nTs)

sp(nTs) sp(t)

Figure 4.5: Block diagram of the discrete-time implementation of the transmitter for
linear modulation when p̃(t) is real-valued.

ℜ{·} sp(nTs)Sk

p(nTs)
s̃(nTs)

e j 2πFcnTs

Figure 4.6: Simplified block diagram of the discrete-time transmitter for linear mod-
ulation.

The simplified block diagram is shown in Figure 4.6. In the next section, we
compute the power spectrum of the transmitted signal.

4.1.2 Power Spectral Density of the Transmitted Signal

Consider the random process given by:

S̃(t) =
∞∑

k=−∞
Sk p̃(t− α− kT )

∆
= SI(t) + jSQ(t) (say). (4.14)

In the above equation, there are two random variables, the symbol Sk and the
timing phase α. Such a random process can be visualized as being obtained
from a large ensemble (collection) of transmitters. We assume that the symbols
have a discrete-time autocorrelation given by:

R̃SS, l
∆
=

1

2
E
[
SkS

∗
k−l

]
. (4.15)
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Note that

Pav = 2R̃SS, 0 (4.16)

where Pav is the average power in the constellation (see (2.30)). The timing
phase α is assumed to be a uniformly distributed random variable between
[0, T ). It is clear that s̃(t) in (4.5) is a particular realization of the random
process in (4.14) with α = 0. The random process S̃(t) can be visualized as
being generated by an ensemble of transmitters.

In communication theory, it is mathematically convenient to deal with a
random process rather than a particular realization of the random process. This
enables us to use the expectation operator rather than a time average. Moreover,
important parameters like the mean and the autocorrelation are well defined
using the expectation operator. As far as the particular realization of a random
process is concerned, we usually assume that the random process is ergodic, so
that the time average is equal to the ensemble average.

Let us now compute the autocorrelation of the random process in (4.14). It
is reasonable to assume that Sk and α are statistically independent. We have

R̃S̃S̃(τ)
∆
=

1

2
E
[

S̃(t)S̃∗(t− τ)
]

=
1

2
E

[( ∞∑

k=−∞
Skp̃(t− α− kT )

)( ∞∑

l=−∞
S∗
l p̃

∗(t− τ − α− lT )

)]

=
1

T

∫ T

α=0

∞∑

k=−∞

∞∑

l=−∞
p̃(t− α− kT )p̃∗(t− τ − α− lT )R̃SS,k−l dα.

(4.17)

Substituting k − l = m in the above equation we get

R̃S̃S̃(τ) =
1

T

∞∑

m=−∞
R̃SS,m

∫ T

α=0

∞∑

k=−∞
p̃(t− α− kT )p̃∗(t− τ − α− kT +mT ) dα. (4.18)

Substituting t−α−kT = x and combining the integral and the summation over
k, we get

R̃S̃S̃(τ) =
1

T

∞∑

m=−∞
R̃SS,m

∫ ∞

x=−∞
p̃(x)p̃∗(x − τ +mT ) dx

=
1

T

∞∑

m=−∞
R̃SS,mR̃p̃p̃(τ −mT ) (4.19)

where R̃p̃p̃(·) is the autocorrelation of p̃(t).
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The power spectral density of S̃(t) in (4.14) is simply the Fourier transform
of the autocorrelation, and is given by:

SS̃(F ) =
1

T

∫ ∞

τ=−∞

∞∑

m=−∞
R̃SS,mR̃p̃p̃(τ −mT ) exp (−j 2πFτ) dτ

=
1

T

∫ ∞

y=−∞

∞∑

m=−∞
R̃SS,mR̃p̃p̃(y) exp (−j 2πF (y +mT )) dy

=
1

T
SP, S(F )

∣
∣
∣P̃ (F )

∣
∣
∣

2

(4.20)

where

P̃ (F ) =

∫ ∞

t=−∞
p̃(t) exp (−j 2πFt) dt (4.21)

is the continuous-time Fourier transform of p̃(t) and

SP, S(F ) =
∞∑

l=−∞
R̃SS, l exp (−j 2πF lT ) (4.22)

denotes the discrete-time Fourier transform of the autocorrelation of the symbol
sequence (see Appendix E). Note that the power spectral density is real valued.

Example 4.1.1 Compute the power spectral density of a random binary wave
shown in Figure 4.7, with symbols +A and 0 occurring with equal probability.
Assume that the symbols are independent.

3T 5T 7T 9T 11T

A

amplitude

T

time

Figure 4.7: A random binary wave.

Solution: Here the transmit filter is

p(t) =

{
1 for 0 < t < T
0 elsewhere

∆
= rect

(
t− T/2

T

)

. (4.23)

Hence

|P̃ (F )| = T

∣
∣
∣
∣

sin(πFT )

πFT

∣
∣
∣
∣

∆
= T |sinc (FT )| . (4.24)
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The constellation has two points, namely {0, A}. Since the signal in this exam-
ple is real-valued, we do not use the factor of half in the autocorrelation. Hence
we have:

RSS, l =

{
A2/2 for l = 0
A2/4 for l 6= 0

=

{
σ2
S +m2

S for l = 0
m2

S for l 6= 0

= m2
S + σ2

SδK(l) (4.25)

where mS and σ2
S denote the mean and the variance of the symbols respectively.

In this example, assuming that the symbols are equally likely

mS = E[Sk] = A/2

σ2
S = E

[
(Sk −mS)

2
]

= A2/4. (4.26)

The discrete-time Fourier transform of RSS, l is

SP, S(F ) = σ2
S +m2

S

∞∑

k=−∞
exp (−j 2πFkT ) . (4.27)

However from (E.5) in Appendix E we have

∞∑

k=−∞
exp (−j 2πFkT ) =

1

T

∞∑

k=−∞
δD

(

F − k

T

)

. (4.28)

Hence

SP, S(F ) = σ2
S +

m2
S

T

∞∑

k=−∞
δD

(

F − k

T

)

. (4.29)

The overall power spectrum is given by:

SS̃(F ) =
1

T

(

σ2
S +

m2
S

T

∞∑

k=−∞
δD

(

F − k

T

))∣
∣
∣P̃ (F )

∣
∣
∣

2

. (4.30)

Substituting for P̃ (F ) from (4.24) we get

SS̃(F ) =
1

T

(

σ2
S +

m2
S

T

∞∑

k=−∞
δD

(

F − k

T

))

T 2sinc2(FT ). (4.31)

However

δD

(

F − k

T

)

sinc2(FT ) =







0 for F = k/T , k 6= 0
δD(F ) for F = 0
0 elsewhere.

(4.32)



184 K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in

Hence

SS̃(F ) =
A2T

4
sinc2(FT ) +

A2

4
δD(F ). (4.33)

Equation (4.30) suggests that to avoid the spectral lines at k/T (the summation
term in (4.30)), the constellation must have zero mean, in which case RSS, l

becomes a Kronecker delta function.
To find out the power spectral density of the transmitted signal sp(t), once

again consider the random process

Ã(t) = S̃(t) exp ( j (2πFct+ θ)) (4.34)

where S̃(t) is the random process in (4.14) and θ is a uniformly distributed
random variable in the interval [0, 2π). Define the random process

Sp(t)
∆
= ℜ

{

Ã(t)
}

=
1

2

(

Ã(t) + Ã∗(t)
)

. (4.35)

Note that sp(t) in (4.6) is a particular realization of the random process in
(4.35) for α = 0 and θ = 0. Now, the autocorrelation of the random process in
(4.35) is given by (since Sp(t) is real-valued, we do not use the factor 1/2 in the
autocorrelation function):

RSpSp(τ) = E [Sp(t)Sp(t− τ)]

=
1

4
E
[(

Ã(t) + Ã∗(t)
)(

Ã(t− τ) + Ã∗(t− τ)
)]

= ℜ
{

R̃S̃S̃(τ) exp ( j 2πFcτ)
}

(4.36)

where we have used the fact that the random variables θ, α and Sk are statis-
tically independent and hence

E
[

Ã(t)Ã(t− τ)
]

= E
[

Ã∗(t)Ã∗(t− τ)
]

= 0

1

2
E
[

Ã(t)Ã(∗t− τ)
]

= R̃S̃S̃(τ) exp ( j 2πFcτ) . (4.37)

Thus the power spectral density of Sp(t) in (4.35) is given by

SSp(F ) =
1

2
[SS̃(F − Fc) + SS̃(−F − Fc)] . (4.38)

In the next section we give the proof of Proposition 3.0.1 in Chapter 3.

4.1.3 Proof of Proposition 3.0.1

Now that we have defined continuous-time signals, we are in a better position
to understand the significance of Proposition 3.0.1 in Chapter 3. We assume
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that the autocorrelation in (4.15) is a Kronecker delta function, that is

R̃SS, l =
Pav

2
δK(l). (4.39)

Fortunately, the above condition is valid for both coded and uncoded systems
employing zero-mean constellations (see section 3.2). Hence, the baseband
power spectral density in (4.20) becomes

SS̃(F ) =
Pav

2T

∣
∣
∣P̃ (F )

∣
∣
∣

2

. (4.40)

As an example, let us compare uncoded BPSK with coded BPSK employing a
rate-k/n code. Hence, if the uncoded bit-rate is R = 1/T then the coded bit-rate
is Rn/k = 1/Tc. We assume that the uncoded system employs a transmit filter
p̃1(t), whereas the coded system employs a transmit filter p̃2(t). We constrain
both transmit filters to have the same energy, that is:

∫ ∞

t=−∞
|p̃1(t)|2 dt =

∫ ∞

t=−∞
|p̃2(t)|2 dt

=

∫ ∞

F=−∞

∣
∣
∣P̃1(F )

∣
∣
∣

2

dF

=

∫ ∞

F=−∞

∣
∣
∣P̃2(F )

∣
∣
∣

2

dF (4.41)

where we have used the Parseval’s energy theorem (refer to Appendix G). Let
Pav, b denote the average power of the uncoded BPSK constellation and Pav,C, b

denote the average power of the coded BPSK constellation.
Now, in the case of uncoded BPSK, the average transmit power is:

P1 =

∫ ∞

F=−∞
SSp(F ) dF

=
Pav, bA0

4T
(4.42)

where

A0 =

∫ ∞

F=−∞

[∣
∣
∣P̃1(F − Fc)

∣
∣
∣

2

+
∣
∣
∣P̃1(−F − Fc)

∣
∣
∣

2
]

dF. (4.43)

The average energy transmitted in the duration of k uncoded bits is:

kTP1 =
Pav, bA0k

4
= kEb (4.44)

where Eb denotes the average energy per uncoded bit. In the case of coded
BPSK, the average transmit power is:

P2 =
Pav,C, bA0

4Tc
(4.45)
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and the average energy transmitted in the duration nTc is:

nTcP2 =
Pav,C, bA0n

4
. (4.46)

Since

kTP1 = nTcP2

⇒ nPav,C, b = kPav, b. (4.47)

Thus proved. In the next section we derive the optimum receiver for linearly
modulated signals.

4.1.4 Receiver

The received signal is given by:

r(t) = Sp(t) + w(t) (4.48)

where Sp(t) is the random process defined in (4.35) and w(t) is an AWGN
process with zero-mean and power spectral density N0/2. This implies that

E [w(t)w(t − τ)] =
N0

2
δD(τ). (4.49)

Now consider the receiver shown in Figure 4.8. The signals uI(t) and uQ(t) are

r(t)

−2 sin(2πFct+ φ)

uQ(t)

g̃(t)
x̃(t)

t = mT + α

2 cos(2πFct + φ)

uI(t)

Figure 4.8: Receiver for linear modulation schemes.

given by

uI(t) = 2r(t) cos(2πFct+ φ)

= [SI(t) cos(θ − φ)− SQ(t) sin(θ − φ)] + vI(t)

+ 2Fc terms
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uQ(t) = −2r(t) sin(2πFct+ φ)

= [SI(t) sin(θ − φ) + SQ(t) cos(θ − φ)] + vQ(t)

+ 2Fc terms (4.50)

where φ is a random variable in [0, 2π), SI(t) and SQ(t) are defined in (4.14)
and

vI(t) = 2w(t) cos(2πFct+ φ)

vQ(t) = −2w(t) sin(2πFct+ φ). (4.51)

Define the random processes

ṽ(t) = vI(t) + j vQ(t). (4.52)

Assuming φ and w(t) are statistically independent, it is clear that vI(t) and
vQ(t) have zero mean and autocorrelation given by

E [vI(t)vI(t− τ)] = E [vQ(t)vQ(t− τ)]

= N0δD(τ). (4.53)

Moreover vI(t) and vQ(t) are uncorrelated, that is

E [vI(t)vQ(t− τ)] = 0 for all τ (4.54)

hence

Rṽṽ(τ) =
1

2
E [ṽ(t)ṽ∗(t− τ)] = N0δD(τ). (4.55)

With these definitions, we are now ready to state the problem.
Find out a filter g̃(t) such that:

(a) The signal-to-noise ratio at the sampler output is maximized.

(b) The intersymbol interference (ISI) at the sampler output is zero.

Firstly we note that the 2Fc terms in (4.50) must be eliminated, hence g̃(t)
must necessarily have a lowpass frequency response. Secondly, since the 2Fc

terms are eliminated anyway, we might as well ignore them at the input of g̃(t)
itself. With these two points in mind, let us define ũ(t) as

ũ(t)
∆
= uI(t) + juQ(t)

= S̃(t) exp ( j (θ − φ)) + ṽ(t)

=

( ∞∑

k=−∞
Skp̃(t− α− kT )

)

exp ( j (θ − φ)) + ṽ(t). (4.56)

Observe that when θ 6= φ, the in-phase and quadrature parts of the signal
interfere with each other. This phenomenon is called cross-talk. The output of
the filter is given by:

x̃(t) = ũ(t) ⋆ g̃(t)
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= exp ( j (θ − φ))
∞∑

k=−∞
Skh̃(t− α− kT ) + z̃(t) (4.57)

where

h̃(t) = g̃(t) ⋆ p̃(t)

z̃(t) = g̃(t) ⋆ ṽ(t). (4.58)

To satisfy the zero ISI constraint, we must have:

h̃(kT ) =

{
h̃(0) for k = 0
0 for k 6= 0.

(4.59)

Thus, the sampler output becomes (at time instants mT + α)

x̃(mT + α) = Smh̃(0) exp ( j (θ − φ)) + z̃(mT + α). (4.60)

Now, maximizing the signal-to-noise ratio implies

max
E
[

|Sk|2
] ∣
∣
∣h̃(0) exp ( j (θ − φ))

∣
∣
∣

2

2R̃z̃z̃(0)

⇒max
E
[

|Sk|2
] ∣
∣
∣h̃(0) exp ( j (θ − φ))

∣
∣
∣

2

E
[

|z̃(mT + α)|2
]

⇒max
Pav

∣
∣
∣
∫∞
F=−∞ P̃ (F )G̃(F ) dF

∣
∣
∣

2

2N0

∫∞
F=−∞

∣
∣
∣G̃(F )

∣
∣
∣

2

dF
. (4.61)

We now use the Schwarz’s inequality which states that:

∣
∣
∣
∣

∫ ∞

F=−∞
P̃ (F )G̃(F ) dF

∣
∣
∣
∣

2

≤
∫ ∞

F=−∞

∣
∣
∣P̃ (F )

∣
∣
∣

2

dF

∫ ∞

F=−∞

∣
∣
∣G̃(F )

∣
∣
∣

2

dF. (4.62)

The inequality becomes an equality when

G̃(F ) = C̃P̃ ∗(F )

⇒ H̃(F ) =
∣
∣
∣P̃ (F )

∣
∣
∣

2

(4.63)

where C̃ is a complex constant and the SNR attains the maximum value given
by

Pav

∫∞
F=−∞

∣
∣
∣P̃ (F )

∣
∣
∣

2

dF

2N0
. (4.64)

From (4.63), the impulse response of g̃(t) is given by (assuming C̃ = 1)

g̃(t) = p̃∗(−t) (4.65)
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and is called the matched filter [122–124]. Note that the energy in the transmit
filter (and also the matched filter) is given by:

h̃(0) =

∫ ∞

t=−∞
|p̃(t)|2 dt

=

∫ ∞

F=−∞

∣
∣
∣P̃ (F )

∣
∣
∣

2

dF (4.66)

where we have used the Parseval’s energy theorem (see Appendix G). Note also
that

h̃(t) = R̃p̃p̃(t) (4.67)

is the autocorrelation of p̃(t). For convenience h̃(0) is set to unity so that the
sampler output becomes

x̃(mT + α) = Sm exp ( j (θ − φ)) + z̃(mT + α) (4.68)

and the maximum SNR is equal to

Pav

2N0
. (4.69)

If uncoded BPSK is used, then Pav = Pav, b (see section 4.1.3) and (4.69) be-
comes:

Pav, b

2N0
=

Eb

N0
(4.70)

since h(0) = 1 implies that A0 = 2 in (4.43) and Eb is defined in (4.44).
The noise samples z̃(mT + α) are zero mean with autocorrelation (see Ap-

pendix H)

Rz̃z̃(kT ) =
1

2
E [z̃(mT + α)z̃∗(mT + α− kT )] = N0R̃p̃p̃(kT )

= N0δK(kT ). (4.71)

Thus the noise samples at the sampler output are uncorrelated and being Gaus-
sian, they are also statistically independent. Equation (4.68) provides the mo-
tivation for all the detection techniques (both coherent and non-coherent) dis-
cussed in Chapter 2 with σ2

w = N0. At this point it must be emphasized
that multidimensional orthogonal signalling is actually a non-linear modulation
scheme and hence its corresponding transmitter and receiver structure will be
discussed in a later section.

Equation (4.68) also provides the motivation to perform carrier synchro-
nization (setting φ = θ) and timing synchronization (computing the value of
the timing phase α). In the next section, we study some of the pulse shapes
that satisfy the zero ISI condition.

Example 4.1.2
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p(t)
ũ(t)

p(−t)

t = nT
x̃(nT )x̃(t)

5T/4

Sk

1/
√
T

p(t)
ṽ(t)

t

Figure 4.9: A baseband digital communication system.

Consider a baseband digital communication system shown in Figure 4.9. The
symbols Sk are independent, equally likely and drawn from a 16-QAM constel-
lation with minimum distance equal to unity. The symbol-rate is 1/T . The
autocorrelation of the complex-valued noise is:

Rṽṽ(τ) = N0δD(τ). (4.72)

Compute the following parameters at the output of the sampler:

1. The desired signal power (in two dimensions).

2. The ISI power (in two dimensions).

3. Autocorrelation of complex noise samples at the sampler output.

Solution: The received signal is given by:

ũ(t) =
∞∑

k=−∞
Skp(t− kT ) + ṽ(t). (4.73)

The matched filter output is:

x̃(t) = ũ(t) ⋆ p(−t)

=
∞∑

k=−∞
SkRpp(t− kT ) + z̃(t). (4.74)

The sampler output is:

x̃(nT ) =
∞∑

k=−∞
SkRpp(nT − kT ) + z̃(nT )

= (5/4)Sn + a0Sn−1 + a0Sn+1 + z̃(nT ) (4.75)

with a0 = 1/4 (see Figure 4.10(c)). The desired signal component at the sampler
output is (5/4)Sn. The ISI component at the sampler output is (1/4)Sn−1 +
(1/4)Sn+1. Therefore, there is ISI contribution from a past symbol (Sn−1) and
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p(t)

t

t

t
a0 = 1/4

5/4
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p(−t)

1/
√
T

Sn−1 Sn Sn+1

t

5T/40

−5T/4 0 5T/4

−5T/4 T 0 T 5T/4

(n− 1)T nT (n+ 1)T

1/
√
T

(d)

(c)

(b)

(a)

Figure 4.10: (a) Transmit filter p(t). (b) Matched filter p(−t). (c) Autocorrelation
of p(t)(Rpp(τ )). (d)

∑
k SkRpp(t − kT ). The ISI terms at the sampler

output is denoted by a black dot. The desired term at the sampler
output is denoted by a hollow dot.
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a future symbol (Sn+1). Refer to Figure 4.10(d). The desired signal power in
two-dimensions is:

(5/4)2E
[

|Sn|2
]

= (25/16)Pav = 125/32 (4.76)

since Pav = 5/2. The ISI power in two-dimensions is

(1/4)2E
[

|Sn−1 + Sn+1|2
]

= (1/16)2Pav = 10/32 (4.77)

where we have used the fact that the symbols are independent and equally likely,
hence

E
[
Sn−1S

∗
n+1

]
= E [Sn−1]E

[
S∗
n+1

]
= 0. (4.78)

The noise autocorrelation at the matched filter output is

1

2
E [z̃(t)z̃∗(t− τ)] = N0Rpp(τ). (4.79)

The noise autocorrelation at the sampler output is

1

2
E [z̃(nT )z̃∗(nT −mT )] = N0Rpp(mT )

=
5

4
N0δK(mT ) +

1

4
N0δK(mT − T )

+
1

4
N0δK(mT + T ). (4.80)

4.1.5 Pulse Shapes with Zero ISI

From (4.67) we note that the pulse shape at the output of the matched filter is
an autocorrelation function. Hence the Fourier transform of h̃(t) is real-valued.
Let H̃(F ) denote the Fourier transform of h̃(t). Now, if h̃(t) is sampled at a
rate 1/T Hz, the spectrum of the sampled signal is given by (see Appendix E)

H̃P(F ) =
1

T

∞∑

k=−∞
H̃(F − k/T ). (4.81)

Since from (4.59) we have
h̃(kT ) = δK(kT ) (4.82)

(recall that h̃(0) is set to unity), the discrete-time Fourier transform (see Ap-
pendix E) of h̃(kT ) is given by [125]

H̃P(F ) = 1. (4.83)

Equating (4.82) and (4.83) we get

∞∑

k=−∞
H̃(F − k/T ) = T. (4.84)
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One of the solutions to the above equation is:

H̃(F ) =
∣
∣
∣P̃ (F )

∣
∣
∣

2

=

{
T for −1/(2T ) ≤ F ≤ 1/(2T )
0 elsewhere.

(4.85)

The corresponding pulse shape at the matched filter output is

h(t) =
sin(πt/T )

πt/T
= sinc(t/T ) (4.86)

and the impulse response of the transmit filter is

p(t) =
1√
T

sin(πt/T )

πt/T
. (4.87)

The other solution to (4.84) is the raised cosine spectrum given by:

H̃(F ) =







1
2B for −F1 ≤ F ≤ F1

1
4B

[

1 + cos
(

π(|F |−F1)
2B−2F1

)]

for F1 ≤ |F | ≤ 2B − F1

0 elsewhere

=
∣
∣
∣P̃ (F )

∣
∣
∣

2

(4.88)

where

2B
∆
=

1

T

ρ
∆
= 1− F1

B
. (4.89)

The term ρ is called the roll-off factor, which varies from zero to unity. The
percentage excess bandwidth is specified as 100ρ. When ρ = 0 (0% excess
bandwidth), F1 = B and (4.88) and (4.85) are identical. The pulse shape at the
matched filter output is given by

h(t) = sinc(2Bt)
cos(2πρBt)

1− 16ρ2B2t2
. (4.90)

The corresponding impulse response of the transmit filter is (see Appendix F)

p(t) =
1

π
√
2B(1− 64B2ρ2t2)

[

8Bρ cos(θ1 + θ2) +
sin(θ1 − θ2)

t

]

(4.91)

where

θ1 = 2πBt

θ2 = 2πBρt. (4.92)

The Fourier transform of the impulse response in (4.91) is referred to as the
root raised cosine spectrum [126,127]. Recently, a number of other pulses that
satisfy the zero-ISI condition have been proposed [128–131].
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ũ(t)S̃(t)
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Figure 4.11: The baseband equivalent model of a CDMA transmitter.

4.1.6 Application of Matched Filtering in CDMA

In this section we illustrate with examples, the application of matched filtering
in code division multiple access (CDMA) systems [132–134].

Example 4.1.3 Consider the baseband equivalent model of a 2-user CDMA
transmitter as shown in Figure 4.11 (the process of modulation and demodulation
is not shown). Here S1, k and S2, k denote the symbols drawn from a QPSK
constellation originating from user 1 and user 2 respectively. Assume that the
squared minimum Euclidean distance between the symbols in the constellation is
d2. Note that the transmit filters p1(t) and p2(t) are orthogonal, that is

∫ T

t=0

p1(t)p2(t) dt = 0. (4.93)

Compute the symbol error probability of each user using the union bound, as-
suming coherent detection and ideal timing synchronization.

Solution 1 : The baseband equivalent of the received signal can be written as

ũ(t) =
∞∑

k=−∞
S1, kp1(t− kT ) +

∞∑

k=−∞
S2, kp2(t− kT ) + ṽ(t) (4.94)

where the autocorrelation of ṽ(t) is given by (4.55). The output of the matched
filter for user 1 is

x̃1(t) =
∞∑

k=−∞
S1, kh11(t− kT ) +

∞∑

k=−∞
S2, kh21(t− kT ) + z̃1(t) (4.95)
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Figure 4.12: Receiver for users 1 and 2.

where h11(t) and h21(t) are shown in Figure 4.12 and

z̃1(t) = ṽ(t) ⋆ p1(−t). (4.96)

The output of the sampler is

x̃1(iT ) = S1, ih11(0) + z̃1(iT )

= S1, iA
2T + z̃1(iT )

= S1, i + z̃1(iT ) (4.97)

where we have set A2T = 1 for convenience. Note that the autocorrelation of
z̃1(iT ) is given by (4.71). Using the union bound, the probability of symbol
error for user 1 is

P (e) = erfc





√

d2

8N0



 . (4.98)

The probability of symbol error for the second user is the same as above.
Solution 2 : Consider the alternate model for the CDMA transmitter as

shown in Figure 4.13. Note that here the transmit filter is the same for both
users. However, each user is alloted a spreading code as shown in Figure 4.13.
The output of the transmit filter of user 1 is given by

S̃1(t) =
∞∑

k=−∞

Nc−1∑

n=0

S1, c, k, np(t− kT − nTc) (4.99)
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Figure 4.13: Alternate baseband equivalent model for Figure 4.11.

where Nc = T/Tc (in this example Nc = 2) denotes the spread-factor and

S1, c, k, n = S1, kc1, n −∞ < k < ∞, 0 ≤ n ≤ Nc − 1. (4.100)

The term S1, k denotes the symbol from user 1 at time kT and c1, n denotes the
chip at time kT+nTc alloted to user 1. Note that the spreading code is periodic
with a period T , as illustrated in Figure 4.14(c). Moreover, the spreading codes
alloted to different users are orthogonal, that is

Nc−1∑

n=0

ci, ncj, n = NcδK(i− j). (4.101)

This process of spreading the symbols using a periodic spreading code is referred
to as direct sequence CDMA (DS-CDMA).

Let us now turn our attention to the receiver. The baseband equivalent of
the received signal is given by

ũ(t) =
∞∑

k=−∞

Nc−1∑

n=0

S1, c, k, np(t− kT − nTc)

+
∞∑

k=−∞

Nc−1∑

n=0

S2, c, k, np(t− kT − nTc)

+ ṽ(t) (4.102)
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Figure 4.14: (a) Delta train weighted by symbols. (b) Modified delta train. Each
symbol is repeatedNc times. (c) Periodic spreading sequence. (d) Delta
train after spreading (multiplication with the spreading sequence). This
is used to excite the transmit filter p(t).
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Figure 4.15: Modified receivers for users 1 and 2.

where the autocorrelation of ṽ(t) is once again given by (4.55). The output of
the matched filter for user 1 is given by

x̃1(t) =
∞∑

k=−∞

Nc−1∑

n=0

S1, c, k, nh(t− kT − nTc)

+
∞∑

k=−∞

Nc−1∑

n=0

S2, c, k, nh(t− kT − nTc) + z̃(t). (4.103)

The output of the sampler is

x̃1(kT + nTc) = S1, c, k, nA
2Tc + S2, c, k, nA

2Tc + z̃1(kT + nTc)

= S1, c, k, n/Nc + S2, c, k, n/Nc + z̃1(kT + nTc) (4.104)

where we have substituted A2Tc = 1/Nc (since A2T = 1 by assumption). The
autocorrelation of z̃1(kT + nTc) is given by:

Rz̃1z̃1 (lT +mTc) =
1

2
E [z̃1(kT + nTc)z̃

∗
1((k − l)T + (n−m)Tc)]

= N0A
2TcδK(lT +mTc)

=
N0

Nc
δK(lT +mTc). (4.105)
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The signal at the output of the summer is

ỹ1(kT ) =
Nc−1∑

n=0

x̃1(kT + nTc)c1, n

= S1, k + ã(kT ) (4.106)

where we have made use of the orthogonality of the code sequences. Note that

ã(kT ) =
Nc−1∑

n=0

z̃1(kT + nTc)c1, n. (4.107)

the autocorrelation of ã(kT ) is given by

Rãã(mT ) =
1

2
E [ã(kT )ã∗(kT −mT )] = N0δK(mT ). (4.108)

Comparing (4.107) and (4.97) we find that both detection strategies are optimal
and yield the same symbol error rate performance.

The signal-to-noise ratio at the input to the summer is defined as the ratio
of the desired signal power to the noise power, and is equal to:

SNRin =
E
[

S2
1, c, k, n

]

2N2
cRz̃1 z̃1(0)

=
E
[

S2
1, k

]

c21, n

2N2
cRz̃1z̃1(0)

=
Pav

2NcN0
(4.109)

where we have assumed that the symbols and the spreading code are indepen-
dent and as usual Pav denotes the average power of the constellation. The SNR
at the output of the summer is

SNRout =
E
[

S2
1, k

]

2Rãã(0)

=
Pav

2N0
. (4.110)

The processing gain is defined as the ratio of the output SNR to the input SNR.
From (4.109) and (4.110) it is clear that the processing gain is equal to Nc.

The second solution suggests that we can now use the root-raised cosine pulse
as the transmit filter, in order to band-limit the transmitted signal. However
now

2B = 1/Tc (4.111)

where 2B has been previously defined in (4.89). In Figure 4.16 we illustrate the
procedure for generating orthogonal variable spread factor (OVSF) codes that
can be used in DS-CDMA. The OVSF codes are used in the 3G wireless standard
[135]. In the next section we describe the discrete-time receiver implementation
and the bandpass sampling theorem.
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Figure 4.16: Procedure for generating orthogonal variable spread factor codes.

4.1.7 Discrete-Time Receiver Implementation

The received signal is given by (4.48) which is repeated here for convenience:

r(t) = Sp(t) + w1(t) (4.112)

where Sp(t) is the random process given by (4.35) and w1(t) is an AWGN process
with zero-mean and power spectral density N0/2. The received signal is passed
through an analog bandpass filter to eliminate out-of-band noise, sampled and
converted to a discrete-time signal for further processing. Recall that Sp(t) is a
bandpass signal centered at Fc. In many situations Fc is much higher than the
sampling frequency of the analog-to-digital converter and the bandpass sampling
theorem [136,137] needs to be invoked to avoid aliasing. This theorem is based
on the following observations:

1. The spectrum of any signal after sampling becomes periodic with a period
of Fs, where Fs is the sampling frequency.

2. Aliasing, if any, occurs across integer multiples of π.

3. The analog frequency (F ) in hertz and the digital frequency (ω) in radians
are related by ω = 2πF/Fs.

Assume that Sp(t) is bandlimited in the range [Fc−B1, Fc+B2]. The statement
of the bandpass sampling theorem is as follows:

Theorem 4.1.1 Find out the smallest value of the sampling frequency Fs such
that:

kπ ≤ 2π(Fc −B1)

Fs

(k + 1)π ≥ 2π(Fc +B2)

Fs
(4.113)

where k is a positive integer.
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Let

F1 = Fc −B1

F2 = Fc +B2. (4.114)

Given F1 and F2 we now illustrate how the minimum Fs can be computed.

(a)

kπ =
2πF1

Fs

(k + 1)π =
2πF2

Fs
. (4.115)

In this case it is straightforward to solve for k and Fs – if there exists such
a solution.

(b)

kπ <
2πF1

Fs

(k + 1)π =
2πF2

Fs
. (4.116)

Solving the above equations we get

Fs,min, 1 =
2F2

kmax + 1

Fs,min, 1 <
2F1

kmax

⇒ 2F2

kmax + 1
<

2F1

kmax

⇒ kmax <
F1

F2 − F1
(4.117)

for some positive integer kmax.

(c)

kπ =
2πF1

Fs

(k + 1)π >
2πF2

Fs
. (4.118)

In this case we again get:

kmax <
F1

F2 − F1

Fs,min, 2 =
2F1

kmax
(4.119)
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for some positive integer kmax. However, having found out kmax and
Fs,min, 2, it is always possible to find out a lower sampling frequency
for the same value of kmax such that (4.116) is satisfied.

(d)

kπ <
2πF1

Fs

(k + 1)π >
2πF2

Fs
. (4.120)

Once again, having found out k and Fs, it is always possible to find out a
lower value of Fs for the same k such that (4.116) is satisfied.

(e) In items (a)-(d) above, it is assumed that after ideal bandpass filtering
r(t) in (4.112), we get (see (4.6) and [2, 5]):

r(t) = rI(t) cos(2πFct)− rQ(t) sin(2πFct). (4.121)

In other words, the Fourier transform of r(t) is not symmetric about Fc.
However, when

r(t) = rI(t) cos(2πFct) (4.122)

then the Fourier transform of r(t) exhibits conjugate symmetry about
±Fc, that is

R(Fc − F ) = R∗(Fc + F ) for 0 ≤ F ≤ B

R(−Fc − F ) = R∗(−Fc + F ) for 0 ≤ F ≤ B (4.123)

where we have used the fact that rI(t) is real-valued and bandlimited to
[−B, B] so that

RI(−F ) = R∗
I(F ) for 0 ≤ F ≤ B. (4.124)

Further, we have

R(F ) =
RI(F − Fc) +RI(F + Fc)

2
. (4.125)

Let the sampling frequency for r(t) be denoted by Fs = 1/Ts. Then, the
discrete-time Fourier transform (DTFT) of the samples of r(t) is given
by (see (E.9))

RP(F ) =
1

Ts

∞∑

k=−∞
R(F − kFs)

=
1

2Ts

∞∑

k=−∞
[RI(F − Fc − kFs) +RI(F + Fc − kFs)]
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=
1

Ts

∞∑

k=−∞
RI(F − kFs) (4.126)

provided
Fc = lFs (4.127)

where l is a positive integer. Moreover, the condition for no aliasing in
RP(F ) is

Fs ≥ 2B. (4.128)

Hence, the minimum value of the sampling frequency is

Fs,min, 3 = 2B. (4.129)

To summarize, the minimum sampling frequency is determined either by item
(a) or (b) or (e), but never by (c) or (d).

For simplicity of demodulation in case of item (a) or (b), the carrier and
sampling frequency are usually chosen such that

2πFc

Fs
=

(2m+ 1)π

2
(4.130)

where m is a positive integer. It is important to note that the condition in
(4.130) is not mandatory, and aliasing can be avoided even if it is not met.
However, the conditions in (4.113) are mandatory in order to avoid aliasing.

Example 4.1.4 A real-valued bandpass signal occupies the frequency band
50.25 ≤ |F | ≤ 52.5 MHz.

1. Find out the minimum sampling frequency such that there is no aliasing.

2. Find the carrier frequency in the range 50.25 ≤ |F | ≤ 52.5 MHz such that
it maps to an odd multiple of π/2.

3. Does the carrier frequency map to π/2 or 3π/2 mod-2π?

Solution: Substituting F1 = 50.25 and F2 = 52.5 in (4.115) we have:

Fs = 2(F2 − F1)

= 4.5 MHz

k =
2F1

Fs

= 22.33. (4.131)

Since k is not an integer, condition (a) is not satisfied. Let us now try condition
(b). From (4.117) we have:

kmax <
F1

F2 − F1
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⇒ kmax = 22

Fs,min, 1 =
2F2

kmax + 1

= 4.5652 MHz. (4.132)

Since the signal spectrum lies in the range

22π <
2π|F |
Fs

≤ 23π (4.133)

the carrier frequency Fc must be at:

22π +
π

2
=

2πFc

Fs

⇒ Fc = 51.359 MHz. (4.134)

From (4.133) it is clear that the carrier frequency maps to π/2 mod-2π.

|G̃(F )|

F (kHz)

71 74 77

Figure 4.17: Magnitude spectrum of a bandpass signal.

Example 4.1.5 A complex-valued bandpass signal g̃(t) ⇋ G̃(F ) occupies the
frequency band 71 ≤ F ≤ 77 kHz as illustrated in Figure 4.17, and is zero for
other frequencies.

1. Find out the minimum sampling frequency such that there is no aliasing.

2. Sketch the spectrum of the sampled signal in the range [−2π, 2π].

3. How would you process the discrete-time sampled signal such that the band
edges coincide with integer multiples of π?

Solution: Let the required sampling frequency be Fs = 1/Ts. The spectrum of
the sampled signal is given by (see (E.9)):

G̃P(F ) =
1

Ts

∞∑

k=−∞
G̃(F − kFs). (4.135)

This is illustrated in Figure 4.18. Observe that

71 = 77− Fs

⇒ Fs = 6 kHz. (4.136)
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71− Fs 74 77 + Fs

(F3)(F1)

|G̃P(F )|

F (kHz)

(F2)

7771

Figure 4.18: Magnitude spectrum of the sampled bandpass signal.

Let

ω1 = 2πF1/Fs

= 23.67π

= 23π + 2π/3

≡ 1.67π

ω2 = 2πF2/Fs

= 25.67π

= 25π + 2π/3

≡ 1.67π

ω3 = 2πF3/Fs

= 24.67π

≡ 0.67π. (4.137)

The magnitude spectrum of the sampled signal in the range [−2π, 2π] is shown

(1.67 − 2)π

(1.67 − 4)π

0.67π
(1.67 + 2)π

frequency
Normalized

2πF/Fs (radians)

|G̃P(F )|

1.67π0

Figure 4.19: Magnitude spectrum of the sampled bandpass signal in the range
[−2π, 2π].

in Figure 4.19. Finally, to make the band edges coincide with integer multiples
of π, we could multiply g̃(nTs) by e−j 2nπ/3. This is just one possible solution.

Let us now assume, for mathematical simplicity, that the analog bandpass
filter has ideal characteristics in the frequency range [Fc −B, Fc +B], where

B = max[B1, B2] (4.138)
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and r(t) in (4.112) is given by (4.121), after ideal bandpass filtering. The band-
pass sampling rules in (4.113) can now be invoked with B1 and B2 replaced by
B and the inequalities replaced by equalities. In other words, we assume that
item (a) given by (4.115), is applicable. This ensures that the power spectral
density of noise after sampling is flat. This is illustrated in Figure 4.20. Note
that in this example, the sampling frequency Fs = 1/Ts = 4B. We further
assume that the energy of the bandpass filter is unity, so that the noise power
at the bandpass filter output is equal to N0/2. This implies that the gain of the
BPF is 1/

√
4B =

√
Ts. Therefore for ease of subsequent analysis, we assume

that Sp(t) in (4.112) is given by

Sp(t) =
A√
Ts

ℜ
{

S̃(t) exp ( j (2πFct+ θ))
}

(4.139)

where A is an unknown gain introduced by the channel. We also assume that

−Fc −B −Fc

−Fc +B

−π

2B ≡ π

2π Fc
Fs

− 2π = 9π
2

2π Fc
Fs

= 13π
2

Fc + BFc

Fc − B
0

(a)

0

(b)

−2π Fc
Fs

= −13π
2

−2π Fc
Fs

+ 2π = −9π
2

N0
2

· 1
4B

N0
2

F

2πF/Fs

Figure 4.20: (a) Power spectral density of noise at the output of the bandpass filter.
(b) Power spectral density of noise after bandpass sampling.

the condition in (4.130) is satisfied. Now, depending on whether the variable m
in (4.130) is even or odd, there are two situations.

(a) When m = 2l, where l is a positive integer, (4.130) becomes

2πFc

Fs
= 2lπ +

π

2
≡ π

2
(4.140)

and the samples of the received signal is given by

r(nTs) =
√

Ts Sp(nTs) + w(nTs)
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= ASI(nTs) cos(nπ/2 + θ)−ASQ(nTs) sin(nπ/2 + θ)

+ w(nTs) (4.141)

where SI(nTs) and SQ(nTs) are samples of the random process defined in
(4.14).

(b) When m = 2l+ 1, where l is a positive integer, (4.130) becomes

2πFc

Fs
= 2lπ +

3π

2
≡ −π

2
(4.142)

and the samples of the received signal is given by

r(nTs) =
√

Ts Sp(nTs) + w(nTs)

= ASI(nTs) cos(nπ/2− θ) +ASQ(nTs) sin(nπ/2− θ)

+ w(nTs). (4.143)

Note that w(nTs) in (4.141) and (4.143) denotes samples of AWGN with zero
mean and variance N0/2. In what follows, we assume that m in (4.130) is odd.

r(nTs)

2 cos(nπ/2 + φ)

∓2 sin(nπ/2 + φ)

uQ(nTs)

uI(nTs)

g̃(nTs)
x̃(nTs)

t = mT

Figure 4.21: Discrete-time implementation of the receiver for linearly modulated sig-
nals. The minus sign in the sine term is applicable when m in (4.130)
is even, and the plus sign is applicable when m is odd.

The analysis is similar when m is even.
Following the discussion in section 4.1.4 the output of the local oscillators is

given by (ignoring the 2Fc terms)

ũ(nTs)
∆
= uI(nTs) + juQ(nTs)

= A S̃(nTs) exp (j (θ + φ)) + ṽ(nTs)

= A e j (θ+φ)
∞∑

k=−∞
Skp̃(nTs − α− kT ) + ṽ(nTs) (4.144)
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where α is a uniformly distributed random variable in the interval [0, T ] and
ṽ(nTs) denotes samples of AWGN with zero mean and autocorrelation

Rṽṽ(mTs) =
1

2
E [ṽ(nTs)ṽ

∗(nTs −mTs)] = N0δK(mTs) (4.145)

Note that the in-phase and quadrature components of ṽ(nTs) are uncorrelated.
The next issue is the design of the matched filter. We assume that

T

Ts
= N (4.146)

is an integer. In other words, we assume that there are an integer number of
samples per symbol duration. Consider the matched filter of the form

g̃(nTs) = p̃∗(−nTs − α). (4.147)

Let

q̃(nTs) = A e j (θ+φ)
∞∑

k=−∞
Skp̃(nTs − α− kT ). (4.148)

Then, the matched filter output can be written as:

x̃(nTs) = q̃(nTs) ⋆ p̃
∗(−nTs − α) + z̃(nTs) (4.149)

where
z̃(nTs) = ṽ(nTs) ⋆ p̃

∗(−nTs − α). (4.150)

Now

q̃(nTs) ⋆ p̃
∗(−nTs − α)

=
∞∑

l=−∞
q̃(lTs)p̃

∗(lTs − nTs − α)

= A e j (θ+φ)
∞∑

l=−∞

∞∑

k=−∞
Skp̃(lTs − α− kT )p̃∗(lTs − nTs − α)

= A e j (θ+φ)
∞∑

k=−∞
Sk

∞∑

l=−∞
p̃(lTs − α− kT )p̃∗(lTs − nTs − α).

(4.151)

Substituting (recall that T/Ts is an integer)

lTs − kT = iTs (4.152)

in (4.151) we get

∞∑

i=−∞
p̃(iTs − α)p̃∗(iTs + kT − nTs − α) =

R̃p̃p̃(nTs − kT )

Ts
(4.153)
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where we have used (E.60) in Appendix E.
Thus, the matched filter output can be written as

x̃(nTs) = exp ( j (θ + φ))
A

Ts

∞∑

k=−∞
SkR̃p̃p̃(nTs − kT ) + z̃(nTs). (4.154)

It is now clear that the matched filter output must be sampled at instants
nTs = mT , so that the output of the symbol-rate sampler can be written as

x̃(mT ) = exp ( j (θ + φ))
A

Ts
SmR̃p̃p̃(0) + z̃(mT ) (4.155)

where we have used (4.67) and the zero ISI requirement in (4.59). Once again,
for convenience we set

R̃p̃p̃(0)/Ts = 1. (4.156)

The autocorrelation of the noise samples at the matched filter output is given
by

Rz̃z̃(mTs) =
1

2
E [z̃(nTs)z̃

∗(nTs −mTs)] =
N0

Ts
R̃p̃p̃(mTs) (4.157)

which implies that the autocorrelation of noise at the sampler output is given
by

Rz̃z̃(mT ) =
1

2
E [z̃(nT )z̃∗(nT −mT )] = N0δK(mT ) (4.158)

and we have once again used (4.67), (4.59) and (E.60) in Appendix E.

4.2 Carrier and Timing Synchronization

Synchronization in digital communication systems is an old topic that was ad-
dressed as early as 1956 by Costas [138] who invented the Costas loop for carrier
phase synchronization. This was later followed by detailed treatments of phase-
locked loops (PLLs) in [139–141]. Digital implementation of PLLs is described
in [142]. Timing recovery using discrete-time signal processing techniques is
given in [143]. A tutorial on both carrier and timing recovery is given in [144].
Besides, a special issue of the IEEE Transactions on Communications covers
a wide range of topics on synchronization. Books that deal specifically with
synchronization in digital communication systems include [6, 7, 145–148]. An
associated topic of carrier frequency/frequency-offset estimation is dealt with
in [149–161]

As mentioned in sections 4.1.4 and 4.1.7, synchronization involves estimating
the timing phase α (timing recovery) and the carrier phase-offset, β = θ ± φ
(carrier recovery). In practice, for ease of implementation, φ is usually set to
zero (see Figures 4.8 and 4.21) so that β = θ. There exist two methods of
estimating the carrier and timing, namely the maximum a posteriori (MAP)
and the maximum likelihood (ML) estimators. When α and β are uniformly
distributed over a certain range, then the MAP detector reduces to an ML
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detector. In this section we concentrate on ML estimators. The ML estimators
for the timing and carrier phase can be further classified into data-aided and
non-data-aided estimators. We begin with a discussion on the ML estimators
for the carrier phase.

4.2.1 Data-Aided Carrier Phase Estimation

In this section, we assume that timing synchronization has been achieved. As-
suming a discrete-time receiver implementation, the output of the symbol-rate
sampler is given by (4.155), which is repeated here for convenience:

x̃n = Ae j θSn + z̃n (4.159)

where we have assumed that Rp̃p̃(0)/Ts = 1 (see (4.156)). Observe that we have
dropped the variable T since it is understood that all samples are T -spaced.
The autocorrelation of z̃n is

Rz̃z̃,m =
1

2
E
[
z̃nz̃

∗
n−m

]
= N0δK(m)

∆
= σ2

zδK(m). (4.160)

Consider the vectors

x̃ =
[
x̃0 . . . x̃L−1

]T

S =
[
S0 . . . SL−1

]T
. (4.161)

At this point we need to distinguish between data-aided and non-data-aided
phase estimation. In the case of data-aided estimation, the statement of the
problem is to estimate θ given A, x̃ and S. In other words, the symbols are
considered to be known at the receiver, which is a valid assumption during a
training period. Then the ML estimate of θ maximizes the joint conditional pdf

p (x̃|A, S, θ) = 1
(
σz

√
2π
)2L

exp

(

−
∑L−1

n=0

∣
∣x̃n −ASne j θ

∣
∣
2

2σ2
z

)

. (4.162)

The problem can be equivalently stated as

max
θ

p (x̃|A, S, θ) = 1
(
σz

√
2π
)2L

exp

(

−
∑L−1

n=0

∣
∣x̃n −ASne j θ

∣
∣
2

2σ2
z

)

(4.163)

which reduces to

min
θ

L−1∑

n=0

∣
∣x̃n −ASne

j θ
∣
∣
2
. (4.164)

Differentiating the above equation wrt θ and setting the result to zero gives

L−1∑

n=0

x̃nS
∗
ne

−j θ − x̃∗
nSne

j θ = 0. (4.165)
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Let
L−1∑

n=0

x̃nS
∗
n = X + jY. (4.166)

Then the ML estimate θ is given by:

θ̂ = tan−1

(
Y

X

)

for 0 ≤ θ̂ < 2π. (4.167)

The following points are worth noting:

1. The phase estimate is independent of A and in the absence of noise θ̂ = θ,
which is intuitively satisfying.

2. The phase estimate θ̂ lies in the range [0, 2π) since the quadrant informa-
tion can be obtained from the sign of X and Y .

3. The other solution of θ̂ given by

θ̂ = tan−1

(
Y

X

)

+ π for 0 ≤ θ̂ < 2π (4.168)

also satisfies (4.165). However, this solution maximizes (4.164) and is
hence incorrect.

Performance Analysis

The quality of an estimate is usually measured in terms of its bias and variance
[162–165]. Since θ̂ in (4.167) is a random variable, it is clear that it will have its
own mean and variance. With reference to the problem at hand, the estimate
of θ is said to be unbiased if

E
[

θ̂
]

= θ. (4.169)

For an unbiased estimate, the variance is lower bounded by the Cramér-Rao
bound (CRB):

E

[(

θ̂ − θ
)2
]

≥ 1

/

E

[(
∂

∂θ
ln p (x̃|θ)

)2
]

. (4.170)

An unbiased estimate whose variance is equal to the Cramér-Rao lower bound,
is said to be efficient.

For convenience of analysis, we assume that the phase-offset to be estimated
is small, i.e. |θ| ≈ 0 , the symbols are drawn from an M -ary PSK constellation

with |Sn|2 = 1, the gain A = 1, the observation interval is large (L ≫ 1) and
the SNR is large (σ2

z ≪ 1). Thus (4.166) becomes:

X + jY = Le j θ +
L−1∑

n=0

z̃nS
∗
n
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≈ L(1 + j θ) + j
L−1∑

n=0

(zn,QSn, I − zn, ISn,Q) (4.171)

where we have substituted

cos(θ) ≈ 1

sin(θ) ≈ θ

L+
L−1∑

n=0

(zn, ISn, I + zn,QSn,Q) ≈ L. (4.172)

Therefore from (4.167) we have:

θ̂ ≈ θ +
1

L

L−1∑

n=0

(zn,QSn, I − zn, ISn,Q) (4.173)

where we have used the fact that for |x| ≈ 0

tan−1(x) ≈ x. (4.174)

Clearly

E
[

θ̂
]

= θ (4.175)

therefore the estimator is unbiased. Similarly, it can be shown that the variance
of the estimate is

E

[(

θ̂ − θ
)2
]

=
σ2
z

L
. (4.176)

Now, the Cramér-Rao bound on the variance of the estimate is (assumingA = 1)

{

E

[(
∂

∂θ
ln p (x̃|θ)

)2
]}−1

=

{

E

[(
∂

∂θ
ln p (x̃|θ, S)

)2
]}−1

(4.177)

since by assumption, the symbols are known. Substituting for the conditional
pdf, the denominator of the CRB becomes:

1

4σ4
z

E





(

∂

∂θ

L−1∑

n=0

∣
∣x̃n − Sne

j θ
∣
∣
2

)2




=
−1

4σ4
z

E





(
L−1∑

n=0

x̃nS
∗
ne

− j θ − x̃∗
nSne

j θ

)2




=
−1

4σ4
z

E





(
L−1∑

n=0

z̃nS
∗
ne

− j θ − z̃∗nSne
j θ

)2


 (4.178)
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where it is understood that we first need to take the derivative and then sub-
stitute for x̃n from (4.159) with A = 1. Let

S∗
ne

− j θ = e jαn . (4.179)

Then (4.178) reduces to

1

4σ4
z

E





(

∂

∂θ

L−1∑

n=0

∣
∣x̃n − Sne

j θ
∣
∣
2

)2




=
1

σ4
z

E





(
L−1∑

n=0

z̃n,Q cos(αn) + z̃n, I sin(αn)

)2




=
L

σ2
z

. (4.180)

Hence, the CRB is given by:

{

E

[(
∂

∂θ
ln p (x̃|θ, S)

)2
]}−1

=
σ2
z

L
(4.181)

which is identical to (4.176). Thus the data-aided ML estimator for the carrier
phase-offset, is efficient under the assumptions stated earlier.

4.2.2 Non-Data-Aided Carrier Phase Estimation

In the case of non-data-aided phase estimation, the problem is to estimate θ
given A and x̃. In particular, the ML estimate yields that value of θ which
maximizes the joint conditional pdf:

max
θ

p (x̃|A, θ)

⇒max
θ

ML−1∑

i=0

p
(

x̃|A, S(i), θ
)

P
(

S(i)
)

(4.182)

where P
(
S(i)

)
is the probability of occurrence of the ith symbol sequence. As-

suming that the symbols are independent and equally likely and the constellation
is M -ary, we have:

P
(

S(i)
)

=
1

ML
(4.183)

which is a constant. A general solution for θ in (4.182) may be difficult to
obtain. Instead, let us look at a simple case where L = 1 and M = 2 (BPSK)
with S0 = ±1. In this case, the problem reduces to (after ignoring constants)

max
θ

exp

(

−
∣
∣x̃0 −Ae j θ

∣
∣
2

2σ2
z

)

+ exp

(

−
∣
∣x̃0 +Ae j θ

∣
∣
2

2σ2
z

)

. (4.184)
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Expanding the exponents in the above equation and ignoring constants we get

max
θ

exp

(

2ℜ
{
x̃0Ae−j θ

}

2σ2
z

)

+ exp

(

−2ℜ
{
x̃0Ae−j θ

}

2σ2
z

)

. (4.185)

Now, for large values of |x| we can write

ex + e−x ≈ e|x|. (4.186)

Thus for large SNR (A ≫ σ2
z) (4.185) reduces to

max
θ

exp

(∣
∣ℜ
{
x̃0Ae−j θ

}∣
∣

σ2
z

)

(4.187)

which is equivalent to
max

θ

∣
∣ℜ
{
x̃0e

−j θ
}∣
∣ (4.188)

where we have again ignored the constants. If

x̃0 = P + jQ (4.189)

then the solution to (4.188) is

θ̂ = tan−1

(
Q

P

)

for −π/2 < θ̂ < π/2. (4.190)

The other solution to θ̂ is given by:

θ̂ = tan−1

(
Q

P

)

+ π (4.191)

which also maximizes (4.188). However, it is customary to take θ̂ in the range

[−π/2, π/2]. The plot of θ̂ vs θ is depicted in Figure 4.22 in the absence of
noise, when

x̃0 = Ae j θS0. (4.192)

Observe that the phase estimate exhibits 180o phase ambiguity, that is θ̂ = 0
when θ is an integer multiple of 180o.

An alternate solution to the problem of ML non-data-aided carrier phase
estimate is the following two-step procedure:

1. Estimate the data assuming that θ = 0.

2. Estimate the carrier phase using the estimated data using (4.166) and
(4.167).

Mathematically, the problem can be stated as

max
i

p
(

x̃0|A, S(i)
0 , θ = 0

)
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π/2

−π/2

0 3π/2 θ

θ̂

π/2
π 2π

Figure 4.22: The plot of θ̂ vs θ for the ML non-data-aided estimation of BPSK
signals.

max
θ

p
(

x̃0|A, S(i)
0 , θ

)

. (4.193)

Once again we use BPSK with data-length L = 1 to demonstrate this concept.
In the first step we have:

max
i

p
(

x̃0|A, S(i)
0 , θ = 0

)

for 1 ≤ i ≤ 2

⇒max
i

1

2πσ2
z

exp




−

∣
∣
∣x̃0 −AS

(i)
0

∣
∣
∣

2

2σ2
z






⇒min
i

∣
∣
∣x̃0 −AS

(i)
0

∣
∣
∣

2

⇒max
i

ℜ
{

x̃0S
(i)
0

}

⇒max
i

S
(i)
0 ℜ{x̃0} (4.194)

since S
(i)
0 = ±1 and we have assumed that A is positive. There are two points

to be noted in the last step of (4.194):

1. The detection rule does not require knowledge of the value of A. However,
the sign of A needs to be known.

2. The detection rule is equivalent to making a hard decision on x̃0, i.e.,

choose S
(i)
0 = +1 if ℜ{x̃0} > 0, choose S

(i)
0 = −1 if ℜ{x̃0} < 0.

Once the data estimate is obtained, we can use the data-aided ML rule for the
phase estimate. To this end, let

x̃0S
(i)
0 = X + jY. (4.195)

Then the phase estimate is given by:

θ̂ = tan−1

(
Y

X

)

for −π/2 < θ̂ < π/2. (4.196)
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Once again it can be seen that in the absence of noise, the plot of θ̂ vs θ is given
by Figure 4.22, resulting in 180o phase ambiguity. Similarly it can be shown
that for QPSK, the non-data-aided phase estimates exhibit 90o ambiguity, that
is, θ̂ = 0 when θ is an integer multiple of 90o.

The equivalent block diagram of a linearly modulated digital communica-
tion system employing carrier phase synchronization is shown in Figure 4.23.
Observe that in order to overcome the problem of phase ambiguity, the data

Unit

delay

e−j θ̂

dn

ℑ positive
angle

ℜ

bn cn−1 cn

x̃n

Diff

encoder

Map

to

BPSK

1 0

−1 1

Mapping of bits to BPSK

Demap

to

bits

Input Output Data bits

bn
Rotation

0 0

π1
000

0 1 1

1 0 1

1 1 0

Differential encoding rules

Differential encoding table

Unit

delay

Diff.

decoder

dn−1

an

cn−1

bn cn

z̃n (AWGN)

e j θ

Sn

Figure 4.23: The equivalent block diagram of a linearly modulated digital communi-
cation system employing non-data-aided carrier phase synchronization.

bits bn have to be differentially encoded to cn. The differential encoding rules
and the differential encoding table are also shown in Figure 4.23. The differen-
tial decoder is the reverse of the encoder. In order to understand the principle
behind differential encoding, let us consider an example.

Example 4.2.1 In Figure 4.23 assume that θ = 8π/7. Assuming no noise,

compute θ̂ and the sequences cn, Sn, dn and an if b0b1b2b3 = 1011. Assume
that c−1 = d−1 = 0.

Solution: In order to estimate θ, we assume without loss of generality that
S0 = +1 has been transmitted. Therefore

x̃0 = AS0e
j 8π/7
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= Ae j 8π/7. (4.197)

From step (1) we get S(i) = −1 = e−jπ. Then

x̃0S
(i) = Ae j (8π/7−π)

x̃0S
(i) = Ae jπ/7. (4.198)

Thus

θ̂ = π/7

⇒ θ − θ̂ = π. (4.199)

It can be shown that the result in (4.199) is true even when S0 = −1. The
sequences cn, Sn, dn and an are shown in Table 4.1. Observe that dn is a 180o

Table 4.1: The sequences cn, Sn, dn and an when b0b1b2b3 = 1011.

bnn cn Sn dn an

−1

0

1

2

3

0 0

1

0

1

1

1

1

0

1

+1

−1

−1

+1

−1

0

0

1

0

0

0

1

1

rotated version of cn for n ≥ 0.

4.2.3 Error-Rate Analysis

The signal at the output of the receiver multiplier in Figure 4.23 is

x̃ne
−j θ̂ = Ae j (θ−θ̂)Sn + z̃ne

−j θ̂

∆
= Ae j (θ−θ̂)Sn + ũn. (4.200)

It can be shown that the autocorrelation of ũn is given by:

Rũũ,m =
1

2
E
[
ũnũ

∗
n−m

]
= N0δK(m)

∆
= σ2

zδK(m) (4.201)

where σ2
z has been previously defined in (4.160).

Note that once the carrier phase has been acquired during the training pe-
riod (to an integer multiple of 90o, using QPSK), the transmitter can switch

over to M -ary 2-D signalling. In what follows, we assume that θ− θ̂ is an integer
multiple of 90o. Since the 2-D constellations that are used in practice are in-
variant to rotation by integer multiples of 90o, it is still possible to do coherent
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detection. Now, from section 2.1 it is clear that the average probability of sym-
bol error before differential decoding remains unchanged due to rotation of the
constellation. Since the differential decoder is a unit-delay feedforward system,
a single error at its input leads to two consecutive errors at its output (there
is no error propagation). Thus, the average probability of symbol error at the
output of the differential decoder is twice that of the input.

Observe carefully the difference between coherent differential decoding and
noncoherent differential detection (section 2.6). In the former case, we are only
doubling the probability of error, as opposed to the latter case where the per-
formance is 3 dB inferior to coherent detection. However, coherent differential
decoding is possible only when θ− θ̂ is a integer multiple of 90o, whereas nonco-
herent differential detection is possible for any value of θ − θ̂. Finally, coherent
differential decoding is possible for any of the 90o rotationally-invariant M -ary
2-D constellations, non-coherent differential detection is possible only for M -ary
PSK constellations.

4.2.4 Data-Aided Timing Synchronization

Recall that in the previous section on carrier phase estimation, we had assumed
that the timing is known. This implies that timing synchronization must be
done noncoherently. The task of the timing recovery algorithm is twofold [166]:

1. To estimate the matched filter, i.e. p(−nTs − α) (see (4.147)).

2. To sample the output of the matched filter at the right instants.

As far as estimating the matched filter is concerned, a possible solution is to
interpolate the output of the local oscillators to the desired accuracy. This
concept is best illustrated by an example. Let us assume for simplicity that the
transmit filter has a triangular shape. The samples of the received pulse is shown
in Figure 4.24(a). The corresponding matched filter is given in Figure 4.24(b).
Now, let us sample p(−t) at a rate Fs1 = 1/Ts1, where

Ts

Ts1
= I (an integer). (4.202)

We find that in our example with I = 4, one set of samples indicated by solid
lines in Figure 4.24(c), correspond to the matched filter. This has been possible
because α is an integer multiple of Ts1. In Figure 4.24, α = 3Ts1. In practice,
since α is uniformly distributed between [0, T ), it may only be possible to get
close to the exact matched filter, if I is taken to be sufficiently large. The final
output signal is obtained by first up-sampling the received pulse p(nTs − α) by
a factor of I and convolving it with p(−nTs1). This output signal is guaranteed
to contain the peak, Rpp(0)/Ts, and the zero-crossings. Note that when α is
not an integer multiple of Ts1, we can only get close to the peak.

The process of up-sampling and convolution can also be explained in the
frequency domain as shown in Figure 4.25. We assume that p(t) is bandlimited
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α
Ts

Ts α

Ts

(c)

(b)

(a)

0

0

0
Ts1

p(−nTs1)

t, n

t, n

t, n

p(nTs − α)

p(−nTs − α)
p(−t− α)

p(−t)

p(t− α)

Figure 4.24: Matched filter estimation using interpolation. (a) Samples of the re-
ceived pulse. (b) Filter matched to the received pulse. (c) Transmit
filter p(t) sampled at a higher frequency. Observe that one set of sam-
ples (shown by solid lines) correspond to the matched filter.



220 K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in

π/(2I)−π/(2I)

π/(2I)

∣
∣
∣G̃(F )

∣
∣
∣

2πF1/Fs1

2πF/Fs = 2πF1/Fs1

2πF/Fs

F

∣
∣
∣G̃P(F )

∣
∣
∣

∣
∣
∣G̃P, 2(F1)

∣
∣
∣

−B 0 B

−2π −π −π/2 0 ππ/2 2π

−2π/I 0 2π/I

−2π/I 0 2π/I

−π/(2I)

∣
∣
∣G̃P(FI)

∣
∣
∣ =

∣
∣
∣G̃P(F1)

∣
∣
∣

Figure 4.25: Illustrating the concept of interpolation in the frequency domain.
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to [−B, B] and Fs = 4B. We have [166]

p(t− α) = g(t) ⇋ G̃(F ) =

{
P̃ (F )e−j 2πFα −B ≤ F ≤ B
0 otherwise

⇒ p(nTs − α) = g(nTs) ⇋ G̃P(F ) =

{
G̃(F )/Ts 0 ≤ |2πF/Fs| ≤ π/2
0 π/2 ≤ |2πF/Fs| ≤ π

(4.203)

Construct the up-sampled sequence

g1(nTs1) =

{
g(nTs/I) for n = mI
0 otherwise.

(4.204)

The discrete-time Fourier transform (DTFT) of g1(nTs1) is [167]:

g1(nTs1) ⇋ GP(FI). (4.205)

Let us define a new frequency variable

F1 = FI (4.206)

with respect to the new sampling frequency Fs1. Now, if p(−t) is sampled at a
rate Fs1 the DTFT of the resulting sequence is:

p(−nTs1) = g2(nTs1)

⇋ G̃P, 2(F1) =







P̃ ∗(F1)/Ts1 0 ≤
∣
∣
∣
2πF1

Fs1

∣
∣
∣ ≤ π

(2I)

0 π/(2I) ≤
∣
∣
∣
2πF1

Fs1

∣
∣
∣ ≤ π.

(4.207)

The convolution of g1(nTs1) with g2(nTs1) can be written as:

g1(nTs1) ⋆ g2(nTs1) =
1

TsTs1Fs1

∫ B

F1=−B

∣
∣
∣P̃ (F1)

∣
∣
∣

2

e j 2πF1(nTs1−α) dF1. (4.208)

Clearly if α = n0Ts1, then the above convolution becomes

g1(nTs1) ⋆ g2(nTs1) =
Rpp((n− n0)Ts1)

Ts
(4.209)

with a peak value equal to Rpp(0)/Ts. The modified discrete-time receiver is
depicted in Figure 4.26. Note that

ũ1(nTs1) =

{
ũ(nTs/I) n = mI
0 otherwise.

(4.210)

Since ũ(nTs) is just a weighted linear combination of p(nTs − α − kT ) (refer
to (4.144)), the theory explained in Figures 4.24 and 4.25 for a single pulse
p(nTs −α), is equally valid in Figure 4.26 for a sequence of pulses. Now it only
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ũ1(nTs1)

x̃(nTs1)

2 cos(nπ/2)

∓2 sin(nπ/2)
Est.

θ est.

t = n0 +mT

uI (nTs)

p(−nTs1)

uQ(nTs)

↑ I

↑ I

r(nTs)

e−j θ̂

Tim.

Figure 4.26: The modified discrete-time receiver which up-samples the local oscilla-
tor output by a factor of I and then performs matched filtering at a
sampling frequency Fs1.
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remains to identify the peaks (Rpp(0)/Ts) of the output signal x̃(nTs1). In what
follows, we assume that α = n0Ts1.

Firstly we rewrite the output signal as follows:

x̃(nTs1) =
A exp ( j θ)

Ts

L−1∑

k=0

SkRpp((n− n0)Ts1 − kT ) + z̃(nTs1) (4.211)

where we have considered only L symbols for simplicity of derivation. This
implies that the sequence x̃(nTs1) is also finite and can be represented by a
vector x̃. The length of x̃ is not of importance here. We assume that the
symbols Sk are known (they may be a part of a training sequence) and the
bandwidth of p(t) is B = 1/T . Therefore

T

Ts
= 4

⇒ T

Ts1
= 4I. (4.212)

Let us denote the symbol vector by:

S =
[
S0 . . . SL−1

]
. (4.213)

The noise samples z̃(nTs1) in (4.211) are given by:

z̃(nTs1) = ṽ1(nTs1) ⋆ p(−nTs1) (4.214)

where

ṽ1(nTs1) =

{
ṽ(nTs/I) for n = mI
0 otherwise

(4.215)

where ṽ(nTs) is the noise term at the local oscillator output with autocorrelation
given by (4.145). It is easy to verify that the autocorrelation of ṽ1(nTs1) is given
by:

Rṽ1ṽ1(mTs1) =
1

2
E [ṽ1(nTs1)ṽ

∗
1(nTs1 −mTs1)] =

N0

I
δK(mTs1). (4.216)

Therefore the autocorrelation of z̃(nTs1) is given by:

Rz̃z̃(mTs1) =
1

2
E [z̃(nTs1)z̃

∗(nTs1 −mTs1)] =
N0

ITs1
Rpp(mTs1). (4.217)

After symbol-rate sampling, the autocorrelation of the noise samples becomes
(assuming that Rpp(0)/Ts = 1):

Rz̃z̃(mT ) =
1

2
E [z̃(nT )z̃∗(nT −mT )] =

N0

ITs1
Rpp(mT )

=
N0

Ts
Rpp(0)δK(mT )
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= N0δK(mT ) (4.218)

which is identical to (4.158).
The ML timing recovery problem can now be stated as follows. Choose that

sampling instant nTs1 which maximizes the joint conditional pdf:

p (x̃|S, A) . (4.219)

Here we assume that A is known at the receiver, though later on we show that
this information is not required. Observe that if the instant nTs1 is known, then
the symbols can be extracted from every (4I)th sample of x̃, starting from n.
Thus the problem reduces to

max
n

p (x̃|S, A) . (4.220)

Since the timing estimation must be done non-coherently, we need to average
out the effects of θ in (4.211). Thus, the timing estimation problem can be
restated as [166]:

max
n

∫ 2π

θ=0

p (x̃|S, A, θ) p(θ) dθ. (4.221)

Using the fact that the pdf of θ is uniform over 2π and the noise terms that are
4I samples apart (T -spaced) are uncorrelated (see (4.218)) we get:

max
n

1

2π

1

(2πσ2
z)

L

∫ 2π

θ=0

exp

(

−
∑L−1

k=0

∣
∣x̃(nTs1 + kT )−ASk e j θ

∣
∣
2

2σ2
z

)

dθ. (4.222)

Observe that one of the terms in the exponent of (4.222) is

∑L−1
k=0 |x̃(nTs1 + kT )|2

2σ2
z

(4.223)

which is independent of θ and hence can be taken outside the integral. Fur-
thermore, for large values of L we can expect the summation in (4.223) to be
independent of n as well. In fact for large values of L, the numerator in (4.223)
approximates to:

L−1∑

k=0

|x̃(nTs1 + kT )|2 ≈ L× the average received signal power. (4.224)

Moreover, if
|Sk|2 = a constant = C (4.225)

as in the case of M -ary PSK, then the problem in (4.222) simplifies to:

max
n

1

2π

∫ 2π

θ=0

exp

(

2A
∑L−1

k=0 ℜ
{
x̃(nTs1 + kT )S∗

ke
−j θ
}

2σ2
z

)

dθ (4.226)
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which further simplifies to (refer to (2.194)):

max
n

∣
∣
∣
∣
∣

L−1∑

k=0

x̃(nTs1 + kT )S∗
k

∣
∣
∣
∣
∣

2

(4.227)

which is independent of A. At the correct sampling phase (n = n0) the compu-
tation in (4.227) results in (assuming that Rpp(0)/Ts = 1):

∣
∣
∣
∣
∣

L−1∑

k=0

(

A |Sk|2 exp ( j θ) + z̃(n0Ts1 + kT )S∗
k

)
∣
∣
∣
∣
∣

2

. (4.228)

Since
E
[

|Sk|2
]

∆
= Pav = C (4.229)

the signal power in (4.228) is equal to L2A2P 2
av in two dimensions. The noise

power in (4.228) is 2N0PavL, also in two dimensions. Thus the SNR at the
output of the timing recovery algorithm at the right sampling phase is

SNRtim rec =
PavLA2

2N0
(4.230)

which increases linearly with the observation vector L. Therefore, we expect
this method of timing recovery to perform well even at very low SNR at the
sampler output (at the right timing phase). The SNR at the sampler output at
the right timing phase is defined as (from (4.211)):

SNRsamp op =
A2Pav

2N0
. (4.231)

The SNR per bit is defined as (for uncoded QPSK):

Eb/N0 =
A2Pav

4N0
. (4.232)

Once the timing is recovered, the signal model in (4.159) can be used to estimate
the carrier phase and the gain A. In fact, one can immediately recognize that
(4.228) is just the squared magnitude of (4.166), therefore θ can be estimated
using (4.167). Finally, A is estimated as:

Â = (X + jY )e−j θ̂/LC (4.233)

where X + jY is defined in (4.166) and C is defined in (4.225). It can be shown

that when θ̂ = θ, then E
[

Â
]

= A and the variance of Â is:

var
(

Â
)

= 2N0PavL/(L
2C2)

= 2N0/(LPav). (4.234)

Thus the variance of the estimate is inversely proportional to L.
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4.2.5 Results for Synchronization

In this section we present some of the simulation results for carrier and timing
synchronization [166]. Figure 4.27 shows the block diagram of the digital com-

Transmitter

AWGN

symbols

ℜ

ℑ

Channel

Receiver

1

AδD(t− τ)

Ŝk−D

1

Estimated
Symbols

Sk

Figure 4.27: Block diagram of the system.

munication system under consideration. Observe that the channel is assumed
to be essentially distortionless. Without loss of generality and for ease of simu-
lation we set the channel delay τ = 0. However, there is yet an overall system
delay of D symbols due to the delay introduced by the transmit and the receive
(matched) filter. Therefore, the detection delay is also D symbols. The symbols
are uncoded and drawn from a QPSK constellation as depicted in Figure 4.27.

Preamble

L

Data

Ld

Postamble

Lo

Figure 4.28: The frame structure.

The input to the transmitter is a frame comprising of three components:

1. A known preamble of length L symbols. This is required for carrier and
timing synchronization and AGC.

2. Data of length Ld symbols.

3. A postamble of length Lo symbols. For the purpose of simulation, it is
convenient to have a postamble of length at least equal to the system
delay, so that all the data symbols can be recovered.

The burst structure is illustrated in Figure 4.28. Two options for the preamble
length were considered, that is, L = 64 and L = 128 QPSK symbols. The
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datalength was taken to be Ld = 1500 QPSK symbols. The postamble length
was fixed at 18 QPSK symbols. The channel gain A was set to unity and the
average power of the QPSK constellation is Pav = 2. The transmit filter has a
root-raised cosine spectrum with a roll-off equal to 0.41.

The first step in the burst acquisition system is to detect the preamble and
the timing instant using (4.227). This is illustrated for two different preamble
lengths in Figures 4.29 and 4.30 for an SNR of 0 dB at the sampler output.
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Figure 4.29: Preamble detection at Eb/N0 = 0 dB. The preamble length is 64 QPSK
symbols.

The normalized (with respect to the symbol duration) variance of the timing
error is depicted in Figure 4.31. In these plots, the timing phase α was set to
zero to ensure that the correct timing instant n0 is an integer. The expression
for the normalized variance of the timing error is [166]

σ2
α = E

[(
(n− n0)Ts1

T

)2
]

=
1

16I2
E
[
(n− n0)

2
]

(4.235)

where n0 is the correct timing instant and n is the estimated timing instant. In
practice, the expectation is replaced by a time-average.

The next step is to detect the carrier phase using (4.167). The variance of
the phase error is given by [166]

σ2
θ = E

[(

θ − θ̂
)2
]

. (4.236)



228 K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in

0

10000

20000

30000

40000

50000

60000

70000

0 100 200 300 400 500 600

Time

A
m
p
li
tu
d
e

Figure 4.30: Preamble detection at Eb/N0 = 0 dB. The preamble length is 128
QPSK symbols.

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

0 2 4 6 8 10

theta=pi/2, L=128
theta=pi/4, L=128

theta=pi/2, L=64

Eb/N0 (dB)

σ
2 α

Figure 4.31: Normalized variance of the timing error for two preamble lengths.
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Figure 4.32: Variance of the phase error for two preamble lengths.

In practice, the expectation is replaced by a time average. The variance of
the phase error is plotted in Figure 4.32 for the two preamble lengths L = 64
and L = 128, for different values of θ. The Cramér-Rao bound (CRB) for the
variance of the phase estimate is also plotted for the two preamble lengths.
We find that the simulation results coincide with the CRB, implying that the
phase estimator in (4.167) is efficient. Note that for QPSK signalling, it is not
necessary to estimate the channel gain A using (4.233). The reasoning is as

follows. Assuming that Â = A and θ̂ = θ, the maximum likelihood detection
rule for QPSK is:

min
i

∣
∣
∣x̃n −Ae j θS(i)

n

∣
∣
∣

2

for 0 ≤ i ≤ 3 (4.237)

where the superscript i refers to the ith symbol in the constellation. Simplifica-
tion of the above minimization results in

max
i

{

x̃nAe
−j θ

(

S(i)
n

)∗}

⇒max
i

{

x̃ne
−j θ

(

S(i)
n

)∗}
for 0 ≤ i ≤ 3 (4.238)

which is independent of A. If we further define

ỹn = x̃ne
−j θ (4.239)

then the ML detection rule reduces to

max
i

yn, IS
(i)
n, I + yn,QS

(i)
n,Q (4.240)
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Figure 4.33: Bit-error-rate performance of uncoded QPSK with carrier and timing
recovery.

where S
(i)
n, I and S

(i)
n,Q denote the in-phase and quadrature component of the ith

QPSK symbol and yn, I and yn,Q denote the in-phase and quadrature component
of ỹn. Further simplification of (4.240) leads to [166]

S
(i)
n, I =

{
+1 if yn, I > 0
−1 if yn, I < 0

S
(i)
n,Q =

{
+1 if yn,Q > 0
−1 if yn,Q < 0.

(4.241)

Finally, the theoretical and simulated BER curves for uncoded QPSK is
illustrated in Figure 4.33. In the case of random-phase and fixed-timing (RP-
FT), θ was varied uniformly between [0, 2π) from frame-to-frame (θ is fixed for
each frame) and α is set to zero. In the case of random-phase and random-
timing (RP-RT), α is also varied uniformly between [0, T ) for every frame (α
is fixed for each frame). We find that the simulation results coincide with the
theoretical results, indicating the accuracy of the carrier and timing recovery
procedures.

4.3 Non-Linear Modulation

In this section, we study various non-linear modulation schemes that use co-
herent detection at the receiver. In particular, we concentrate on a class of
non-linear modulation schemes called continuous phase frequency modulation



K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in 231

(CPFM). As the name suggests, the phase of the transmitted signal is contin-
uous, and the instantaneous frequency of the transmitted signal is determined
by the message signal. Frequency modulation can be done using a full response
or a partial response transmit filter. Full response implies that the time span of
the transmit filter is less than or equal to one symbol duration, whereas partial
response implies that the time span of the transmit filter is greater than one
symbol duration. Note that as in the case of linear modulation, the transmit
filter controls the bandwidth of the transmitted signal.

4.3.1 CPFM with Full Response Rectangular Filters

In this section, we study two CPFM schemes that use full response rectangular
(FRR) transmit filters. The first scheme uses strongly orthogonal signals and the
second scheme uses weakly orthogonal signals. In the case of strongly orthogonal
signals, the symbols can be optimally detected without using a phase trellis.
In other words, symbol-by-symbol detection is optimal. In the case of weakly
orthogonal signals, it is still possible to do symbol-by-symbol detection, however,
this procedure is suboptimal. It is necessary to use the phase trellis for optimal
detection.

Signalling with Strongly Orthogonal Signals

Consider the message and phase waveforms in Figure 4.34. Note that m(t) is
real-valued and is in general given by

m(t) = h
∞∑

k=−∞
Skp(t− kT ) (4.242)

where h denotes the modulation index, Sk is a real-valued symbol occurring at
time k and drawn from an M -ary PAM constellation with points at ±1, ±3,
±5 and so on, p(t) is the impulse response of the transmit filter and T denotes
the symbol duration. A symbol in an M -ary PAM constellation is given by
2i−M − 1 for 1 ≤ i ≤ M . In this section, we set h = 1. As a convention, the
area under the transmit filter is set to 1/2, that is:

∫ ∞

t=−∞
p(t) dt = 1/2. (4.243)

The frequency deviation is given by

fd = max |m(t)|. (4.244)

Observe that, m(t) is generated by exciting p(t) by a Dirac delta train, which
can be written as:

s1(t) =
∞∑

k=−∞
SkδD(t− kT ). (4.245)
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Figure 4.34: Message and phase waveforms for a binary CPFM-FRR scheme. The
initial phase θ0 is assumed to be zero.
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In Figure 4.34, Sk is drawn from a 2-PAM constellation with points at ±1 and
p(t) is a rectangular pulse given by:

p(t) =

{
1/(2T ) for 0 ≤ t ≤ T
0 elsewhere

(4.246)

as illustrated in Figure 4.34. It is clear that the frequency deviation is 1/(2T ). In
general, for full response rectangular filters, the frequency deviation is h/(2T ).

Note that when the time span of p(t) is less than or equal to the symbol
duration, it is referred to as full response signalling. When the time span of
p(t) is greater than the symbol duration, it is referred to as partial response
signalling. We will refer to the scheme in Figure 4.34 as binary CPFM with Full
Response Rectangular pulse shape (CPFM-FRR).

In general for CPFM, the message and phase are related by:

θ(t) = 2π

∫ t

τ=−∞
m(τ) dτ. (4.247)

For the case of M -ary CPFM-FRR with p(t) given by (4.246) we have

θ(t) =
2π(2i−M − 1)t

2T
for 1 ≤ i ≤ M (4.248)

where we have assumed that θ(0) = 0. Note that the phase is continuous. In the
case of M -ary CPFM-FRR, the phase contributed by any symbol over the time
interval T is equal to (2m+1)π, where m is an integer. The variation in θ(t) can
be represented by a phase trellis [3, 168]. This is illustrated in Figure 4.35 for
binary CPFM-FRR. The initial phase at time 0 is assumed to be zero. Note that
the phase state is an even multiple of π (0 modulo-2π) for even time instants
and an odd multiple of π (π modulo-2π) for odd time instants. It is clear that

π π π

0 0

1

Time Time Time

(2k + 2)T(2k + 1)T2kT

1
0

phase phasephase

−1

−1

Figure 4.35: Phase trellis for the binary CPFM-FRR scheme in Figure 4.34.

symbols 1 and −1 traverse the same path through the trellis. It is now easy to
conclude that M -ary CPFM-FRR would also have two phase states (since all
symbols contribute an odd multiple of π) and M parallel transitions between
the states.
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Consider the complex envelope:

s̃(t) =
1√
T

exp ( j θ(t)) . (4.249)

The factor 1/
√
T in the above equation ensures that s̃(t) has unit energy over

a symbol period (T seconds). Observe that the envelope of s̃(t) in the above
equation is a constant, that is

|s̃(t)| = a constant. (4.250)

This is in contrast to the envelope of a linear modulation scheme, where the
envelope is not constant (refer to (4.5)).

For an M -ary CPFM-FRR modulation using the transmit filter in (4.246),
the complex envelope corresponding to the ith symbol (1 ≤ i ≤ M) is given by:

s̃(t) =
1√
T
e j 2π(2i−M−1)t/(2T ). (4.251)

Two signals β̃(i)(t) and β̃(j)(t) are said to be strongly orthogonal over a time
interval [kT, (k + 1)T ] if

∫ (k+1)T

t=kT

β̃(i)(t)
(

β̃(j)(t)
)∗

dt = δK(i− j). (4.252)

Two signals are weakly orthogonal in [kT, (k + 1)T ] if

ℜ
{
∫ (k+1)T

t=kT

β̃(i)(t)
(

β̃(j)(t)
)∗

dt

}

= δK(i − j). (4.253)

Define

β̃(i)(t, kT ) =

{ 1√
T
e j 2π(2i−M−1)t/(2T ) for kT ≤ t ≤ (k + 1)T

0 elsewhere.
(4.254)

From the above equation it is clear that β̃(i)(·) and β̃(j)(·) are strongly orthogo-
nal over one symbol duration for i 6= j, and 1 ≤ i, j ≤ M . Moreover, β̃(i)(·) has
unit energy for all i. Observe also that the phase of β̃(i)(kT, kT ) is 0 for even
values of k and π for odd values of k, consistent with the trellis in Figure 4.35.

The transmitted signal is given by

sp(t) = ℜ{s̃(t) exp ( j (2πFct+ θ0))}

=
1√
T
cos (2πFct+ θ(t) + θ0) (4.255)

where Fc denotes the carrier frequency and θ0 denotes the initial carrier phase
at time t = 0. The transmitter block diagram is shown in Figure 4.36. Note
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Integratorp(t)
θ(t)

cos(·)

sin(·)

− sin(2πFct+ θ0)

cos(2πFct+ θ0)

m(t)s1(t) sp(t)

Figure 4.36: Transmitter block diagram for CPFM schemes.

that for M -ary CPFM-FRR with h = 1, there are M transmitted frequencies
given by:

Fc +
(2i−M − 1)

2T
for 1 ≤ i ≤ M. (4.256)

Hence, this modulation scheme is commonly known as M -ary FSK.
The received signal is given by

r(t) = sp(t) + w(t) (4.257)

where w(t) is AWGN with zero mean and psdN0/2. The first task of the receiver
is to recover the baseband signal. This is illustrated in Figure 4.37. The block
labeled “optimum detection of symbols” depends on the transmit filter p(t), as
will be seen later. The received complex baseband signal can be written as:

ũ(t) = s̃(t) exp ( j (θ0 − φ)) + ṽ(t) + d̃(t)

=
1√
T

exp ( j (θ(t) + θ0 − φ)) + ṽ(t) + d̃(t) (4.258)

where ṽ(t) is complex AWGN as defined in (4.52) and d̃(t) denotes terms at twice
the carrier frequency. The next step is to optimally detect the symbols from ũ(t).
Firstly we assume that the detector is coherent, hence in (4.258) we substitute
θ0 = φ. Let us assume that s̃(t) extends over L symbols. The optimum detector
(which is the maximum likelihood sequence detector) decides in favour of that
sequence which is closest to the received sequence ũ(t). Mathematically this can
be written as:

min
i

∫ LT

t=0

∣
∣
∣ũ(t)− s̃(i)(t)

∣
∣
∣

2

dt for 1 ≤ i ≤ ML (4.259)
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2 cos(2πFct+ φ)

−2 sin(2πFct + φ)

uQ(t)

uI(t) Optimum
detection

of
symbols

Ŝk

Figure 4.37: Recovering the baseband signal.

where s̃(i)(t) denotes the complex envelope due to the ith possible symbol se-
quence. Note that the above equation also represents the squared Euclidean
distance between two continuous-time signals. Note also that there are ML

possible sequences of length L. Expanding the integrand and noting that |ũ(t)|2

is independent of i and
∣
∣s̃(i)(t)

∣
∣
2
is a constant independent of i, and ignoring

the constant 2, we get:

max
i

∫ LT

t=0

ℜ
{

ũ(t)
(

s̃(i)(t)
)∗}

dt for 1 ≤ i ≤ ML. (4.260)

Using the fact the integral of the real part is equal to the real part of the integral,
the above equation can be written as:

max
i

ℜ
{
∫ LT

t=0

ũ(t)
(

s̃(i)(t)
)∗

dt

}

for 1 ≤ i ≤ ML. (4.261)

The integral in the above equation can be immediately recognized as the con-
volution of ũ(t) with

(
s̃(i)(LT − t)

)∗
, evaluated at time LT . Moreover, since

(
s̃(i)(LT − t)

)∗
is a lowpass signal, it automatically eliminates the terms at

twice the carrier frequency. Note that the above detection rule is valid for any
CPFM signal and not just for CPFM-FRR schemes.

We also observe from the above equation that the complexity of the maxi-
mum likelihood (ML) detector increases exponentially with the sequence length,
since it has to decide from amongst ML sequences. The Viterbi algorithm (VA)
is a practical way to implement the ML detector. The recursion for the VA is
given by:

ℜ
{
∫ LT

t=0

ũ(t)
(

s̃(i)(t)
)∗

dt

}

= ℜ
{
∫ (L−1)T

t=0

ũ(t)
(

s̃(i)(t)
)∗

dt

}
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+ ℜ
{
∫ LT

t=(L−1)T

ũ(t)
(

s̃(i)(t)
)∗

dt

}

.

(4.262)

The first integral on the right-hand-side of the above equation represents the
“accumulated metric” whereas the second integral represents the “branch met-
ric”. Once again, the above recursion is valid for any CPFM scheme.

Let us now consider the particular case of M -ary CPFM-FRR scheme. We
have already seen that the trellis contains two phase states and all the symbols
traverse the same path through the trellis. Hence the VA reduces to a symbol-
by-symbol detector and is given by

max
m

ℜ
{
∫ LT

t=(L−1)T

ũ(t)
(

β̃(m)(t, (L− 1)T )
)∗

dt

}

for 1 ≤ m ≤ M (4.263)

where we have replaced s̃(i)(t) in the interval [(L−1)T, LT ] by β̃(m)(t, (L−1)T )
which is defined in (4.254). Since (4.263) is valid for every symbol interval it
can be written as (for all integer k)

max
m

ℜ
{
∫ (k+1)T

t=kT

ũ(t)
(

β̃(m)(t, kT )
)∗

dt

}

for 1 ≤ m ≤ M. (4.264)

Note that since β̃(m)(·) is a lowpass signal, the term corresponding to twice the
carrier frequency is eliminated. Hence ũ(t) can be effectively written as (in the
interval [kT, (k + 1)T ]):

ũ(t) =
1√
T

exp ( j 2π(2p−M − 1)t/(2T )) + ṽ(t). (4.265)

Substituting for ũ(t) from the above equation and β̃(m)(·) from (4.254) into
(4.264) we get:

max
m

xm((k+1)T ) = ym((k+1)T )+zm,I((k+1)T ) for 1 ≤ m ≤ M (4.266)

where

ym((k + 1)T ) =

{
1 for m = p
0 for m 6= p

(4.267)

and

zm, I((k + 1)T ) = ℜ
{∫ (k+1)T

kT

ṽ(t)
(

β̃(m)(t, kT )
)∗

dt

}

. (4.268)

Note that all terms in (4.266) are real-valued. Since ṽ(t) is zero-mean, we have

E [zm, I(iT )] = 0. (4.269)
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Let us define

z̃m((k + 1)T ) =

∫ (k+1)T

kT

ṽ(t)
(

β̃(m)(t, kT )
)∗

dt

∆
= zm,I((k + 1)T ) + j zm,Q((k + 1)T ). (4.270)

Then, since ṽ(t) satisfies (4.55), and
∫ ∞

−∞
β̃(m)(t, iT )

(

β̃(m)(t, jT )
)∗

dt =

{
1 for i = j
0 for i 6= j

(4.271)

we have

E [z̃m(iT )z̃∗m(jT )] =

{
0 for i 6= j

2N0 for i = j.
(4.272)

It can be shown that the in-phase and quadrature components of z̃m(iT ) have
the same variance, hence

E [zm, I(iT )zm,I(jT )] =

{
0 for i 6= j
N0 for i = j.

(4.273)

Similarly it can be shown that

E [zm,I(iT )zn, I(iT )] =

{
0 for m 6= n
N0 for m = n.

(4.274)

Thus from (4.267) and (4.274) it is clear that the receiver “sees” an M -ary
multidimensional orthogonal constellation corrupted by AWGN. We can hence
conclude that M -ary CPFM-FRR using strongly orthogonal signals, is equiv-
alent to M -ary multidimensional orthogonal signalling. The block diagram of
the optimum detector for M -ary CPFM-FRR is shown in Figure 4.38.

Note that for the CPFM-FRR scheme considered in this section, the min-
imum frequency separation is 1/T . In the next section, we show that by con-
sidering weakly orthogonal signals, the minimum frequency separation can be
reduced to 1/(2T ). Observe that the detection rule in (4.263) is such that it is
sufficient to consider only weakly orthogonal signals.

Signalling with Weakly Orthogonal Signals

In the case of weakly orthogonal signals, the modulation index is set to 1/2 and
the transmit filter is again given by:

p(t) =

{
1/(2T ) for 0 ≤ t ≤ T
0 elsewhere.

(4.275)

The frequency deviation in this case is 1/(4T ).
The symbols are once again drawn from an M -ary PAM constellation. The

complex envelope of the transmitted signal corresponding to the ith symbol
(1 ≤ i ≤ M) in the interval [kT ≤ t ≤ (k + 1)T ] is given by:

β̃(i)(t, kT, αk) =

{
1√
T
e j θ(i)(t, kT, αk) for kT ≤ t ≤ (k + 1)T

0 elsewhere
(4.276)
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ℜ
{∫ (k+1)T

kT

}

ℜ
{∫ (k+1)T

kT

}

(

β̃(1)(t, kT )
)
∗

(

β̃(M)(t, kT )
)
∗

ũ(t)

x1((k + 1)T )

xM ((k + 1)T )

t = (k + 1)T

t = (k + 1)T

ŜkSelect

largest

eq. (2.113)

Figure 4.38: Optimum detection of symbols for M -ary CPFM-FRR schemes using
strongly orthogonal signals.

where

θ(i)(t, kT, αk) = (2π(2i−M − 1)(t− kT )) /(4T ) + αk (4.277)

and αk is the initial phase at time kT . Note that the phase contributed by any
symbol over a time interval T is either π/2 (modulo-2π) or 3π/2 (modulo-2π).
The phase trellis is given in Figure 4.39 for the particular case when M = 2.
When M > 2, the phase trellis is similar, except that each transition now
corresponds to M/2 parallel transitions.

Note also that the complex envelopes corresponding to distinct symbols are
weakly orthogonal:

ℜ
{
∫ (k+1)T

t=kT

β̃(i)(t, kT, αk)
(

β̃(j)(t, kT, αk)
)∗

dt

}

= δK(i− j). (4.278)

The transmitted signal is given by (4.255) with

s̃(t) = β̃(i)(t, kT, αk) for kT ≤ t ≤ (k + 1)T (4.279)

and the received signal is given by (4.257). Observe that the set of transmitted
frequencies in the passband signal are given by:

Fc +
(2i−M − 1)

4T
. (4.280)

The complex baseband signal, ũ(t), can be recovered using the procedure illus-
trated in Figure 4.37. The next step is to optimally recover the symbols from
ũ(t).
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Figure 4.39: Phase trellis for the binary CPFM-FRR scheme using weakly orthogo-
nal signals. The minimum distance error event is also indicated.

Observe that since the trellis in Figure 4.39 is non-trivial, the Viterbi algo-
rithm (VA) with recursions similar to (4.262) needs to be used with the branch
metrics given by (in the time interval [kT, (k + 1)T ]):

ℜ
{
∫ (k+1)T

t=kT

ũ(t)
(

β̃(i)(t, kT, αk)
)∗

dt

}

for 1 ≤ i ≤ M. (4.281)

Let us now compute the probability of the minimum distance error event. It is
clear that when M > 2, the minimum distance is due to the parallel transitions.
Note that when M = 2, there are no parallel transitions and the minimum
distance is due to non-parallel transitions. Figure 4.39 shows the minimum
distance error event corresponding to non-parallel transitions. The solid line
denotes the transmitted sequence i and the dashed line denotes an erroneous
sequence j. The branch metrics corresponding to the transitions in i and j are
given by:

i1 : 1 + wi1, I

i2 : 1 + wi2, I

j1 : wj1, I

j2 : wj2, I . (4.282)

Once again, it can be shown that wi1, I , wi2, I , wj1, I and wj2, I are mutually
uncorrelated with zero-mean and variance N0. The VA makes an error when

2 + wi1, I + wi2, I < wj1, I + wj2, I

⇒ 2 < wj1, I + wj2, I − wi1, I − wi2, I . (4.283)

Let
Z = wj1, I + wj2, I − wi1, I − wi2, I . (4.284)
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It is clear that

E [Z] = 0

E
[
Z2
]
= 4N0

= σ2
Z (say). (4.285)

Then the probability of minimum distance error event due to non-parallel tran-
sitions is given by:

P (j|i) = P (Z > 2)

=
1

2
erfc

(√
1

2N0

)

. (4.286)

When the sequences i and j correspond to parallel transitions, then it can be
shown that the probability of the error event is given by:

P (j|i) = 1

2
erfc

(√
1

4N0

)

(4.287)

which is 3 dB worse than (4.286). Hence, we conclude that the average probabil-
ity of symbol error when M > 2 is dominated by the error event due to parallel
transitions. Moreover, since there are M/2 parallel transitions, the number of
nearest neighbours with respect to the correct transition, is (M/2)− 1. Hence
the average probability of symbol error when M > 2 is given by the union
bound:

P (e) ≤
(
M

2
− 1

)
1

2
erfc

(√
1

4N0

)

. (4.288)

When M = 2, there are no parallel transitions, and the average probability of
symbol error is dominated by the minimum distance error event corresponding to
non-parallel transitions, as illustrated in Figure 4.39. Moreover, the multiplicity
at the minimum distance is one, that is, there is just one erroneous sequence
which is at the minimum distance from the correct sequence. Observe also that
the number of symbol errors corresponding to the error event is two. Hence
following the logic of (3.81), the average probability of symbol error whenM = 2
is given by:

P (e) =
2

2
erfc

(√
1

2N0

)

= erfc

(√
1

2N0

)

. (4.289)

The particular case of M = 2 is commonly called minimum shift keying (MSK)
and the above expression gives the average probability of symbol (or bit) error
for MSK.

Example 4.3.1 Consider a CPFM scheme with a transmit filter depicted in
Figure 4.40, where T denotes the symbol duration. Assume a binary PAM con-
stellation with symbols ±1. The modulation index is unity.
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Figure 4.40: Impulse response of the transmit filter.

1. Find A.

2. Draw the phase trellis between the time instants kT and (k + 1)T . The
phase states should be in the range [0, 2π), with 0 being one of the states.
Assume that all phase states are visited at time kT .

3. Write down the expressions for the complex baseband signal s̃(i)(t) for
i = 0, 1 in the range 0 ≤ t ≤ T corresponding to the symbols +1 and
−1 respectively. The complex baseband signal must have unit energy in
0 ≤ t ≤ T . Assume that the initial phase at time t = 0 to be zero.

4. Let
ũ(t) = s̃(0)(t) + ṽ(t) (4.290)

where ṽ(t) is zero-mean complex AWGN with

Rṽṽ(τ) =
1

2
E [ṽ(t)ṽ∗(t− τ)] = N0δD(τ). (4.291)

The in-phase and quadrature components of ṽ(t) are independent. Let the
detection rule be given by:

max
i

ℜ
{
∫ T

t=0

ũ(t)
(

s̃(i)(t)
)∗

dt

}

for 0 ≤ i ≤ 1 (4.292)

Assume that ∫ T

t=0

ℜ
{

s̃(0)(t)
(

s̃(1)(t)
)∗}

dt = α. (4.293)

Compute the probability of error given that s̃(0)(t) was transmitted, in
terms of α and N0.

5. Compute α.

Solution: The problem is solved below.

1. From (4.243) and Figure 4.40

∫ ∞

t=−∞
p(t) dt = 1/2

⇒ A = 1/(3T ). (4.294)
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2. The modulation index h is given to be unity. The phase contributed by
+1 over T is

φ = (+1)2πh

∫ T

t=0

p(t) dt

= π. (4.295)

Similarly, the phase contributed by −1 over T is −π ≡ π. Therefore the
phase states are 0 and π. The phase trellis is given in Figure 4.41.

π

+1

−1

kT (k + 1)T

π

+1

−1

0 0

Figure 4.41: Phase trellis.

3. Let θ(0)(t) and θ(1)(t) denote the phase due to +1 and −1 respectively. In
both cases, the phase at t = 0 is 0. Clearly

θ(0)(t) =

{
2πAt for 0 ≤ t ≤ T/2
2πAT/2 + 2π(2A)(t− T/2) for T/2 ≤ t ≤ T

(4.296)

where A is given in (4.294). Similarly

θ(1)(t) =

{
−2πAt for 0 ≤ t ≤ T/2
−2πAT/2− 2π(2A)(t− T/2) for T/2 ≤ t ≤ T .

(4.297)

Hence, the complex baseband signal is:

s̃(0)(t) =
(

1/
√
T
)

e j θ(0)(t)

s̃(1)(t) =
(

1/
√
T
)

e j θ(1)(t). (4.298)

Note that ∫ T

t=0

∣
∣
∣s̃(0)(t)

∣
∣
∣

2

dt =

∫ T

t=0

∣
∣
∣s̃(1)(t)

∣
∣
∣

2

dt = 1. (4.299)

4. Let

ℜ
{
∫ T

t=0

ũ(t)
(

s̃(0)(t)
)∗

dt

}

= 1 + w0 (4.300)

where

w0 = ℜ
{
∫ T

t=0

ṽ(t)
(

s̃(0)(t)
)∗
}
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=
1√
T

∫ T

t=0

vI(t) cos
(

θ(0)(t)
)

+ vQ(t) sin
(

θ(0)(t)
)

. (4.301)

Similarly

ℜ
{
∫ T

t=0

ũ(t)
(

s̃(1)(t)
)∗

dt

}

= α+ w1 (4.302)

where

w1 = ℜ
{
∫ T

t=0

ṽ(t)
(

s̃(1)(t)
)∗
}

=
1√
T

∫ T

t=0

vI(t) cos
(

θ(1)(t)
)

+ vQ(t) sin
(

θ(1)(t)
)

. (4.303)

Observe that

E[w0] = ℜ
{
∫ T

t=0

E [ṽ(t)]
(

s̃(0)(t)
)∗
}

=
1√
T

∫ T

t=0

E [vI(t)] cos
(

θ(0)(t)
)

+ E [vQ(t)] sin
(

θ(0)(t)
)

= 0

= E[w1] (4.304)

and

E[w2
0 ] =

1

T
E

[
∫ T

t=0

vI(t) cos
(

θ(0)(t)
)

+ vQ(t) sin
(

θ(0)(t)
)

dt

∫ T

τ=0

vI(τ) cos
(

θ(0)(τ)
)

+ vQ(τ) sin
(

θ(0)(τ)
)

dτ

]

=
1

T

∫ T

t=0

∫ T

τ=0

{

E [vI(t)vI(τ)] cos(θ
(0)(t)) cos(θ(0)(τ))

+ E [vQ(t)vQ(τ)] sin(θ
(0)(t)) sin(θ(0)(τ))

}

dt dτ

=
1

T

∫ T

t=0

∫ T

τ=0

{

N0δD(t− τ) cos(θ(0)(t)) cos(θ(0)(τ))

+ N0δD(t− τ) sin(θ(0)(t)) sin(θ(0)(τ))
}

dt dτ

=
N0

T

∫ T

t=0

{

cos2(θ(0)(t)) + sin2(θ(0)(t))
}

dt

= N0

= E[w2
1 ]. (4.305)
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Moreover

E[w0w1] =
1

T
E

[
∫ T

t=0

vI(t) cos
(

θ(0)(t)
)

+ vQ(t) sin
(

θ(0)(t)
)

dt

∫ T

τ=0

vI(τ) cos
(

θ(1)(τ)
)

+ vQ(τ) sin
(

θ(1)(τ)
)

dτ

]

=
1

T

∫ T

t=0

∫ T

τ=0

{

E [vI(t)vI(τ)] cos(θ
(0)(t)) cos(θ(1)(τ))

+ E [vQ(t)vQ(τ)] sin(θ
(0)(t)) sin(θ(1)(τ))

}

dt dτ

=
1

T

∫ T

t=0

∫ T

τ=0

{

N0δD(t− τ) cos(θ(0)(t)) cos(θ(1)(τ))

+ N0δD(t− τ) sin(θ(0)(t)) sin(θ(1)(τ))
}

dt dτ

=
N0

T

∫ T

t=0

{

cos(θ(0)(t)) cos(θ(1)(t))

+ sin(θ(0)(t)) sin(θ(1)(t))
}

dt

=
N0

T

∫ T

t=0

cos(θ(0)(t)− θ(1)(t)) dt

= N0α. (4.306)

The receiver makes an error when

1 + w0 < α+ w1

⇒ 1− α < w1 − w0. (4.307)

Let
Z = w1 − w0. (4.308)

Then

E[Z] = 0

E[Z2] = 2N0(1− α)

∆
= σ2

Z . (4.309)

Thus Z is N (0, σ2
Z). Then

P (−1|+ 1) = P (Z > 1− α)

=
1

σZ

√
2π

∫ ∞

Z=1−α

e−Z2/(2σ2
Z) dZ

=
1

2
erfc

(√
1− α

4N0

)

. (4.310)
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5. Given that

α =

∫ T

t=0

ℜ
{

s̃(0)(t)
(

s̃(1)(t)
)∗}

dt

=
1

T

∫ T

t=0

ℜ
{

e j (θ(0)(t)−θ(1)(t))
}

dt

=
1

T

∫ T

t=0

cos(θ(0)(t)− θ(1)(t)) dt. (4.311)

Now

θ(0)(t)− θ(1)(t)

=

{
4πt/(3T ) for 0 ≤ t ≤ T/2
2π/3 + 8π(t− T/2)/(3T ) for T/2 ≤ t ≤ T .

(4.312)

Let

Ĩ1 =
1

T

∫ T/2

t=0

e j (θ(0)(t)−θ(1)(t)) dt

Ĩ2 =
1

T

∫ T

t=T/2

e j (θ(0)(t)−θ(1)(t)) dt. (4.313)

Then
α = ℜ

{

Ĩ1 + Ĩ2
}

. (4.314)

Now

Ĩ1 =
1

T

∫ T/2

t=0

e j 4πt/(3T ) dt

=
3

4π j

[

e j 2π/3 − 1
]

(4.315)

and

Ĩ2 =
1

T
e−j 2π/3

∫ T

t=T/2

e j 8πt/(3T ) dt

=
3

8π j

[

1− e j 2π/3
]

. (4.316)

Therefore

ℜ
{

Ĩ1 + Ĩ2
}

=
3
√
3

16π
. (4.317)

4.4 Summary

This chapter dealt with the transmission of signals through a distortionless
AWGN channel. In the case of linear modulation, the structure of the transmit-
ter and the receiver in both continuous-time and discrete-time was discussed.
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A general expression for the power spectral density of linearly modulated sig-
nals was derived. The optimum receiver was shown to consist of a matched
filter followed by a symbol-rate sampler. Pulse shapes that result in zero in-
tersymbol interference (ISI) were given. In the context of discrete-time receiver
implementation, the bandpass sampling theorem was discussed. Synchroniza-
tion techniques for linearly modulated signals were explained.

In the case of non-linear modulation, we considered continuous phase fre-
quency modulation with full response rectangular filters (CPFM-FRR). By
changing the amplitude of the rectangular filters, we get either strongly or-
thogonal or weakly orthogonal signals. Minimum shift keying was shown to be
a particular case of M -ary CPFM-FRR using weakly orthogonal signals.



Chapter 5

Transmission of Signals
through Distorting
Channels

This chapter is devoted to the study of different receiver implementations when
the transmitted signal passes through a channel that introduces distortion and
additive white Gaussian noise. We will consider only transmitted signals that are
linearly modulated ; signals that are non-linearly modulated (e.g. CPM signals)
are difficult to analyze when passed through a channel.

A channel is said to introduce distortion if its amplitude response is not
flat and the phase response is not linear over the bandwidth of the transmitted
signal. In this situation, due to the presence of intersymbol interference (ISI),
the matched filter alone is no longer sufficient to recover the symbols.

There are three approaches to combat the effects of ISI:

(a) The first approach is to use an equalizer which minimizes the mean squared
error between the desired symbol and the received symbol. There are two
kinds of equalizers – linear and non-linear. Linear equalizers can further
be classified into symbol-spaced and fractionally-spaced equalizers. The
decision-feedback equalizer falls in the category of non-linear equalizers.

(b) The second approach is based on maximum likelihood (ML) detection,
which directly minimizes the symbol-error-rate for a given SNR.

(c) The third approach is multicarrier communication which also known as
orthogonal frequency division multiplexing (OFDM) or discrete multitone
(DMT).

The block diagram of the digital communication system under study in this
chapter is shown in Figure 5.1. We begin with the discussion on equalization.
For the sake of simplicity, we consider only the complex lowpass equivalent
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Channel

c̃(t)

r̃(t)

Optimum

receive

filter

h̃(t)

t = nT
Hard

decision

From

transmitter
s̃(t)

AWGN
w̃(t)

Ŝn

ũn

ũn = Sn + w̃1, n

Figure 5.1: Block diagram of the digital communication system in the presence of
channel distortion.

of the communication system. The justification for this approach is given in
Appendix I.

5.1 Receivers Based on Equalization

The concept of equalization was first introduced by Lucky in [169]. A good
tutorial on equalizers can be found in [170]. As discussed earlier, equalizers
can be classified as linear and non-linear. In the next section we take up linear
equalization schemes.

5.1.1 Linear Equalization – Symbol-Spaced Equalizers

Let the complex lowpass equivalent of the transmitted signal be given by:

s̃(t) =
∞∑

k=−∞
Sk p̃(t− kT − α) (5.1)

where Sk denotes a complex symbol drawn from an M -ary constellation oc-
curring at time instant k, p̃(t) denotes the complex-valued impulse response of
the pulse shaping filter at the transmitter, α denotes the random timing phase
uniformly distributed in [0, T ) and 1/T denotes the symbol-rate. The received
signal is given by

r̃(t) = s̃(t) ⋆ c̃(t) + w̃(t) (5.2)

where ⋆ denotes convolution, c̃(t) denotes the complex lowpass equivalent (com-
plex envelope) of the channel [5] and w̃(t) denotes a complex additive white
Gaussian noise process with zero mean and autocorrelation given by (refer to
(4.55)):

Rw̃w̃(τ)
∆
=

1

2
E [w̃(t)w̃∗(t− τ)] = N0δD(τ). (5.3)

For convenience of presentation we assume that p̃(t) and c̃(t) are non-causal
and hence extend from −∞ to ∞. We also assume that p̃(t) and c̃(t) have finite
energy, that is

∫ ∞

t=−∞
|p̃(t)|2 = A constant
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∫ ∞

t=−∞
|c̃(t)|2 = A constant. (5.4)

It is easy to see that (5.2) can be written as:

r̃(t) =
∞∑

k=−∞
Sk q̃(t− kT ) + w̃(t) (5.5)

where
q̃(t) = p̃(t− α) ⋆ c̃(t). (5.6)

The equivalent model for the system in Figure 5.1 is shown in Figure 5.2. The

Equivalent

channel

q̃(t)

r̃(t)

Optimum

receive

filter

h̃(t)

t = nT
Hard

decision

AWGN
w̃(t)

ũn

ŜnSk

ũn = Sn + w̃1, n

Figure 5.2: Equivalent model for the digital communication system shown in Fig-
ure 5.1.

statement of the problem is as follows: Design a filter with impulse response
h̃(t) such that the variance of the interference term at the sampler output is
minimized (see Figure 5.2) that is

minimize E
[

|w̃1, n|2
]

(5.7)

where the term w̃1, n denotes the combination of both Gaussian noise as well as
residual intersymbol interference.

We will attempt to solve the above problem in two steps:

(a) Firstly design a filter, h̃(t), such that the variance of the Gaussian noise
component alone at the sampler output is minimized.

(b) In the second step, impose further constraints on h̃(t) such that the vari-
ance of the interference, w̃1, k, (this includes both Gaussian noise and
intersymbol interference) at the sampler output is minimized.

We now show that the unique optimum filter that satisfies condition (a), has a
frequency response of the type:

H̃opt(F ) = Q̃∗(F )G̃P(F ) (5.8)

where Q̃∗(F ) denotes the complex conjugate of the Fourier transform of q̃(t)
(that is, Q̃∗(F ) is the Fourier transform of the filter matched to q̃(t)) and G̃P(F )
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(the subscript P denotes “periodic”) is a periodic frequency response with pe-
riod 1/T , that is

G̃P

(

F +
k

T

)

= G̃P (F ) for all integer k. (5.9)

We prove the above result by contradiction [171].
Let H̃(F ) denote the Fourier transform of the optimum filter that satisfies

condition (a). Let us also assume that the whole system in Figure 5.2 is excited
by a single Dirac delta function. The Fourier transform of the signal component
at the output of the sampler is given by

Ỹ
P, H̃(F ) =

1

T

∞∑

k=−∞
Q̃

(

F − k

T

)

H̃

(

F − k

T

)

. (5.10)

The power spectral density of noise at the sampler output is given by

S
P, H̃(F ) =

N0

T

∞∑

k=−∞

∣
∣
∣
∣
H̃

(

F − k

T

)∣
∣
∣
∣

2

. (5.11)

Observe that the power spectral density is real and that S
P, H̃(F ) is not the

power spectral density of w̃1, n.

Let us consider any other filter with Fourier transform H̃1(F ) given by (5.8),
that is

H̃1(F ) = Q̃∗(F )G̃P(F ). (5.12)

Once again assuming excitation by a single Dirac delta function, the Fourier
transform of the signal at the sampler output is given by:

Ỹ
P, H̃1

(F ) =
1

T

∞∑

k=−∞

∣
∣
∣
∣
Q̃

(

F − k

T

)∣
∣
∣
∣

2

G̃P

(

F − k

T

)

(5.13)

and the power spectral density of noise is given by:

S
P, H̃1

(F ) =
N0

T

∞∑

k=−∞

∣
∣
∣
∣
Q̃

(

F − k

T

)∣
∣
∣
∣

2 ∣
∣
∣
∣
G̃P

(

F − k

T

)∣
∣
∣
∣

2

. (5.14)

Using the fact that G̃P(F ) is periodic with period 1/T , (5.13) becomes

Ỹ
P, H̃1

(F ) =
G̃P(F )

T

∞∑

k=−∞

∣
∣
∣
∣
Q̃

(

F − k

T

)∣
∣
∣
∣

2

(5.15)

and (5.14) becomes

S
P, H̃1

(F ) =
N0

∣
∣
∣G̃P(F )

∣
∣
∣

2

T

∞∑

k=−∞

∣
∣
∣
∣
Q̃

(

F − k

T

)∣
∣
∣
∣

2

. (5.16)
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Now, if

G̃P(F ) =

∑∞
k=−∞ Q̃

(
F − k

T

)
H̃
(
F − k

T

)

∑∞
k=−∞

∣
∣
∣Q̃
(
F − k

T

)∣∣
∣

2 (5.17)

then it is clear that
Ỹ

P, H̃1
(F ) = Ỹ

P, H̃(F ) (5.18)

and

S
P, H̃1

(F ) =
N0

T

∣
∣
∣
∑∞

k=−∞ Q̃
(
F − k

T

)
H̃
(
F − k

T

)∣∣
∣

2

∑∞
k=−∞

∣
∣
∣Q̃
(
F − k

T

)
∣
∣
∣

2 (5.19)

We now invoke the Schwarz’s inequality which states that:

∣
∣
∣
∣
∣

∞∑

k=−∞
Q̃

(

F − k

T

)

H̃

(

F − k

T

)∣∣
∣
∣
∣

2

≤
( ∞∑

k=−∞

∣
∣
∣
∣
Q̃

(

F − k

T

)∣
∣
∣
∣

2
)

×
( ∞∑

k=−∞

∣
∣
∣
∣
H̃

(

F − k

T

)∣
∣
∣
∣

2
)

. (5.20)

Thus from Schwarz’s inequality we have:

S
P, H̃1

(F ) ≤ N0

T

∞∑

k=−∞

∣
∣
∣
∣
H̃

(

F − k

T

)∣
∣
∣
∣

2

⇒ S
P, H̃1

(F ) ≤ S
P, H̃(F ) (5.21)

The above equation implies that the noise variance at the output of the sampler
due to H̃1(F ) is less than that due to H̃(F ) since

∫ +1/(2T )

F=−1/(2T )

S
P, H̃1

(F ) dF ≤
∫ +1/(2T )

F=−1/(2T )

S
P, H̃(F ) dF. (5.22)

Thus, we have found out a filter H̃1(F ) that yields a lesser noise variance than
H̃(F ), for the same signal power. However, this contradicts our original state-
ment that H̃(F ) is the optimum filter. To conclude, given any filter H̃(F ), we
can find out another filter H̃1(F ) in terms of H̃(F ), that yields a lower noise
variance than H̃(F ). It immediately follows that when H̃(F ) is optimum, then
H̃1(F ) must be identical to H̃(F ).

The next question is: What is the optimum H̃(F )? Notice that the inequality
in (5.20) becomes an equality only when

H̃(F ) = Q̃∗(F )J̃P(F ) (5.23)

for some frequency response J̃P(F ) that is periodic with period 1/T . Substi-
tuting the above equation in (5.17) we get:

G̃P(F ) = J̃P(F ). (5.24)
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Thus we have proved that H̃(F ) and H̃1(F ) are identical and correspond to the
unique optimum filter given by (5.8).

An important consequence of the above proof is that we have found out a
general expression for the filter frequency response which maximizes the signal-
to-Gaussian noise ratio at the output of the sampler. In fact, the matched filter
given by Q̃∗(F ) (see also (4.63)) is a particular case of (5.8) with G̃P(F ) = 1.
Having proved that

H̃opt(F ) = Q̃∗(F )G̃P(F ) (5.25)

we now have to find out the exact expression for G̃P(F ) that minimizes the
variance of the combined effect of Gaussian noise as well as residual intersymbol
interference. Note that since G̃P(F ) is periodic with period 1/T , the cascade of
G̃P(F ) followed by a rate-1/T sampler can be replaced by a rate-1/T sampler
followed by a discrete-time filter whose frequency response is G̃P(F ). This is
illustrated in Figure 5.3. Note that the input to the matched filter is given by

Sk
Equivalent

Channel

q̃(t)

r̃(t)
Matched

filter

q̃∗(−t)

AWGN

w̃(t)

t = nT

ṽn

g̃n
Hard

decision

ũn = Sn + w̃1, n

Ŝn ũn

Figure 5.3: Structure of the optimum receive filter.

(5.5), which is repeated here for convenience:

r̃(t) =
∞∑

k=−∞
Sk q̃(t− kT ) + w̃(t). (5.26)

The output of the matched filter is

ṽ(t) =
∞∑

k=−∞
Sk R̃q̃q̃(t− kT ) + w̃2(t) (5.27)

where

R̃q̃q̃(t) = q̃(t) ⋆ q̃∗(−t)

w̃2(t) = w̃(t) ⋆ q̃∗(−t). (5.28)
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The signal at the output of the sampler is given by

ṽn =
∞∑

k=−∞
SkR̃q̃q̃, n−k + w̃2, n (5.29)

where R̃q̃q̃, k denotes the sampled autocorrelation of q̃(t) with sampling phase
equal to zero. We will discuss the importance of zero sampling phase at a later
stage. The discrete-time equivalent system at the sampler output is shown in

Sk ṽn

w̃2, n

Discrete-time

filter with

frequency

response

SP, q̃(F )

Figure 5.4: The discrete-time equivalent system at the output of the sampler in
Figure 5.3.

Figure 5.4.
The autocorrelation of w̃2, n is given by

1

2
E
[
w̃2, nw̃

∗
2, n−m

]
=

1

2
E

[∫ ∞

x=−∞
q̃∗(x− nT )w̃(x) dx

×
∫ ∞

y=−∞
q̃(y − nT +mT )w̃∗(y) dy

]

= N0R̃q̃q̃(mT )

∆
= N0R̃q̃q̃,m. (5.30)

The (periodic) power spectral density of w̃2, n is given by:

SP, w̃2(F )
∆
= N0

∞∑

m=−∞
R̃q̃q̃,m exp (−j2πFmT )

=
N0

T

∞∑

m=−∞

∣
∣
∣Q̃
(

F − m

T

)∣
∣
∣

2

(5.31)

where Q̃(F ) is the Fourier transform of q̃(t). Define

SP, q̃(F )
∆
=

1

T

∞∑

m=−∞

∣
∣
∣Q̃
(

F − m

T

)∣
∣
∣

2

. (5.32)

Then (5.31) becomes

SP, w̃2(F )
∆
= N0SP, q̃(F ). (5.33)
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Note that the condition of zero intersymbol interference is:

R̃q̃q̃, k = δK(k). (5.34)

The above condition also implies that w̃2, k is uncorrelated.
Let g̃n denote the discrete-time impulse response corresponding to the peri-

odic spectrum, G̃P(F ). Note that

GP(F )
∆
=

∞∑

n=−∞
g̃n exp (−j2πFnT ) . (5.35)

The output of g̃n is given by:

ũn = ṽn ⋆ g̃n

=
∞∑

k=−∞
Skãn−k + z̃n (5.36)

where

ãn = R̃q̃q̃, n ⋆ g̃n

z̃n =
∞∑

k=−∞
g̃kw̃2, n−k. (5.37)

Our objective now is to minimize the variance between ũn and the actual trans-
mitted symbol Sn (see (5.7)). This can be written as:

minE
[

|ũn − Sn|2
]

= minE
[

|ũn|2
]

+ E
[

|Sn|2
]

− E [ũnS
∗
n]

− E [ũ∗
nSn] . (5.38)

Assuming that the signal and Gaussian noise components in (5.36) are statisti-
cally independent we get

E
[

|ũn|2
]

= Pav

∞∑

k=−∞
|ãk|2 + 2N0T

∫ 1/(2T )

F=−1/(2T )

SP, q̃(F )
∣
∣
∣G̃P(F )

∣
∣
∣

2

dF (5.39)

where SP, q̃(F ) is given by (5.32), G̃P(F ) is given by (5.35) and we have made
use of the fact that the symbols are uncorrelated, that is:

E
[
SkS

∗
j

]
= PavδK(k − j). (5.40)

Note that the second term on the right hand side of (5.39) is obtained by
using the the fact that the noise variance is equal to the inverse discrete-time
Fourier transform (see (E.14)) of the power spectral density evaluated at time
zero. The factor of 2 appears in (5.39) because the variance of z̃n is defined as
(1/2)E[|z̃n|2]. We now use the Parseval’s theorem which states that

∞∑

k=−∞
|ãk|2 = T

∫ 1/(2T )

F=−1/(2T )

∣
∣
∣ÃP(F )

∣
∣
∣

2

dF (5.41)
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where we once again note that the left-hand-side of the above equation corre-
sponds to the autocorrelation of ãk at zero lag, which is nothing but the inverse
Fourier transform of the power spectral density evaluated at time zero (note the
factor T which follows from (E.14)). Note also that

ÃP(F )
∆
=

∞∑

k=−∞
ãk exp (−j2πFkT )

= SP, q̃(F )G̃P(F ). (5.42)

Using (5.40) it can be shown that

E
[

|Sn|2
]

= Pav

E [ũnS
∗
n] = ã0Pav

= PavT

∫ 1/(2T )

F=−1/(2T )

SP, q̃(F )G̃P(F ) dF

E [ũ∗
nSn] = ã∗0Pav

= PavT

∫ 1/(2T )

F=−1/(2T )

SP, q̃(F )G̃∗
P(F ) dF. (5.43)

Thus we have [170]

E
[

|ũn − Sn|2
]

= T

∫ 1/(2T )

F=−1/(2T )

[

Pav

∣
∣
∣1− SP, q̃(F )G̃P(F )

∣
∣
∣

2

+ 2N0SP, q̃(F )
∣
∣
∣G̃P(F )

∣
∣
∣

2
]

dF.

(5.44)

Since the integrand in the above equation is real and non-negative, minimizing
the integral is equivalent to minimizing the integrand. Hence, ignoring the factor
T we get

minE
[

|ũn − Sn|2
]

⇒min

[

Pav

∣
∣
∣1− SP, q̃(F )G̃P(F )

∣
∣
∣

2

+ 2N0SP, q̃(F )
∣
∣
∣G̃P(F )

∣
∣
∣

2
]

. (5.45)

Differentiating the above expression with respect to G̃∗
P
(F ) (see Appendix A)

and setting the result to zero we get the solution for the symbol-spaced, minimum
mean squared error (MMSE) equalizer as:

G̃P, opt,MMSE(F ) =
Pav

PavSP, q̃(F ) + 2N0
for −1/(2T ) ≤ F ≤ 1/(2T ).

(5.46)



K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in 257

Substituting the above expression in (5.44) we obtain the expression for the
minimum mean squared error (MMSE) of w̃1, n as:

minE
[

|w̃1, n|2
]

=

∫ 1/(2T )

F=−1/(2T )

2N0PavT

PavSP, q̃(F ) + 2N0
dF

= E
[

|ũn − Sn|2
]

= JMMSE(linear) (say) (5.47)

where JMMSE(linear) denotes the minimum mean squared error that is achie-
veable by a linear equalizer (At a later stage we show that a fractionally-spaced
equalizer also achieves the same MMSE). Note that since w̃1, n consists of both
Gaussian noise and residual ISI, the pdf of w̃1, n is not Gaussian.

We have thus obtained the complete solution for detecting symbols at the
receiver with the minimum possible error that can be achieved with equalization
(henceforth we will differentiate between the matched filter, Q̃∗(F ) and the
equalizer, G̃P(F )). We emphasize at this point that equalization is by no
means the best approach to detect symbols in the presence of ISI.

It is also possible to compute the expression for a zero-forcing (ZF) equalizer.
A ZF equalizer by definition, ensures that the ISI at its output is zero. It is
easy to see that:

G̃P, opt,ZF(F ) =
1

SP, q̃(F )
for −1/(2T ) ≤ F ≤ 1/(2T ) (5.48)

and the noise variance at its output is

E
[

|w̃1, k|2
]

=

∫ 1/(2T )

F=−1/(2T )

2N0T

SP, q̃(F )
dF

= JZF(linear) (say). (5.49)

Note that in the case of a ZF equalizer, w̃1, k consists of only Gaussian noise
(since ISI is zero) with variance given by the above equation. Note that

JZF(linear) > JMMSE(linear). (5.50)

In the next section we discuss some of the issues related to implementation of
the equalizer.

5.1.2 Finite Length Equalizer

In the previous section, we derived the frequency response of the optimum
MMSE equalizer. In general, such an equalizer would have an infinite time-
span. In practice however, we have to deal with a finite length equalizer. This
section is devoted to the implementation of an optimum finite length equalizer
and the study of its convergence properties. Note that an optimum finite length
equalizer is inferior to an optimum infinite length equalizer.
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Let g̃n denote the impulse response of the equalizer spanning over L symbols.
Let ṽn denote the input to the equalizer (see (5.29)) and let ũn denote the
equalizer output (see (5.36)). Then we have

ũn =
L−1∑

k=0

g̃kṽn−k. (5.51)

Let Sn denote the desired symbol at time n. The optimum equalizer taps must
be chosen such that the error variance is minimized, that is

minE
[

|ẽn|2
]

(5.52)

where

ẽn
∆
= Sn − ũn

= Sn −
L−1∑

k=0

g̃kṽn−k. (5.53)

To find out the optimum tap weights, we need to compute the gradient with
respect to each of the tap weights and set the result to zero. Thus we have (see
Appendix A)

∂E
[

|ẽn|2
]

∂g̃∗j
= 0 for 0 ≤ j ≤ L− 1. (5.54)

Interchanging the order of the expectation and the partial derivative we get

E
[
ṽ∗n−j ẽn

]
= 0 for 0 ≤ j ≤ L− 1. (5.55)

The above condition is called the principle of orthogonality, which states the
following: if the mean squared estimation error at the equalizer output is to be
minimized, then the estimation error at time n must be orthogonal to all the
input samples that are involved in the estimation process at time n. Substituting
for ẽn from (5.53) we get

E
[
ṽ∗n−jSn

]
=

L−1∑

k=0

g̃kE
[
ṽ∗n−j ṽn−k

]
for 0 ≤ j ≤ L− 1. (5.56)

Substituting for ṽn−j from (5.29) and using the fact that the symbols are un-
correlated (see (5.40)) we get

E
[
ṽ∗n−jSn

]
=

L−1∑

k=0

g̃kE
[
ṽ∗n−j ṽn−k

]

⇒ Pav

2
R̃∗

q̃q̃,−j =
L−1∑

k=0

g̃kR̃ṽṽ, j−k for 0 ≤ j ≤ L− 1. (5.57)
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where

E
[
ṽ∗n−j ṽn−k

] ∆
= 2R̃ṽṽ, j−k = Pav

∞∑

l=−∞
R̃∗

q̃q̃, n−j−lR̃q̃q̃, n−k−l + 2N0R̃q̃q̃, j−k

= Pav

∞∑

i=−∞
R̃q̃q̃, iR̃

∗
q̃q̃, i+k−j + 2N0R̃q̃q̃, j−k. (5.58)

We can rewrite (5.57) in the form of a set of linear equations as follows:








R̃ṽṽ, 0 R̃ṽṽ,−1 . . . R̃ṽṽ,−L+1

R̃ṽṽ, 1 R̃ṽṽ, 0 . . . R̃ṽṽ,−L+2

...
...

...
...

R̃ṽṽ, L−1 R̃ṽṽ, L−2 . . . R̃ṽṽ, 0















g̃0
g̃1
...

g̃L−1







= Pav, 1








R̃q̃q̃, 0

R̃q̃q̃, 1

...

R̃q̃q̃, L−1








(5.59)
where on the right hand side of the above equation we have used the fact that

R̃∗
q̃q̃,−m = R̃q̃q̃,m

Pav, 1 = Pav/2. (5.60)

The above system of equations can be written more compactly in matrix form:

R̃ṽṽg̃ = Pav, 1R̃q̃q̃. (5.61)

The solution for the optimum tap weights for the finite length equalizer is ob-
viously:

g̃opt,FL = Pav, 1R̃
−1
ṽṽ R̃q̃q̃ (5.62)

where the subscript “FL” denotes finite length. The minimum mean squared
error corresponding to the optimum tap weights is given by:

E [ẽnẽ
∗
n] = E

[(

S∗
n −

L−1∑

k=0

g̃∗kṽ
∗
n−k

)

ẽn

]

= E [S∗
nẽn] (5.63)

where we have made use of (5.55). Substituting for ẽn in the above equation we
have

E [ẽnẽ
∗
n] = E

[

S∗
n

(

Sn −
L−1∑

k=0

g̃kṽn−k

)]

= Pav − Pav

L−1∑

k=0

g̃kR̃q̃q̃,−k

= Pav

(

1− g̃T
opt,FLR̃

∗
q̃q̃

)

= Pav

(

1− g̃H
opt,FLR̃q̃q̃

)



260 K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in

= Pav

(

1− Pav, 1R̃
H
q̃q̃R̃

−1
ṽṽ R̃q̃q̃

)

= JMMSE(linear, FL) (say) (5.64)

where we have used the fact that the mean squared error is real and R̃ṽṽ is
Hermitian, that is

R̃H
ṽṽ = R̃ṽṽ. (5.65)

The superscript H denotes Hermitian (transpose conjugate) and the superscript
T denotes transpose.

Example 5.1.1 Consider the communication system shown in Figure 5.5. The
symbols Sn are independent and equally likely and drawn from a BPSK constel-
lation with amplitude ±2. The channel output can be written as

vn = Snh0 + Sn−1h1 + Sn−2h2 + wn (5.66)

where hn is real-valued, and wn denotes discrete-time, zero-mean real-valued
AWGN with variance σ2

w. The equalizer output can be written as

un = vng0 + vn−1g1. (5.67)

1. Compute the optimum linear MMSE equalizer coefficients (g0 and g1) in
terms of hn and σ2

w.

2. Compute the MMSE in terms of hn and σ2
w.

Sn

hn

Channel vn Equalizer

gn

un

wn

Figure 5.5: Figure for Example 5.1.1.

Solution: Since all the parameters in this problem are real-valued, we expect
the equalizer coefficients also to be real-valued. Define

en = Sn − un

= Sn − vng0 − vn−1g1. (5.68)

We need to find g0 and g1 which minimizes

E
[
e2n
]
. (5.69)

Differentiating (5.69) wrt g0 and equating to zero we get

∂

∂g0
E
[
e2n
]
= E

[

2en
∂en
∂g0

]
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= −2E [envn]

= 0

⇒ E [(Sn − g0vn − g1vn−1)vn] = 0

⇒ g0Rvv, 0 + g1Rvv, 1 = h0Pav (5.70)

where

Rvv,m = E [vnvn−m]

Pav = E
[
S2
n

]

= 4. (5.71)

Observe the absence of the factor of 1/2 in the definition of Rvv,m, since vn is
a real-valued random process.

Similarly differentiating (5.69) wrt g1 and equating to zero we get

∂

∂g1
E
[
e2n
]
= E

[

2en
∂en
∂g1

]

= −2E [envn−1]

= 0

⇒ E [(Sn − g0vn − g1vn−1)vn−1] = 0

⇒ g0Rvv, 1 + g1Rvv, 0 = 0. (5.72)

Solving for g0 and g1 from (5.70) and (5.72) we get

g0 =
Rvv, 0h0Pav

R2
vv, 0 −R2

vv, 1

g1 =
−Rvv, 1h0Pav

R2
vv, 0 −R2

vv, 1

(5.73)

where

Rvv, 0 = Pav

(
h2
0 + h2

1 + h2
2

)
+ σ2

w

Rvv, 1 = Pav (h0h1 + h1h2) . (5.74)

Using the principle of orthogonality, the MMSE is

E
[
e2n
]
= E [en(Sn − g0vn − g1vn−1)]

= E [enSn]

= E [(Sn − g0vn − g1vn−1)Sn]

= Pav − g0E[vnSn]

= Pav − g0E[Sn(h0Sn + h1Sn−1 + h2Sn−2 + wn)]

= Pav − g0h0Pav

= Pav

[

1− Rvv, 0h2
0Pav

R2
vv, 0 −R2

vv, 1

]

. (5.75)

Note that the MMSE could be reduced by
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1. increasing the number of equalizer coefficients, and/or

2. defining the error signal as en = Sn−D −un, where D is a positive integer.

From the above discussion it is clear that computing the optimum equalizer
tap weights is computationally complex, especially when L is large. In the
next section, we discuss the steepest descent algorithm and the least mean
square algorithm which are used in practice to obtain near-optimal equalizer
performance at a reduced complexity.

5.1.3 The Steepest Descent Algorithm

Consider the equation
y = x2 (5.76)

where x and y are real variables. Starting from an arbitrary point x0, we are
required to find out the value of x that minimizes y, using some kind of a
recursive algorithm. This can be done as follows. We compute the gradient

dy

dx
= 2x. (5.77)

It is easy to see that the following recursion achieves the purpose:

xn+1 = xn − µxn (5.78)

where µ > 0 is called the step-size, and xn at time zero is equal to x0. Observe
that we have absorbed the factor of 2 in µ and the gradient at time n is xn. It is
important to note that in the above recursion, xn is updated with the negative
value of the gradient or in the direction of steepest descent. It is also clear that
for xn → 0 as n → ∞ we require:

|1− µ| < 1. (5.79)

This simple analogy is used to derive the steepest descent algorithm that makes
the equalizer taps converge to the optimum values. Observe that when the

global minimum

local minimum

x

y

Figure 5.6: Function having both local and global minimum. Depending on the
starting point, the steepest descent algorithm may converge to the local
or global minimum.

function to be minimized contains local minima, there is a possibility for the
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steepest descent algorithm to converge to one of the local minima, instead of
the global minimum. This is illustrated in Figure 5.6.

Define the gradient vector at time n as

∇Jn =

[

∂E
[

|ẽn|2
]

∂g̃∗n, 0
· · ·

∂E
[

|ẽn|2
]

∂g̃∗n,L−1

]T

= −E [ṽ∗
nẽn]

= −
(

PavR̃q̃q̃ − 2R̃ṽṽg̃n

)

(5.80)

where ẽn is given by (5.53) and

ṽn =
[
ṽn ṽn−1 . . . ṽn−L+1

]T

g̃n =
[
g̃n, 0 g̃n, 1 . . . g̃n,L−1

]T
. (5.81)

Note that g̃n, i denotes the ith tap at time nT . Note also that the gradient
vector is zero only for the optimum tap weights (see (5.55)). The tap update
equations can now be written as

g̃n+1 = g̃n − µ∇Jn

= g̃n + µ
(

Pav, 1R̃q̃q̃ − R̃ṽṽg̃n

)

(5.82)

where we have absorbed the factor of 2 in µ. Having derived the tap update
equations, we now proceed to study the convergence behaviour of the steepest
descent algorithm [172].

Define the tap weight error vector as

g̃e, n
∆
= g̃n − g̃opt,FL (5.83)

where g̃opt,FL denotes the optimum tap weight vector. The tap update equation
in (5.82) can be written as

g̃e, n+1 = g̃e, n + µ
(

Pav, 1R̃q̃q̃ − R̃ṽṽg̃e, n − R̃ṽṽg̃opt,FL

)

= g̃e, n − µR̃ṽṽg̃e, n

=
(

IL − µR̃ṽṽ

)

g̃e, n

=
(

IL − µQ̃ΛQ̃H
)

g̃e, n. (5.84)

In the above equation, we have used the unitary similarity transformation (see
Appendix D) to decompose R̃ṽṽ as

R̃ṽṽ = Q̃ΛQ̃H (5.85)

where Q̃ is an L × L matrix consisting of the eigenvectors of R̃ṽṽ and Λ is an
L × L diagonal matrix consisting of the eigenvalues of R̃ṽṽ. Pre-multiplying
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both sides of (5.84) by Q̃H and using the fact that Q̃HQ̃ = IL we get

Q̃H g̃e, n+1 =
(

Q̃H − µΛQ̃H
)

g̃e, n

= (IL − µΛ) Q̃H g̃e, n. (5.86)

Let
h̃n

∆
= Q̃H g̃e, n (5.87)

denote another L× 1 vector. Then (5.86) becomes

h̃n+1 = (IL − µΛ) h̃n. (5.88)

It is clear that as n → ∞, h̃n must tend to zero. Let h̃k, n denote the kth element

of h̃n. Then the recursion for the kth element of h̃n is given by:

h̃k, n+1 = (1− µλk) h̃k, n for 1 ≤ k ≤ L. (5.89)

The required condition for h̃k, n to approach zero as n → ∞ is

− 1 < 1− µλk < 1

⇒2 > µλk

⇒ 2

λk
> µ for 1 ≤ k ≤ L. (5.90)

As mentioned earlier, µ must also be strictly positive (it has been shown in
Appendix D that the eigenvalues of an autocorrelation matrix are positive and
real). Obviously if

0 < µ <
2

λmax
(5.91)

where λmax is the maximum eigenvalue of R̃ṽṽ, then the condition in (5.90) is
automatically satisfied for all k.

Example 5.1.2 In Example 5.1.1, it is given that h0 = 1, h1 = 2, h2 = 3 and
σ2
w = 4. Determine the largest step-size that can be used in the steepest descent

algorithm, based on the maximum eigenvalue.

Solution: For the given values

Rvv, 0 = 60

Rvv, 1 = 32. (5.92)

Therefore

Rvv =

[
60 32
32 60

]

. (5.93)

The eigenvalues of this matrix are given by
∣
∣
∣
∣

60− λ 32
32 60− λ

∣
∣
∣
∣
= 0
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⇒ λ1 = 28

λ2 = 92. (5.94)

Therefore from (5.91) the step-size for the steepest descent algorithm must lie
in the range

0 < µ <
2

92
. (5.95)

The main drawback of the steepest gradient algorithm is that it requires
estimation of R̃ṽṽ and R̃q̃q̃, which again could be computationally complex for
large values of L. In the next section we discuss the least mean square algorithm
which provides a simple way to update the equalizer taps.

5.1.4 The Least Mean Square (LMS) Algorithm

The LMS algorithm belongs to the family of stochastic (or estimated) gradient
algorithms as opposed to the steepest descent algorithm which uses a determin-
istic (or exact) gradient. The tap update equations for the LMS algorithm is
given by:

g̃n+1 = g̃n + µ (ṽ∗
nẽn) . (5.96)

Note that the only difference between (5.82) and (5.96) is in the presence or
absence of the expectation operator. In other words, the LMS algorithm uses
the instantaneous value of the gradient instead of the exact value of the gradient.

It can be shown that µ should satisfy the condition in (5.91) for the LMS
algorithm to converge. However, since in practice it is difficult to estimate the
eigenvalues of the correlation matrix, we resort to a more conservative estimate
of µ which is given by:

0 < µ <
2

∑L
i=1 λi

(5.97)

where λi are the eigenvalues of R̃ṽṽ. However, we know that the sum of the
eigenvalues of R̃ṽṽ is equal to the trace of R̃ṽṽ (this result is proved in Ap-
pendix D). Thus (5.97) becomes:

0 < µ <
2

LR̃ṽṽ, 0

. (5.98)

Note that R̃ṽṽ, 0 is the power of ṽn in (5.29), that is input to the equalizer.
In the next section, we discuss the fractionally-spaced equalizer, which is a

better way to implement the symbol-spaced equalizer.

5.1.5 Linear Equalization – Fractionally-Spaced Equaliz-
ers

From an implementation point of view, the symbol-spaced equalizer suffers from
two major disadvantages [3, 170, 173]:
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(a) It is sensitive to the sampling phase of the symbol-rate sampler.

(b) It is sensitive to imperfectness in the matched filter.

We now discuss these two issues in detail.
Recall that the output of the matched filter is given by (5.27) which is

repeated here for convenience:

ṽ(t) =
∞∑

k=−∞
Sk R̃q̃q̃(t− kT ) + w̃2(t). (5.99)

Let us assume that ṽ(t) is sampled at instants nT − t0 where t0 ∈ [0, T ) denotes
the sampling phase. Note that in (5.29) the sampling phase is zero. The sampler
output for a sampling phase of t0 can be written as:

ṽ(nT − t0) =
∞∑

k=−∞
Sk R̃q̃q̃(nT − t0 − kT ) + w̃2(nT − t0). (5.100)

The autocorrelation of w̃2(nT − t0) is independent of t0 and is given by (5.30),
that is:

1

2
E [w̃2(nT − t0)w̃

∗
2(nT −mT − t0)] = N0R̃q̃q̃,m. (5.101)

Hence the power spectral density of w̃2(nT−t0) is given by (5.33). Let us denote
the discrete-time Fourier transform of R̃q̃q̃(mT − t0) in (5.100) by S̃P, q̃(F, t0).
Then

S̃P, q̃(F, t0) =
1

T

∞∑

k=−∞

∣
∣
∣
∣
Q̃

(

F +
k

T

)∣
∣
∣
∣

2

exp

(

−j 2πt0

(

F +
k

T

))

. (5.102)

Observe that R̃q̃q̃(mT − t0) is not a discrete-time autocorrelation sequence for
t0 6= 0, hence its Fourier transform is not real-valued.

From the above developments, (5.38) can be written as:

E
[

|ũn − Sn|2
]

= T

∫ 1/(2T )

F=−1/(2T )

[

Pav

∣
∣
∣1− SP, q̃(F, t0)G̃P(F )

∣
∣
∣

2

+ 2N0SP, q̃(F )
∣
∣
∣G̃P(F )

∣
∣
∣

2
]

dF. (5.103)

Differentiating the integrand in the above equation with respect to G̃∗
P
(F ) we

get the optimum equalizer frequency response as:

G̃P, opt,MMSE(F, t0) =
PavS̃∗

P, q̃(F, t0)

Pav

∣
∣
∣S̃P, q̃(F, t0)

∣
∣
∣

2

+ 2N0SP, q̃(F )

for −1/(2T ) ≤ F < 1/(2T ). (5.104)



K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in 267

The corresponding mean square error is given by:

JMMSE(linear, t0) =

∫ 1/(2T )

F=−1/(2T )

2N0PavT

Pav

∣
∣
∣S̃P, q̃(F, t0)

∣
∣
∣

2

· 1
SP, q̃(F )

+ 2N0

dF.

(5.105)
Let us now compare the MMSE obtained in (5.47) and (5.105) for the real-life
situation where the (two-sided) bandwidth of Q̃(F ) extends over the frequency
range [−1/T, 1/T ]. In this case Q̃(F ) is said to have an excess bandwidth and
(5.102) reduces to

S̃P, q̃(F, t0) =
e−j 2πFt0

T

[
∣
∣
∣Q̃(F )

∣
∣
∣

2

+

∣
∣
∣
∣
Q̃

(

F − 1

T

)∣
∣
∣
∣

2

e j 2πt0/T

]

for 0 ≤ F < 1/T . (5.106)

The above model is justified since in most communication standards employing
linear modulation, the transmit filter is specified to be the pulse corresponding
to the root raised cosine spectrum with at most 100% excess bandwidth.

Note that if we had taken the frequency interval to be −1/(2T ) ≤ F ≤
1/(2T ), there would have been three terms on the right hand side of (5.106),
which would have made analysis more complicated. In other words,

S̃P, q̃(F, t0) =

e−j 2πFt0

T

[∣
∣
∣
∣
Q̃

(

F +
1

T

)∣
∣
∣
∣

2

e−j 2πt0/T +
∣
∣
∣Q̃(F )

∣
∣
∣

2

+

∣
∣
∣
∣
Q̃

(

F − 1

T

)∣
∣
∣
∣

2

e j 2πt0/T

]

for −1/(2T ) ≤ F < 1/(2T ). (5.107)

Hence, for ease of analysis, we prefer to use S̃P, q̃(F, t0) given by (5.106), in the
frequency range 0 ≤ F ≤ 1/T . Observe also that the frequency ranges specified
in (5.106) and (5.107) correspond to an interval of 2π.

However SP, q̃(F ) is given by:

SP, q̃(F ) =
1

T

[
∣
∣
∣Q̃(F )

∣
∣
∣

2

+

∣
∣
∣
∣
Q̃

(

F − 1

T

)∣
∣
∣
∣

2
]

for 0 ≤ F < 1/T . (5.108)

Clearly

S2
P, q̃(F ) >

∣
∣
∣S̃P, q̃(F, t0)

∣
∣
∣

2

for 0 ≤ F < 1/T

⇒ SP, q̃(F ) >

∣
∣
∣S̃P, q̃(F, t0)

∣
∣
∣

2

SP, q̃(F )
for 0 ≤ F < 1/T

⇒ JMMSE(linear, t0) > JMMSE(linear). (5.109)

Thus, the above analysis shows that an incorrect choice of sampling phase results
in a larger-than-minimum mean squared error.
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The other problem with the symbol-spaced equalizer is that there is a marked
degradation in performance due to inaccuracies in the matched filter. It is
difficult to obtain closed form expressions for performance degradation due to
a “mismatched” filter. However, experimental results have shown that on an
average telephone channel, the filter matched to the transmitted pulse (instead
of the received pulse), performs poorly [170].

t = nTs ũnAntialiasing

filter

FSE

h̃n(kTs)

Ŝn Hard

decision

↓ M

ẽn (for adaptation)

r̃(t)

r̃(nTs)

+
−

Figure 5.7: A digital communication system employing a fractionally-spaced equal-
izer (FSE).

The solution to both the problems of timing phase and matched filtering, is
to combine the matched filter Q̃∗(F ) and G̃P(F ) to form a single filter, H̃opt(F ),

as given in (5.8). The advantage behind this combination is that H̃opt(F ) can
be adapted to minimize the MSE arising due to timing offset and inaccuracies
in the matched filter. This is in contrast to the symbol-spaced equalizer where
only G̃P(F ) is adapted.

Since H̃opt(F ) has a finite (one-sided) bandwidth, say B, its discrete-time

impulse response can be obtained by sampling h̃opt(t) at Nyquist-rate (2B)

or above. Thus h̃opt(nTs), where Ts = 1/(2B), is the impulse response of the
optimum fractionally-spaced equalizer (FSE). It is clear that the minimum mean
squared error for the optimum (infinitely long) fractionally-spaced equalizer is
exactly identical to that of the optimum (infinitely long) symbol-spaced equalizer
[170] and is given by (5.47).

In practice, the FSE is of finite length and is adapted using the LMS al-
gorithm. The block diagram of a digital communication system employing a
discrete-time adaptive FSE is shown in Figure 5.7. Here T/Ts = M is assumed
to be an integer, where 1/T denotes the symbol-rate. The signal r̃(t) is given by
(5.5). Let L denote the length of the FSE and h̃n(kTs) denote the k

th equalizer
tap coefficient at time nT (note that the equalizer taps are time-varying due to
the adaptation algorithm). Let

ũ(nMTs) =
L−1∑

k=0

h̃n(kTs)r̃(nMTs − kTs)
∆
= ũn (5.110)

denote the decimated output of the FSE. The error signal is computed as:

ẽn = Ŝn − ũn (5.111)
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where Ŝn denotes the estimate of the symbol, which we assume is equal to the
transmitted symbol Sn. The LMS algorithm for updating the equalizer taps is
given by:

h̃n+1 = h̃n + µ (r̃∗nẽn) (5.112)

where

h̃n =
[
h̃n(0) · · · h̃n((L − 1)Ts)

]T

r̃n =
[
r̃(nMTs) · · · r̃((nM − L+ 1)Ts)

]T

0 < µ <
2

LE
[

|r̃(nTs)|2
] . (5.113)

Having discussed the performance of the FSE, the question arises whether we
can do better. From (5.47) we note that the power spectral density of the
interference at the equalizer output is not flat. In other words, we are dealing
with the problem of detecting symbols in correlated interference, which has been
discussed earlier in section 2.7 in Chapter 2. Whereas the interference at the
equalizer output is not Gaussian, the interference considered in section 2.7 of
Chapter 2 is Gaussian. Nevertheless in both cases, the prediction filter needs
to be used to reduce the variance of the interference at the equalizer output
and hence improve the bit-error-rate performance. We have thus motivated the
need for using a decision-feedback equalizer (DFE).

5.1.6 Non-Linear Equalization – The Predictive DFE

The decision feedback equalizer (DFE) was introduced by Austin in [174]. The
performance analysis of the DFE can be found in [175–181]. In [182], the DFE
is used for detecting trellis coded modulation signals. A reduced complexity
DFE for channels having large delay spreads is discussed in [183]. A technique
to reduce the effect of error propagation in the DFE is given in [184]. In [52,96]
the DFE is used in connection with turbo equalization.

From (5.47) it is clear that the periodic power spectral density of the in-
terference at the equalizer output (assuming that the matched filter output is
sampled at the correct instants) is given by:

SP, w̃1(F ) =
N0PavT

PavSP, q̃(F ) + 2N0
. (5.114)

Note that the variance of w̃1, n in (5.47) is half the MMSE, hence SP, w̃1(F )
in (5.114) is half the integrand in (5.47). Let us consider a discrete-time filter
having a frequency response Γ̃P(F ) such that [170]:

∣
∣
∣Γ̃P(F )

∣
∣
∣

2

=
1

SP, w̃1(F )
. (5.115)

Note that when N0 6= 0, SP, w̃1(F ) has no nulls (zeros), hence Γ̃P(F ) always

exists. We refer to Γ̃P(F ) as the whitening filter. Thus, when the interference
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at the equalizer output is passed through Γ̃P(F ), the power spectral density at
the filter output is flat with value equal to unity. This further implies that the
variance of the interference at the output of the whitening filter is also unity.
Note that since the whitening filter must be causal:

Γ̃P(F )
∆
=

∞∑

k=0

γ̃k exp (−j 2πFkT ) (5.116)

where γ̃k are the whitening filter coefficients.
However, due to reasons that will be explained later, what we require is a

discrete-time forward prediction filter (see Appendix J) of the form:

ÃP(F )
∆
= 1 +

∞∑

k=1

ãk exp (−j 2πFkT ) . (5.117)

It is easy to see that the above filter can be obtained by dividing all coefficients
of Γ̃P(F ) by γ̃0. Hence

ÃP(F ) =
Γ̃P(F )

γ̃0
. (5.118)

Thus the power spectral density of the interference at the output of the predic-
tion filter is flat with value equal to 1/ |γ̃0|2 which is also equal to the variance
of the interference. Note that since ÃP(F ) is minimum phase (see section J.4),
Γ̃P(F ) must also be minimum phase.

Let us now try to express γ̃0 in terms of the power spectral density of w̃1, n.
Computing the squared magnitude of both sides of (5.118) we get:

|γ̃0|2 =

∣
∣
∣Γ̃P(F )

∣
∣
∣

2

∣
∣
∣ÃP(F )

∣
∣
∣

2 . (5.119)

Taking the natural logarithm of both sides and integrating:

ln |γ̃0|2 = T

∫ 1/T

0

ln
∣
∣
∣Γ̃P(F )

∣
∣
∣

2

dF − T

∫ 1/T

0

ln
∣
∣
∣ÃP(F )

∣
∣
∣

2

dF. (5.120)

Since the second integral on the right hand side of the above equation is zero
(see (J.89)) we get [170]:

ln |γ̃0|2 = T

∫ 1/T

0

ln
∣
∣
∣Γ̃P(F )

∣
∣
∣

2

dF

⇒ 1

|γ0|2
= exp

(

T

∫ 1/T

0

ln (SP, w̃1(F )) dF

)

=
1

2
E
[

|w̃3, n|2
]

(say) (5.121)
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+

decision

HardSn + w̃3, n

−

Sn + w̃1, n

−

−ãP

ŵ1, n

w̃1, n−1 w̃1, n−P

+

Q̃∗(F )G̃P(F )

t = nT

−ã1

r̃(t)

w̃1, n

Ŝn

Figure 5.8: Structure of the optimum predictive decision feedback equalizer.

where w̃3, n denotes the noise sequence at the output of the optimum (infinite-
order) predictor given by (5.118).

Figure 5.8 shows the structure of the equalizer that uses a forward predic-
tion filter of order P . Note the use of a hard decision device to subtract out
the symbol. This structure is referred to as the predictive decision feedback
equalizer (predictive DFE). The predictive DFE operates as follows. At time
nT , the estimate of the interference ŵ1, n is obtained using the past values of
the interference (this is not the estimate of the past values, but the actual past
values), given by

ŵ1, n = −
∞∑

i=1

ãiw̃1, n−i. (5.122)

This estimate, ŵ1, n is subtracted out from the equalizer output at time nT to
obtain

ũn − ŵ1, n = Sn + w̃1, n − ŵ1, n = Sn + w̃3, n = r̃2, n (say). (5.123)

Since the variance of w̃3, n is less than w̃1, n (see Appendix J), the hard decisions
that are obtained using r̃2, n are more reliable than those obtained from ũn.
Hence we expect the bit-error-rate performance of the ideal DFE to be better
than even the optimum linear equalizer. Having obtained the estimate of the
symbol, which we assume to be equal to Sn, it is straightforward to obtain w̃1, n

from ũn, which is fed to the forward prediction filter to estimate ŵ1, n+1. It is
clear that the effectiveness of this equalizer depends on the correctness of the
hard decision. In the next section we discuss the practical implementation of
the DFE.

5.1.7 Implementation of the Predictive DFE

As usual in a practical implementation, we have to deal with finite-length filters.
Moreover, we also require the filters to be adaptive so that they can be trained to
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attain the optimum tap coefficients. Let us assume that the fractionally-spaced
equalizer (feedforward part) has L taps and the prediction filter (feedback part)
has P taps. The output of the FSE is given by (5.110) which is repeated here

−

r̃(nTs) FSE

h̃n(kTs)

t = nT
+

+
−

Sn + w̃1, n

+

−

Hard

decision

ŵ1, n

ŜnSn + w̃3, n

w̃3, n for predictor tap update

−ãn, P

w̃1, n

equalizer
tap

update −ãn, 1

w̃1, n−1 w̃1, n−Pw̃1, n

Figure 5.9: Implementation of the predictive decision feedback equalizer.

for convenience:

ũn =
L−1∑

k=0

h̃n(kTs)r̃(nMTs − kTs) = Sn + w̃1, n. (5.124)

The error signal at the equalizer output is given by:

ũn − Sn = w̃1, n. (5.125)

The prediction error is given by:

w̃3, n = w̃1, n − ŵ1, n

=
P∑

k=0

ãn, kw̃1, n−k (5.126)

where ãn, k denotes the kth coefficient of the predictor at time nT with

ãn, 0 = 1. (5.127)

Note that we have dropped the subscript P in labelling the predictor coefficients
since it is understood that we are using a P th-order predictor (in Appendix J
the subscript was explicitly used to differentiate between the P th-order and
P − 1th-order predictor).

The LMS algorithm for the equalizer tap updates is:

h̃n+1 = h̃n − µ1 (r̃
∗
nw̃1, n) (5.128)
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where again:

h̃n =
[
h̃n(0) · · · h̃n((L − 1)Ts)

]T

r̃n =
[
r̃(nMTs) · · · r̃((nM − L+ 1)Ts)

]T

0 < µ1 <
2

LE
[

|r̃(nTs)|2
] . (5.129)

Note the difference between the tap update equations in (5.128) and (5.112) and
also the expression for the error signal in (5.125) and (5.111).

The LMS tap update equation for the prediction filter is given by:

ãn+1 = ãn − µ2

(
w̃∗

1, nw̃3, n

)
(5.130)

where

ãn =
[
ãn, 1 · · · ãn, P

]T

w̃1, n =
[
w̃1, n−1 · · · w̃1, n−P

]T

0 < µ2 <
2

PE
[

|w̃1, n|2
] . (5.131)

The main problem with the predictive DFE is that the tap update equations
(5.128) and (5.130) independently minimize the variance of w̃1, n and w̃3, n re-
spectively. In practical situations, this would lead to a suboptimal performance,
that is, the variance of w̃3, n would be higher than the minimum. Moreover ãn
in (5.130) can be updated only after h̃n in (5.128) has converged to the opti-
mum value. If both the tap update equations minimized the variance of just
one term, say, w̃3, n, this would yield a better performance than the predictive
DFE. This motivates us to discuss the conventional decision feedback equalizer.

5.1.8 The Conventional DFE

For the purpose of deriving the conventional DFE [180] we assume an infinitely
long equalizer and predictor. Note that

ŵ1, n = −
∞∑

k=1

ãkw̃1, n−k

= −
∞∑

k=1

ãk (ũn−k − Sn−k) (5.132)

where as usual ãk denotes the forward predictor coefficients. The final error
w̃3, n is given by:

w̃3, n = w̃1, n − ŵ1, n
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= ũn − Sn +
∞∑

k=1

ãk (ũn−k − Sn−k)

⇒ Sn + w̃3, n =
∞∑

k=0

ãkũn−k −
∞∑

k=1

ãkSn−k. (5.133)

At this point, we need to go back to the symbol-spaced equalizer structure
given in Figure 5.3 (we have already shown that the optimum FSE is identical
to the optimum symbol-spaced equalizer). Hence ũn is given by (5.36) which is
repeated here for convenience:

ũn = ṽn ⋆ g̃n

=
∞∑

j=−∞
ṽj g̃n−j (5.134)

where ṽn is given by (5.29). Substituting for ũn from the above equation into
(5.133) we get:

Sn + w̃3, n =
∞∑

j=−∞

∞∑

k=0

ãkṽj g̃n−k−j −
∞∑

k=1

ãkSn−k

=
∞∑

j=−∞
ṽj

∞∑

k=0

ãkg̃n−k−j −
∞∑

k=1

ãkSn−k

=
∞∑

j=−∞
ṽj g̃1, n−j −

∞∑

k=1

ãkSn−k (5.135)

where g̃1, n denotes the convolution of the original symbol-spaced equalizer with

the prediction filter. Let G̃P, 1(F ) denote the discrete-time Fourier transform
of g̃1, n. Then

G̃P, 1(F ) = ÃP(F )G̃P(F ) (5.136)

where G̃P(F ) is given by (5.35) and

ÃP(F ) =
∞∑

k=0

ãk exp (−j 2πFnT ) . (5.137)

With this development, the structure of the optimum conventional DFE is pre-
sented in Figure 5.10. In a practical implementation, we would have a finite
length fractionally-spaced feedforward filter (FSE) and a finite length symbol-
spaced feedback filter. Let h̃n(kTs) denote the kth tap of the FSE at time nT .
Let ãn, k denote the kth tap of the predictor at time nT . Then the DFE output
can be written as:

Sn + w̃3, n =
L−1∑

k=0

h̃n(kTs)r̃(nMTs − kTs)−
P∑

k=1

ãn, kSn−k
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−ã1

Hard Ŝn

−ãP
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Figure 5.10: Structure of the optimum conventional decision feedback equalizer.

= ũ1, n (say). (5.138)

Since we are interested in minimizing |w̃3, n|2 with respect to h̃n(kTs) and ãn, k,
the corresponding gradient equations are given by:

∂
(
w3, nw∗

3, n

)

∂h̃∗
n(jTs)

= w̃3, nr̃
∗(nMTs − jTs) for 0 ≤ j ≤ L− 1

∂
(
w3, nw∗

3, n

)

∂ã∗n, i
= −w̃3, nS̃

∗
n−i for 1 ≤ i ≤ P . (5.139)

The LMS tap update equations can be summarized in vector form as follows:

h̃n+1 = h̃n − µ (r̃∗nw̃3, n)

ãn+1 = ãn + µ (S∗
nw̃3, n) (5.140)

where

h̃n =
[
h̃n(0) · · · h̃n((L − 1)Ts)

]T

r̃n =
[
r̃(nMTs) · · · r̃((nM − L+ 1)Ts)

]T

ãn =
[
ãn, 1 · · · ãn, P

]T

Sn =
[
Sn−1 · · · Sn−P

]T

0 < µ <
2

LE
[

|r̃(kTs)|2
]

+ PE
[

|Sn|2
] . (5.141)

This completes the discussion on various equalization techniques. In the next
section, we take up the discussion on maximum likelihood detectors. Observe
that since the interference at the equalizer output is not Gaussian, we cannot
in principle evaluate the symbol-error-rate performance at the equalizer output.
We can only compute the minimum mean squared error at the equalizer output.
Hence, communication systems that employ equalizers must rely on computer
simulations to obtain the symbol-error-rate performance.
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5.2 Receivers Based on MLSE

The maximum likelihood sequence estimation approach is based on directly min-
imizing the symbol-error-rate. This is in contrast to the equalization approach,
which relies on minimizing the noise variance at its output (this indirectly min-
imizes the symbol-error-rate). However, the ML approach is computationally
more complex compared to the equalization approach. As in the case of equal-
ization, ML detectors can also be classified into two categories:

(a) Symbol-spaced [185]

(b) Fractionally-spaced

While the symbol-spaced ML detectors are useful for the purpose of analysis,
it is the fractionally-spaced ML detectors that are suitable for implementation.
Under ideal conditions (perfect matched filter and correct timing phase) the
symbol-error-rate performance of the symbol-spaced ML detector is identical to
that of the fractionally-spaced ML detector.

An efficient ML detector based on truncating the channel impulse response
is discussed in [186]. ML detection for passband systems is described in [187].
In [188], a DFE is used in combination with an ML detector. ML detection for
time-varying channels is given in [189, 190]. An efficient ML detector based on
set-partitioning the constellation is given in [191]. In [50,51], the set-partitioning
approach is extended to trellis coded signals. Efficient ML detectors based on
per-survivor processing is given in [192].

5.2.1 Symbol-Spaced MLSE

At the outset, we assume that the equivalent channel q̃(t) in (5.6) is finite in
time. This assumption is valid in practical situations, since most of the channel
energy is concentrated over a finite time interval. Hence the discrete-time signal
at the sampler output which was given by (5.29) must be modified to:

ṽn =
L∑

k=−L

R̃q̃q̃, kSn−k + w̃2, n (5.142)

where R̃q̃q̃, k denotes the sampled autocorrelation of q̃(t) with sampling phase
equal to zero. Note that

(a) Due to the assumption that q̃(t) is finite in time, R̃q̃q̃, k is also finite, that
is

R̃q̃q̃, k = 0 for k < −L and k > L (5.143)

for some integer L.

(b) Zero sampling phase implies that R̃q̃q̃,m is a valid discrete-time autocor-
relation sequence which satisfies

R̃q̃q̃,−m = R̃∗
q̃q̃,m. (5.144)
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(c) Zero sampling phase also implies that the autocorrelation peak is sampled.
Here the autocorrelation peak occurs at index k = 0, that is, R̃q̃q̃, 0 is real-
valued and

R̃q̃q̃, 0 ≥
∣
∣
∣R̃q̃q̃, k

∣
∣
∣ for k 6= 0. (5.145)

The autocorrelation of w̃2, n is given by (5.30) which is repeated here:

1

2
E
[
w̃2, nw̃

∗
2, n−m

]
=

1

2
E

[∫ ∞

x=−∞
q̃∗(x − nT )w̃(x) dx

×
∫ ∞

y=−∞
q̃(y − nT +mT )w̃∗(y) dy

]

= N0R̃q̃q̃(mT )

∆
= N0R̃q̃q̃,m (5.146)

where R̃q̃q̃,m is given by (5.143).
The first step towards implementing the ML detector is to whiten the noise.

Let R̃q̃q̃(z̃) denote the z̃-transform of R̃q̃q̃,m, that is

R̃q̃q̃(z̃) =
L∑

m=−L

R̃q̃q̃,mz̃−m. (5.147)

Then due to (5.144) we must have

R̃q̃q̃,m = b̃m ⋆ b̃∗−m

⇒ R̃q̃q̃(z̃) = B̃(z̃)B̃∗(1/z̃∗)

= R̃∗
q̃q̃(1/z̃

∗) (5.148)

for some discrete-time causal impulse response b̃n and B̃(z̃) is the z̃-transform
of b̃n as given by

B̃(z̃) =
L∑

n=0

b̃nz̃
−n. (5.149)

Note that
R̃q̃q̃(z̃)

∣
∣
∣
z̃=ej 2πFT

= SP, q̃(F ) = B̃P(F )B̃∗
P(F ) (5.150)

where SP, q̃(F ) is defined in (5.32) and B̃P(F ) is the discrete-time Fourier

transform of b̃n. Observe also that if z̃0 is a zero of R̃q̃q̃(z̃), so is 1/z̃∗0 . We

assume that R̃q̃q̃(z̃) does not have any zeros on the unit circle. This is equivalent
to saying that SP, q̃(F ) does not have any spectral nulls, that is

S̃P, q̃(F ) 6= 0 for all F . (5.151)

Let the z̃-transform of the whitening filter be

W̃ (z̃) =
1

B̃∗(1/z̃∗)
. (5.152)
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Note that W̃ (z̃) is anti-causal. Hence, for stability we require all the zeros of
B̃∗(1/z̃∗) to be outside the unit circle (maximum phase).

Now, if ṽn in (5.142) is passed through the whitening filter, the pulse-shape
at the output is simply B̃(z̃), which is minimum phase (all the zeros lie inside
the unit circle). Thus, the signal at the output of the whitening filter is given
by

x̃n =
L∑

k=0

b̃kSn−k + w̃4, n (5.153)

where w̃4, n denotes samples of additive white Gaussian noise with variance N0,
that is

1

2
E
[
w̃4, nw̃

∗
4, n−m

]
= N0δK(m). (5.154)

This is shown in Figure 5.11. The combination of the matched filter, the symbol-
rate sampler and the whitening filter is usually referred to as the whitened
matched filter (WMF) [185]. The discrete-time equivalent system at the

Discrete-time

filter with

frequency

response

Discrete-time

whitening

filter with

frequency

SP, q̃(F )
1/B̃∗

P
(F )

w̃2, n

Sk ṽn x̃n

response

Figure 5.11: Illustrating the whitening of noise for the discrete-time equivalent sys-
tem in Figure 5.4.

Sk

Discrete-time

filter with

frequency

response

x̃n

(AWGN)

w̃4, n

B̃P(F )

Figure 5.12: The discrete-time equivalent (minimum phase) channel at the output
of the whitening filter.

output of the whitening filter is shown in Figure 5.12. From (5.153) we note
that the span (length) of the discrete-time equivalent channel at the output
of the whitening filter is L + 1 (T -spaced) samples. The stage is now set for
deriving the ML detector. We assume that Ls symbols have been transmitted.
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Typically, Ls ≫ L. We also assume that the symbols are uncoded and drawn
from an M -ary constellation. The ith possible symbol vector is denoted by:

S(i)
v =

[

S
(i)
1 S

(i)
2 . . . S

(i)
Ls

]T

for 1 ≤ i ≤ MLs . (5.155)

The received sample sequence can be written as an (Ls−L)×1 vector as follows:








x̃L+1

x̃L+2

...
x̃Ls







=









S
(i)
L+1 . . . S

(i)
1

S
(i)
L+2 . . . S

(i)
2

...
...

...

S
(i)
Ls

. . . S
(i)
Ls−L
















b̃0
b̃1
...

b̃L







+








w̃4, L+1

w̃4, L+2

...
w̃4, Ls







. (5.156)

Note that when the symbol sequence in (5.155) is convolved with the (L + 1)-
tap discrete-time equivalent channel in Figure 5.12, the length of the output
sample sequence is Ls + L + 1 − 1 = Ls + L. However, the first and the last
L samples correspond to the “transient response” of the channel (all channel
taps are not excited). Hence the number of “steady-state” samples is only
Ls + L− 2L = Ls − L samples. This explains why x̃ is an (Ls − L)× 1 vector.

The above equation can be compactly written as:

x̃ = S(i)B̃+ w̃4

∆
= ỹ(i) + w̃4. (5.157)

Note that since there are MLs distinct symbol sequences, there are also an equal
number of sample sequences, ỹ(i). Since the noise samples are uncorrelated, the
ML detector reduces to (see also (2.111) for a similar derivation):

min
j

(

x̃− ỹ(j)
)H (

x̃− ỹ(j)
)

⇒min
j

Ls∑

n=L+1

∣
∣
∣x̃n − ỹ(j)n

∣
∣
∣

2

for 1 ≤ j ≤ MLs . (5.158)

Clearly, the complexity of the ML detector increases exponentially with the
sequence length Ls. The Viterbi algorithm (VA) can once again be used to
practically implement (5.158). An efficient implementation of the VA is dis-
cussed in [193]. The recursion for the VA is given by:

N∑

n=L+1

∣
∣
∣x̃n − ỹ(j)n

∣
∣
∣

2

=
N−1∑

n=L+1

∣
∣
∣x̃n − ỹ(j)n

∣
∣
∣

2

+
∣
∣
∣x̃N − ỹ

(j)
N

∣
∣
∣

2

. (5.159)

Whereas the first term in the right-hand-side of the above equation denotes the
accumulated metric, the second term denotes the branch metric. The trellis
would have ML states, and the complexity of the VA in detecting Ls symbols
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would be LsML, compared to MLs for the ML detector in (5.158). Following
the notation in (2.252), the jth state would be represented by an M -ary L-tuple:

Sj : {Sj, 1 . . . Sj, L} (5.160)

where the digits

Sj, k ∈ {0, . . . , M − 1} . (5.161)

Given the present state Sj and input l (l ∈ {0, . . . , M − 1}), the next state is

(a)

1 0

−1 +1

(k + 2)T(k + 1)TkT

0/6

0/0

0/2

0/− 4

1/4

1/− 2

1/0

1/− 6

ℑ

ℜ

M (0) = +1

M (1) = −1

S0

S1

S2

S3

(b)

(k + 3)T

Figure 5.13: (a) Trellis diagram for BPSK modulation with L = 2. The minimum
distance error event is shown in dashed lines. (b) Mapping of binary
digits to symbols.

given by:

Sk : {lSj, 1 . . . Sj, L−1} . (5.162)

Once again, let M (·) denote the one-to-one mapping between the digits and
the symbols. The branch metric at time kT , from state Sj due to input digit l
(0 ≤ l ≤ M − 1) is given by:

z̃
(Sj, l)
k =

∣
∣
∣x̃k − ỹ(Sj, l)

∣
∣
∣

2

(5.163)
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where

ỹ(Sj , l) = b̃0M (l) +
L∑

n=1

b̃nM (Sj, n). (5.164)

Note carefully, the difference in metric computation in (2.256) and (5.163).
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00(0.04)
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11(38.44)
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(9.04)
(26.64)
(5.84)
(87.44)
(1.04)
(42.64)
(13.84)
(119.44)

00(9.04)

01(5.84)

10(1.04)

11(13.84)

time L+ 1 time L+ 2 time L+ 3

Status of VA at time L+ 3

01(0)

10(0)

Survivor path
Eliminated path

Figure 5.14: Evolution of the VA over two bit durations.

The trellis diagram for M = 2 and L = 2 is depicted in Figure 5.13, for b0 = 1,
b1 = 2 and b2 = 3. The branches are labelled as l/ỹ(Sj, l), where l denotes
the input digit. The evolution of the VA over two bit durations is depicted in
Figure 5.14.

It is interesting to note that each row of S(i) in (5.156) denotes the contents
of the tapped delay line. The first element of each row represents the input
symbol and the remaining elements define the state of the trellis. In the next
section we discuss the performance of the ML detector.

Performance Analysis of the Symbol-Spaced ML Detector

In this section, we derive the expression for the average probability of symbol
error when ML detection is used. We assume that the symbols are uncoded.
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First, we derive the expression for the probability of an error event. Consider
the ith symbol sequence given by:

S(i) = {. . . , S(i)
k−1, S

(i)
k , S

(i)
k+1, . . . , S

(i)
k+Li, j

, S
(i)
k+Li, j+1, . . .}. (5.165)

Now consider the jth symbol sequence given by:

S(j) = {. . . , S(j)
k−1, S

(j)
k , S

(j)
k+1, . . . , S

(j)
k+Li, j

, S
(j)
k+Li, j+1, . . .} (5.166)

with the constraint that

S(i)
n = S(j)

n for n < k and n > (k + Li, j). (5.167)

We also wish to emphasize that

S(i)
n 6= S(j)

n for n = k and n = (k + Li, j) (5.168)

and
S(i)
n

?
= S(j)

n for n > k and n < (k + Li, j). (5.169)

In other words, the ith and jth sequences are identical for all times less than kT
and greater than (k + Li, j)T . The sequences may or may not be identical in
between the times kT and (k+Li, j)T . Thus, the ith and jth sequences diverge
from a common state at time kT and remerge back only at time (k + Li, j +
L+ 1)T . This implies that at time (k + Li, j + L+ 1)T , the ML detector must
decide between the ith and the jth sequence. This also implies that the length
of the error event is

Le, i, j
∆
= Li, j + L+ 1. (5.170)

Let us now assume that the ith sequence was transmitted. The ML detector
decides in favour of the jth sequence when

k+Le, i, j−1
∑

n=k

|w̃4, n|2 >

k+Le, i, j−1
∑

n=k

|ỹi, j, n + w̃4, n|2 (5.171)

where

ỹi, j, n =
L∑

l=0

b̃l
(

S
(i)
n−l − S

(j)
n−l

)

for k ≤ n ≤ (k + Le, i, j − 1). (5.172)

From (5.171), the expression for the probability of error event reduces to:

P
(

S(j)|S(i)
)

= P
(
Z < −d2i, j

)
(5.173)

where

Z =

k+Le, i, j−1
∑

n=k

2ℜ
{
ỹi, j, nw̃

∗
4, n

}
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d2i, j =

k+Le, i, j−1
∑

n=k

|ỹi, j, n|2 . (5.174)

Clearly

E[Z] = 0

E[Z2] = 4N0d
2
i, j . (5.175)

Hence (5.173) reduces to

P
(

S(j)|S(i)
)

=
1

2
erfc





√

d2i, j
8N0





= Pee

(
d2i, j

)
(say). (5.176)

Having found out the probability of an error event at a distance d2i, j from
the reference sequence, we now turn our attention to computing the average
probability of symbol error.

Unfortunately, this issue is complicated by the fact that when QAM constel-
lations are used the distance spectrum depends on the reference sequence. To
see why, let us consider a simple example with Li, j = 0 in (5.165) and (5.166).
That is, the sequences i and j differ in only one symbol, occurring at time k. If

the reference symbol is S
(i)
k , then for QAM constellations, the number of nearest

neighbours depends on the reference symbol. Thus, even though the minimum
distance is independent of the reference symbol, the multiplicity is different. To
summarize, the distance spectrum is dependent on the reference sequence when
QAM constellations are used. However, for PSK constellations, the distance
spectrum is independent of the reference sequence.

In any case, in order to solve the problem at hand, we assume that we have
at our disposal the distance spectra with respect to all possible reference symbol
sequences of length L . Since the performance of the ML detector is dominated
by the first few spectral lines, it is sufficient to consider

L = 5L (5.177)

where L is the memory of the discrete-time equivalent channel at the output
of the whitening filter. The probability of symbol error given that S(i) was
transmitted and S(j) is detected is given by:

Ni, jPee

(
d2i, j

)
=

Ni, j

2
erfc





√

d2i, j
8N0



 (5.178)

whereNi, j is the number of symbol errors when sequence S(j) is detected instead
of S(i). Note that due to (5.167), (5.168) and (5.169)

Ni, j ≤ Li, j + 1. (5.179)
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Now, for convenience of representation, let us denote

Ni, j = Nl, di,m

d2i, j = d2i, m (5.180)

where d2i, m denotes the mth squared Euclidean distance with respect to sequence

i and Nl, di,m denotes the number of symbol errors corresponding to the lth

multiplicity at a squared distance of d2i, m with respect to sequence i.
In order to explain the above notation, let us consider an example. Let

the distance spectrum (distances are arranged strictly in ascending order) with
respect to sequence i be

{1.5, 2.6, 5.1} (5.181)

and the corresponding set of multiplicities be

{1, 4, 5} . (5.182)

Let Ci denote the cardinality of the set of distances with respect to sequence i.
Then

Ci = 3

d2i, 1 = 1.5

d2i, 2 = 2.6

d2i, 3 = 5.1

Adi, 1 = 1

Adi, 2 = 4

Adi, 3 = 5. (5.183)

We wish to emphasize at this point that since we have considered the reference
sequence to be of finite length (L ), the set of distances is also finite. The true
distance spectrum (which has infinite spectral lines) can be obtained only as
L → ∞. In practice the first few spectral lines can be correctly obtained by
taking L = 5L.

With these basic definitions, the average probability of symbol error given
that the ith sequence is transmitted is union bounded (upper bounded) by:

Pe|i ≤
Ci∑

m=1

Pee(d
2
i, m)

Adi,m∑

l=1

Nl, di,m . (5.184)

The average probability of symbol error is then:

Pe ≤
ML

∑

i=1

P (i)Pe|i (5.185)
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where P (i) denotes the probability of occurrence of the ith reference sequence.
If all sequences are equally likely then

P (i) =
1

ML
. (5.186)

Note that when PSK constellations are used, the distance spectrum is inde-
pendent of the reference sequence with Ci = C, and the average probability of
symbol error is directly given by (5.184), that is

Pe ≤
C∑

m=1

Pee(d
2
m)

Adm∑

l=1

Nl, dm . (5.187)

At high SNR, the probability of symbol error is dominated by the minimum
distance error event.

Having discussed the symbol-spaced ML detector, let us now look into the
implementation issues. Just as in the case of the equalizer, the symbol-spaced
ML detector too is sensitive to the inaccuracies in the matched filter, the timing
phase and above all, the realizability of the whitening filter. Observe from
(5.151) that the whitening filter can be implemented only when B̃P(F ) does
not have any spectral nulls. This in turn implies that SP, q(F ) must also not
contain any spectral nulls. This is a serious constraint in the implementation
of the symbol-spaced ML detector. Observe that the whitening filter cannot be
avoided, since otherwise the ML detection rule will not take the simple form
given in (5.158). The other problem is related to a non-zero timing phase.
As a consequence, the discrete-time equivalent channel at the output of the
whitening filter has an infinite impulse response, which renders the ML detector
to be impractical. These issues motivate us to discuss the fractionally-spaced
ML detector, which overcomes all the problems associated with symbol-spaced
ML detection.

5.2.2 Fractionally-Spaced MLSE

Consider the digital communication system shown in Figure 5.2. Since the
transmit filter p̃(t) is usually a root-raised cosine pulse and is bandlimited to
[−1/T, 1/T ] (1/T is the symbol-rate), q̃(t) is also bandlimited to [−1/T, 1/T ].
Let us pass r̃(t) in (5.5) through an ideal lowpass filter having unit energy and
extending over [−1/T, 1/T ]. The lowpass filter output can be written as

x̃(t) =

√

T

2

∞∑

k=−∞
Sk q̃(t− kT ) + w̃1(t) (5.188)

where w̃1(t) denotes bandlimited noise having a flat psd of height N0T/2 in the
range [−1/T, 1/T ]. Now if x̃(t) is sampled at Nyquist-rate (2/T = 1/Ts) the
output is

x̃(nTs) =

√

T

2

∞∑

k=−∞
Sk q̃(nTs − kT ) + w̃1(nTs) (5.189)
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−1/T 1/T
(a)

−3/T −2/T −1/T
(b)

1/T 2/T

N0

N0T/2

F

F

Figure 5.15: (a) Noise psd at LPF output. (b) Noise psd at the sampler output.

where w̃1(nTs) has the autocorrelation (see also Figure 5.15)

1

2
E [w̃1(nTs)w̃

∗
1(nTs −mTs)] = N0δK(mTs). (5.190)

The samples x̃(nTs) are fed to the fractionally-spaced ML detector, which

q(t)
r̃(t)

Fractionally

spaced

ML

detector

1/T−1/T

t = nTs

x̃(nTs)

Sk

AWGN w̃(t)

Ŝk

√
T/2

Ideal

LPF

F

Fourier transform of ideal LPF

Figure 5.16: Model for the digital communication system employing fractionally-
spaced ML detector.

estimates the symbols. This is illustrated in Figure 5.16.

In order to derive the ML detector, we need to assume that q̃(t) is time-
limited. Strictly speaking, it is not possible for q̃(t) to be both time-limited and
band-limited. However for practical purposes this is a valid assumption, since
most of the energy of q̃(t) is concentrated over a finite time-span. Let q̃(t) span
over LqT symbol durations. Let us also assume that q̃(t) is causal. Further,
since we have assumed that T/Ts = 2, the discrete-time equivalent channel has
2Lq coefficients denoted by q̃(kTs) for 0 ≤ k ≤ 2Lq−1. With these assumptions,
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(5.189) can be written as

x̃(nTs) =

√

T

2

k2∑

k=k1

Sk q̃(nTs − 2kTs) + w̃1(nTs) (5.191)

where (see also (4.11))

k1 =

⌈
n− 2Lq + 1

2

⌉

k2 =
⌊n

2

⌋

. (5.192)

The limits k1 and k2 are obtained using the fact that q̃(·) is time-limited, that
is

0 ≤ nTs − 2kTs ≤ (2Lq − 1)Ts. (5.193)

Note that the signal component of x̃(nTs) in (5.191) can be obtained using the
tapped-delay line approach shown in Figure 4.4.

Let us now assume that Ls symbols have been transmitted. Let us denote
the ith interpolated symbol sequence by a 2Ls × 1 column vector as follows

S(i)
v =

[

S(i)
1 0 S(i)

2 . . . S(i)
Ls

0
]T

for 1 ≤ i ≤ MLs . (5.194)

The received sequence x̃(nTs) can be represented in vector form as follows

x̃ =

√

T

2
S(i)Q̃+ w̃1

∆
= ỹ(i) + w̃1 (5.195)

where

x̃ =
[
x̃2Lq−1 x̃2Lq . . . x̃2Ls−1 x̃2Ls

]T

Q̃ =
[
q̃(0) q̃(Ts) . . . q̃((2Lq − 2)Ts) q̃((2Lq − 1)Ts)

]T

w̃1 =
[
w̃1, 2Lq−1 w̃1, 2Lq . . . w̃1, 2Ls−1 w̃1, 2Ls

]T

S(i) =












S
(i)
Lq

0 S
(i)
Lq−1 . . . S

(i)
1 0

0 S
(i)
Lq

0 . . . 0 S
(i)
1

...
...

...
...

...
...

S
(i)
Ls

0 S
(i)
Ls−1 . . . S

(i)
Ls−Lq+1 0

0 S
(i)
Ls

0 . . . 0 S
(i)
Ls−Lq+1












(5.196)

As before we have considered only the steady-state values of x̃(nTs). Since the
noise terms are uncorrelated, the ML detector reduces to

min
j

(

x̃− ỹ(j)
)H (

x̃− ỹ(j)
)
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⇒min
j

2Ls∑

n=2Lq−1

∣
∣
∣x̃n − ỹ(j)n

∣
∣
∣

2

for 1 ≤ j ≤ MLs . (5.197)

which can be efficiently implemented using the VA. Here the first non-zero ele-
ment of each row of S(i) in (5.196) denotes the input symbol and the remaining
Lq−1 non-zero elements determine the trellis state. Thus, the number of trellis
states is equal to MLq−1.

The important point that needs to be mentioned here is that the VA must
process two samples of x̃(nTs) every symbol interval, unlike the symbol-spaced
ML detector, where the VA takes only one sample of x̃(nTs) (see the branch
computation in (5.159)). The reason is not hard to find. Referring to the matrix
S(i) in (5.196) we find that the first two rows have the same non-zero elements
(symbols). Since the non-zero elements determine the trellis state, it is clear
that the trellis state does not change over two input samples. This is again in
contrast to the symbol-spaced ML detector where the trellis state changes every
input sample.

To summarize, for both the symbol-spaced as well as the fractionally-spaced
ML detector, the VA changes state every symbol. The only difference is that, for
the symbol-spaced ML detector there is only one sample every symbol, whereas
for the fractionally-spaced ML detector there are two samples every symbol.
Hence the recursion for the VA for the fractionally-spaced ML detector can be
written as

2N∑

n=2Lq−1

∣
∣
∣x̃n − ỹ(j)n

∣
∣
∣

2

=
2N−2∑

n=2Lq−1

∣
∣
∣x̃n − ỹ(j)n

∣
∣
∣

2

+
2N∑

n=2N−1

∣
∣
∣x̃n − ỹ(j)n

∣
∣
∣

2

. (5.198)

The first term in the right-hand-side of the above equation denotes the accu-
mulated metric and the second term denotes the branch metric.

This concludes the discussion on the fractionally-spaced ML detector. We
now prove the equivalence between the symbol-spaced and fractionally-spaced
ML detectors. By establishing this equivalence, we can indirectly prove that the
performance of the fractionally-spaced ML detector is identical to that of the
symbol-spaced ML detector. We now present a few examples that compare the
performance of the symbol-spaced and fractionally-spaced ML detectors.

5.2.3 T -spaced and T/2-spaced ML Detectors

We will establish the equivalence by demonstrating that the distance spectrum
“seen” by the two detectors are identical. Since the noise variance for both the
detectors is N0, establishing the equivalence of the distance spectrum amounts
to proving that their performance will also be identical. Let us first consider
the symbol-spaced (T -spaced) ML detector.

Recall that the squared Euclidean distance between two symbol sequences
is given by the second equation in (5.174). Let

ẽ(ij)n = S(i)
n − S(j)

n (5.199)
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denote the error sequence. Then the squared Euclidean distance between S
(i)
n

and S
(j)
n can be written as

d2T, i, j = energy of the sequence (ẽ(ij)n ⋆ b̃n) (5.200)

where the subscript T denotes a T -spaced ML detector and b̃n denotes the
resultant pulse shape at the output of the whitening filter. Let

Ẽ
(ij)
P

(F ) =
∑

n

ẽ(ij)n e−j 2πFnT (5.201)

denote the discrete-time Fourier transform of the error sequence. Similarly, let
B̃P(F ) denote the discrete-time Fourier transform of b̃n. Then using Parseval’s
theorem in (5.200) we get

d2T, i, j = T

∫ 1/T

F=0

∣
∣
∣Ẽ

(ij)
P

(F )
∣
∣
∣

2 ∣
∣
∣B̃P(F )

∣
∣
∣

2

dF

= T

∫ 1/T

F=0

∣
∣
∣Ẽ

(ij)
P

(F )
∣
∣
∣

2

SP, q̃(F ) dF (5.202)

where SP, q̃(F ) is defined in (5.32). If Q̃(F ) is bandlimited to [−1/T, 1/T ], then

SP, q̃(F ) =
1

T

[
∣
∣
∣Q̃(F )

∣
∣
∣

2

+

∣
∣
∣
∣
Q̃

(

F − 1

T

)∣
∣
∣
∣

2
]

for 0 ≤ F ≤ 1/T . (5.203)

Thus we have

d2T, i, j =

∫ 1/T

F=0

∣
∣
∣Ẽ

(ij)
P

(F )
∣
∣
∣

2
[
∣
∣
∣Q̃(F )

∣
∣
∣

2

+

∣
∣
∣
∣
Q̃

(

F − 1

T

)∣
∣
∣
∣

2
]

dF. (5.204)

Let us now consider the fractionally-spaced ML detector. Recall from (5.195)
and (5.196) that the discrete-time equivalent channel is represented by the 2Lq×
1 vector

√

T

2
Q̃ =

√

T

2

[
q̃(0) q̃(Ts) . . . q̃((2Lq − 2)Ts) q̃((2Lq − 1)Ts)

]T
.

(5.205)
Let us compute the squared Euclidean distance generated by the same error

sequence ẽ
(ij)
n defined in (5.199).

To do this we first note that the samples of ẽ
(ij)
n are T -spaced, whereas

the channel coefficients are T/2-spaced. Therefore, every alternate channel co-
efficient is involved in the computation of each output sample (refer also to
Figure 4.4). Let us denote the even indexed channel coefficients by q̃e(nT ) and
the odd indexed coefficients by q̃o(nT ), that is

q̃e(nT )
∆
= q̃e, n = q̃(2nTs)
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q̃o(nT )
∆
= q̃o, n = q̃((2n+ 1)Ts). (5.206)

Then the distance generated by ẽ
(ij)
n is equal to

d2T/2, i, j = (T/2)× energy of the sequence
(

ẽ(ij)n ⋆ q̃e, n
)

+ (T/2)× energy of the sequence
(

ẽ(ij)n ⋆ q̃o, n
)

(5.207)

where the subscript T/2 denotes a T/2-spaced ML detector. Observe that all
the terms in the right-hand-side of the above equation are T -spaced. Using
Parseval’s theorem we have

d2T/2, i, j = (T/2)T

∫ 1/T

F=0

∣
∣
∣Ẽ

(ij)
P

(F )
∣
∣
∣

2 ∣
∣
∣Q̃P, e(F )

∣
∣
∣

2

dF

+ (T/2)T

∫ 1/T

F=0

∣
∣
∣Ẽ

(ij)
P

(F )
∣
∣
∣

2 ∣
∣
∣Q̃P, o(F )

∣
∣
∣

2

dF (5.208)

where

Q̃P, e(F ) =
∑

n

q̃e, ne
−j 2πFnT

Q̃P, o(F ) =
∑

n

q̃o, ne
−j 2πFnT . (5.209)

Now, it only remains to express Q̃P, e(F ) and Q̃P, o(F ) in terms of Q̃(F ).
Note that

q̃e, n = q̃(t)|t=nT

⇒ Q̃P, e(F ) =
1

T

∞∑

k=−∞
Q̃

(

F − k

T

)

. (5.210)

Once again, if we assume that Q̃(F ) is bandlimited to [−1/T, 1/T ] then

Q̃P, e(F ) =
1

T

[

Q̃(F ) + Q̃

(

F − 1

T

)]

for 0 ≤ F ≤ 1/T . (5.211)

Similarly

q̃o, n = q̃(t+ T/2)|t=nT

⇒ Q̃P, o(F ) =
1

T

∞∑

k=−∞
Q̃

(

F − k

T

)

ej 2π(T/2)(F−k/T ) (5.212)

which reduces to

Q̃P, o(F ) =
e jπFT

T

[

Q̃(F )− Q̃

(

F − 1

T

)]

for 0 ≤ F ≤ 1/T . (5.213)
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Substituting (5.213) and (5.211) in (5.208), we readily obtain the result

d2T/2, i, j = d2T, i, j (5.214)

which in turn proves that the fractionally-spaced and symbol-spaced ML detec-
tors have the same performance.

Example 5.2.1 Consider a real-valued channel q(t) of the form

q(t) = sinc

(
t

Ts

)

+ 2sinc

(
t− Ts

Ts

)

+ 3sinc

(
t− 2Ts

Ts

)

(5.215)

where

sinc (x)
∆
=

sin(πx)

πx
. (5.216)

Assume T/Ts = 2 and BPSK signalling. Compare the performance of the
fractionally-spaced and symbol-spaced ML detectors.

Solution: The Fourier transform of the channel is

Q(F ) = Tsrect (FTs)+2Tsrect (FTs)e
−j 2πFTs+3Tsrect (FTs)e

−j 4πFTs (5.217)

where

rect (FTs)
∆
=

{
1 for −1/(2Ts) < F < 1/(2Ts)
0 elsewhere.

(5.218)

Thus the channel is bandlimited to [−1/(2Ts), 1/(2Ts)], hence it can be sampled
at a rate of 1/Ts without any aliasing. The (real-valued) channel coefficients
obtained after passing through the unit energy LPF and Nyquist-rate sampling
are:

q(0)
√

T/2 =
√

T/2

q(Ts)
√

T/2 = 2
√

T/2

q(2Ts)
√

T/2 = 3
√

T/2. (5.219)

Thus, the discrete-time channel coefficients seen by the T/2-spacedML detector
are given by (5.219). Consequently, the trellis has two states, as illustrated in
Figure 5.17. The trellis branches are labeled by a/(b1, b2), where a ∈ {−1, 1}
denotes the input symbol and b1, b2 denote the two T/2-spaced output samples.
The states are labeled 0 and 1 with the mapping from digits to symbols as:

M (0) = 1

M (1) = −1. (5.220)

In this example, the minimum distance error event is obtained when the
error sequence is given by

e(ij)n = 2δK(n). (5.221)
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1/(4, 2)

−1/(2, −2)

1/(−2, 2)

−1/(−4, −2) 1

0 0

1 1

0

Figure 5.17: Trellis diagram for the T/2-spaced ML detector with T = 2 sec.

The minimum distance error event is shown in Figure 5.17. Assuming that
T = 2 second, the squared minimum distance can be found from (5.207) to be

d2T/2,min = energy of
(

e(ij)n ⋆ q(nTs)
)

= 56. (5.222)

The multiplicity of the minimum distance Admin = 1, and the number of symbol
errors corresponding to the minimum distance error event is Ndmin = 1. There-
fore, the performance of the T/2-spaced ML detector is well approximated by
the minimum distance error event as

P (e) =
1

2
erfc

(√
56

8N0

)

. (5.223)

Let us now obtain the equivalent symbol-spaced channel as shown in Fig-
ure 5.12. The pulse-shape at the matched filter output is

Rqq(t) = q(t) ⋆ q(−t)

= 14Ts sinc

(
t

Ts

)

+ 8Ts sinc

(
t− Ts

Ts

)

+ 8Ts sinc

(
t+ Ts

Ts

)

+ 3Ts sinc

(
t− 2Ts

Ts

)

+ 3Ts sinc

(
t+ 2Ts

Ts

)

. (5.224)

After symbol-rate sampling, the resultant pulse-shape is (recall from the discus-
sion following (5.29), that the autocorrelation peak has to be sampled):

Rqq(0) = 14Ts

Rqq(T ) = 3Ts = Rqq(−T ). (5.225)

We now have to find out the pulse-shape at the output of the whitening filter.
We have

Rqq, n = bn ⋆ b−n. (5.226)
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Note that we have switched over to the subscript notation to denote time, since
the samples are T -spaced. Since the span of Rqq, n is three samples, the span of
bn must be two samples (recall that when two sequences of length L1 and L2

are convolved, the resulting sequence is of length L1 + L2 − 1). Let us denote
the (real-valued) coefficients of bn by b0 and b1. We have

Rqq, 0 = 14Ts = b20 + b21
Rqq, 1 = 3Ts = b0b1. (5.227)

Solving for b0 and b1 we get two sets of solutions namely

b0 = 0.8218
√

Ts or b0 = 3.65
√

Ts

b1 = 3.65
√

Ts or b1 = 0.8218
√

Ts. (5.228)

We select the minimum phase solution, which is

0 0 0

111−1/− 4.4718

1/2.8282

−1/− 2.8282

1/4.4718

Figure 5.18: Trellis diagram for the equivalent T -spaced ML detector with T = 2
second.

b0 = 3.65
√

Ts

= 3.65
√

T/2

b1 = 0.8218
√

Ts

= 0.8218
√

T/2. (5.229)

The corresponding trellis has two states, as shown in Figure 5.18, where it is
assumed that T = 2. The branches are labeled as a/b where a ∈ {−1, 1} denotes
the input symbol and b denotes the T -spaced output sample.

Here again the minimum distance error event is caused by

e(ij)n = 2δK(n). (5.230)

The minimum distance error event is shown in Figure 5.18 and the squared
minimum distance is given by (5.200) which is equal to

d2T,min = 56. (5.231)



294 K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in

From the trellis in Figure 5.18, we find that Admin = 1 and Ndmin = 1. Therefore
the average probability of symbol error is well approximated by the minimum
distance error event and is given by:

P (e) =
1

2
erfc

(√
56

8N0

)

(5.232)

which is identical to the T/2-spaced ML detector. The simulated performance

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

3 4 5 6 7 8 9 10

SNR (dB)

B
E
R

1, 2, 3

1-T/2-spaced MLSE (simulation)
2-T -spaced MLSE (simulation)
3-T , T/2-spaced MLSE (theory)

Figure 5.19: Performance comparison of T/2-spaced and T -spaced MLSE for Exam-
ple 5.2.1.

of both kinds of ML detectors along with the theoretical curve given by (5.232)
are plotted in Figure 5.19. Observe that the curves overlap, which demonstrates
the accuracy of the simulations and the theoretical analysis.

5.3 Multicarrier Communication

Multicarrier communication has its roots in frequency division multiplexing
(FDM) [194]. Whereas FDM is used for the transmission of the data of many
users simultaneously, multicarrier communication involves transmitting the data
of one user over a severely distorting channel. The work done by Cioffi et.
al. [195–197] led to the standardization of the discrete-time implementation of
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multicarrier communication, which is now popularly known as the discrete mul-
titone (DMT). Other forms of DMT, which use discrete cosine transform instead
of the discrete Fourier transform can be found in [198,199]. A variant of DMT
is orthogonal frequency division multiplexing (OFDM) which is used in wireless
communications. Articles on the coherent detection of OFDM signals transmit-
ted through wireless Rayleigh fading channels can be found in [200–204]. Linear
prediction-based detectors for OFDM signals is discussed in [43]. Suboptimum
methods of carrier and timing synchronization in OFDM systems are presented
in [205–208]. OFDM signals exhibit a high peak-to-average power ratio (PAPR).
Techniques to reduce PAPR are addressed in [209, 210].

ℜ{·}

K bit

buffer

Wideband

channel

h(t)

mapper

(κ1 bits/symbol)

S1, k

filter

p(t)

Subchannel 1

Subchannel N

Input

bit stream
R bits/sec

AWGN w(t)

To receiver

Constellation Transmit

sp(t)

sp, 1(t)

sp, N (t)

e j(2πF1t+φ1)r(t)

Figure 5.20: Block diagram of an multicarrier communication transmitter.

The basic idea behind multicarrier communication is to divide the spectrum
of a non-ideal wideband channel into small nonoverlapping subchannels such
that the characteristics of each subchannel can be considered to be ideal (flat
magnitude response and a linear phase response). Thus, any communication
that takes place in a subchannel is essentially distortionless.

Consider the block diagram in Figure 5.20. The input bit-stream is fed to
a buffer of size K bits, where K is a large integer. We assume that the input
bit-rate is R = 1/Tb bits/sec. The ith subchannel is alloted κi bits, which is
mapped onto a symbol from a 2κi-ary constellation (the question of how many
bits are allocated to each subchannel is taken up later). The symbol-rate of
each subchannel is a constant equal to 1/T . In order to prevent buffer overflow
or underflow we require:

KTb = T. (5.233)

In other words, one symbol is transmitted simultaneously from all the subchan-
nels over T seconds. Since K is large, the output symbol-rate is much smaller
than the input bit-rate. We also require

K =
N∑

i=1

κi. (5.234)
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The overall transmitted signal is given by:

sp(t) =
N∑

i=1

sp, i(t) (5.235)

where the subscript “p” denotes a passband signal. The passband signal for the
ith subchannel is given by:

sp, i(t) = ℜ
{

s̃i(t)e
j(2πFit+φi)

}

= si, I(t) cos(2πFit+ φi)− si, Q(t) sin(2πFit+ φi) (5.236)

where φi is the random carrier phase for the ith subchannel, uniformly dis-
tributed in [0, 2π). The term s̃i(t) denotes the complex baseband signal in the
ith subchannel:

s̃i(t) =
∞∑

k=−∞
Si, kp(t− kT )

=
∞∑

k=−∞
(Si, k, I + jSi, k,Q) p(t− kT )

= si, I(t) + j si, Q(t) (5.237)

where Si, k = Si, k, I + jSi, k, Q denotes complex symbols from an M = 2κi-ary
two-dimensional constellation in the ith subchannel and p(t) is the transmit
filter, assumed to be real-valued. For convenience of analysis, we can express
the ith passband signal as follows:

sp, i(t) = ℜ
{
s̃1, i(t)e

j 2πFit
}

= s1, i, I(t) cos(2πFit)− s1, i, Q(t) sin(2πFit) (5.238)

where
s̃1, i(t) = s̃i(t)e

j φi . (5.239)

We assume that p(t) is strictly bandlimited to [−1/T, 1/T ]. Therefore

Fi =
2i

T
for 1 ≤ i ≤ N. (5.240)

We also assume:

p(t) ⋆ p(−t)|t=kT = Rpp(kT ) = δK(kT ). (5.241)

The received signal can be written as:

r(t) = sp(t) ⋆ h(t) + w(t)

=
N∑

i=1

sp, i(t) ⋆ h(t) + w(t)
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=
N∑

i=1

yp, i(t) + w(t) (5.242)

where yp, i(t) = sp, i(t)⋆h(t) and w(t) denotes a zero-mean AWGN process with
psd N0/2.

We now consider the recovery of symbols from the ith subchannel of r(t).
This is illustrated in Figure 5.21. Observe that the Fourier transform of yp, i(t)

2 cos(2πFit+ φi)

−2 sin(2πFit+ φi)

t = kT

t = kT

r(t)

p(−t)

p(−t)

Figure 5.21: Block diagram of the multicarrier communication receiver for the ith

subchannel.

in (5.242) is given by:
Ỹp, i(F ) = S̃p, i(F )H̃(F ) (5.243)

where

sp, i(t) ⇋ S̃p, i(F )

h(t) ⇋ H̃(F ). (5.244)

Now the Fourier transform of the passband signal in the ith subchannel is:

S̃p, i(F ) =
1

2

[

S̃1, i, I(F − Fi) + S̃1, i, I(F + Fi)
]

− 1

2j

[

S̃1, i, Q(F − Fi)− S̃1, i, Q(F + Fi)
]

(5.245)

where

S̃1, i, I(F ) = P̃ (F )
∞∑

k=−∞
(Si, k, I cos(φi)− Si, k, Q sin(φi)) e

−j 2πFkT

S̃1, i, Q(F ) = P̃ (F )
∞∑

k=−∞
(Si, k, I sin(φi) + Si, k, Q cos(φi)) e

−j 2πFkT (5.246)
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denotes the Fourier transform of the in-phase and quadrature components of
the complex baseband signal in the ith subchannel respectively and

p(t) ⇋ P̃ (F ). (5.247)

Observe that the summation terms in (5.246) denote the discrete-time Fourier
transform of the symbol sequence, which in general does not exist when the
sequence length is infinity. This problem can be alleviated by assuming that the
limits of the summation extend from −L to L, where L is very large, but finite.
Since P̃ (F ) is bandlimited to [−1/T, 1/T ], S̃p, i(F ) in (5.245) is bandlimited to

−Fi Fi

∣
∣
∣H̃(F )

∣
∣
∣

2/T
∣
∣
∣H̃p, i(F )

∣
∣
∣

F

Constant
approximation

Actual
response

0

Figure 5.22: Piecewise constant approximation of the channel.

the range Fi − 1/T ≤ |F | ≤ Fi + 1/T , with bandwidth equal to 2/T . If this
bandwidth is sufficiently small, we can assume the channel magnitude response
to be approximately constant in the range Fi−1/T ≤ |F | ≤ Fi+1/T and equal
to |H(Fi)|, as depicted in Figure 5.22. Hence we can write:

Ỹp, i(F ) ≈
{

S̃p, i(F )H̃(Fi) for F > 0

S̃p, i(F )H̃∗(Fi) for F < 0.
(5.248)

where we have used the fact that h(t) is real-valued, hence

H̃(−Fi) = H̃∗(Fi). (5.249)

Thus the channel is approximated by a piecewise constant characteristic and
the frequency response of the ith subchannel is given by:

H̃p, i(F ) =

{
H̃(Fi) for Fi − 1/T < F < Fi + 1/T

H̃∗(Fi) for −Fi − 1/T < F < −Fi + 1/T
(5.250)

It can be shown that the corresponding impulse response is:

hp, i(t) =
4

T
sinc

(
2t

T

)

[A cos(2πFit)−B sin(2πFit)] (5.251)

where
A+ jB = H̃(Fi). (5.252)
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The corresponding complex envelope of the ith subchannel is given by (see
Appendix I):

h̃i(t) =
4H̃(Fi)

T
sinc

(
2t

T

)

⇋ 2H̃(Fi) rect(FT/2) = H̃i(F ). (5.253)

The complex envelope of the ith subchannel output is given by:

ỹi(t) =
1

2

(

s̃1, i(t) ⋆ h̃i(t)
)

= H̃(Fi)s̃1, i(t). (5.254)

The passband signal corresponding to the ith subchannel output is (see Ap-
pendix I):

yp, i(t) = ℜ
{
ỹi(t)e

j 2πFit
}

= ℜ
{

H̃(Fi)s̃1, i(t)e
j 2πFit

}

. (5.255)

At the receiver for the ith subchannel, the signal component at the multiplier
output is (assuming coherent detection):

2
N∑

l=1

yp, l(t)e
−j(2πFit+φi) =

N∑

l=1

[

H̃(Fl)s̃1, l(t)e
j 2πFlt

+ H̃∗(Fl)s̃
∗
1, l(t)e

−j 2πFlt
]

e−j(2πFit+φi)

=
[

H̃(Fi)s̃i(t) + H̃∗(Fi)s̃
∗
i (t)e

−j(4πFit+2φi)
]

+
N∑

l=1
l 6=i

[

H̃(Fl)s̃1, l(t)e
j 2πFlt

+ H̃∗(Fl)s̃
∗
1, l(t)e

−j 2πFlt
]

e−j(2πFit+φi). (5.256)

The noise component at the multiplier output is:

2w(t)e−j(2πFit+φi) = ṽi(t)

= vi, I(t) + j vi, Q(t) (5.257)

with autocorrelation (refer to (4.55)):

Rṽṽ(τ) =
1

2
E [ṽi(t)ṽ

∗
i (t− τ)] = N0δD(τ). (5.258)

The composite complex baseband signal at the output of the matched filter
corresponding to the ith subchannel is given by (note that the component at
2Fi in (5.256) and the remaining subchannels l 6= i, get eliminated by the
matched filter):

x̃i(t) = H̃(Fi)s̃i(t) ⋆ p(−t) + z̃i(t)
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= H̃(Fi)
∞∑

k=−∞
Si, kRpp(t− kT ) + z̃i(t) (5.259)

where
z̃i(t) = ṽi(t) ⋆ p(−t) (5.260)

with autocorrelation
Rz̃z̃(τ) = N0Rpp(τ). (5.261)

Finally, the output of the sampler in the ith subchannel is:

x̃i(nT ) = H̃(Fi)Si, n + z̃i(nT ). (5.262)

Thus we have succeeded in recovering a scaled version of the symbol corrupted
by noise. The next issue that needs to be addressed is the allocation of bits to
various subchannels. This procedure is known as channel loading [211].

5.3.1 Channel Loading

We begin this section with the Shannon’s information capacity theorem [1] (also
known as the Shannon-Hartley law [212]) for a bandlimited, distortionless chan-
nel as follows (see (L.9) with Fs = 4B):

C = 2B log2

(

1 +
Pav

σ2
w

)

(5.263)

where C is the channel capacity (maximum possible data rate) in bits/sec, Pav

is the average signal power, the channel bandwidth extends over Fc − B ≤
|F | ≤ Fc + B Hz and σ2

w is the average noise power, which is also bandlimited
to Fc − B ≤ |F | ≤ Fc + B. The above expression tells us about the maximum
data-rate that can be transmitted for a given signal-to-noise (SNR) ratio. If
the actual data-rate is less than C then it is possible to achieve an arbitrarily
small error probability, using some error correcting code. If the actual data-rate
exceeds C , then it is not possible to make the error probability tend to zero
with any error correcting code. The SNR is defined as:

SNR =
Pav

σ2
w

. (5.264)

The purpose of this section is to derive the optimum psd of the transmitted
signal for a non-ideal bandlimited channel and an arbitrary noise psd, such that
the channel capacity (transmission rate) is maximized.

To this end, let us assume that the psd of the transmitted signal is Ssp(F ),

the channel frequency response is H̃(F ) and the noise psd is Sw(F ). We assume
that the signal and noise psds and the channel frequency response is approxi-
mately constant over any subchannel. Then, the capacity of the ith subchannel
is

Ci = ∆F log2

(

1 +
2Ssp(Fi)|H̃(Fi)|2∆F

2Sw(Fi)∆F

)
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= ∆F log2

(

1 +
Ssp(Fi)|H̃(Fi)|2

Sw(Fi)

)

(5.265)

where the factor of 2 accounts for both positive and negative frequencies and

∆F = 2/T = 2B (5.266)

is the bandwidth of each subchannel. Note that if p(t) is a sinc pulse, then
Ssp(F ) is exactly constant and the subchannel bandwidth is ∆F = 1/T . The
overall capacity is given by:

C =
N∑

i=1

Ci

=
N∑

i=1

∆F log2

(

1 +
Ssp(Fi)|H̃(Fi)|2

Sw(Fi)

)

. (5.267)

In the limit as ∆F = dF → 0, C takes an integral form:

C =

∫

F

log2

(

1 +
Ssp(F )|H̃(F )|2

Sw(F )

)

dF (5.268)

The problem can now be mathematically formulated as follows: maximize C
subject to the constraint

∫

F

Ssp(F ) dF = Pav (a constant). (5.269)

This problem can be solved using the method of Lagrange multipliers. Thus,
the above problem can be reformulated as:

max

∫

F

log2

(

1 +
Ssp(F )|H̃(F )|2

Sw(F )

)

dF + λ

(∫

F

Ssp(F ) dF − Pav

)

. (5.270)

Since λPav is a constant, maximizing (5.270) is equivalent to:

max

∫

F

log2

(

1 +
Ssp(F )|H̃(F )|2

Sw(F )

)

dF + λ

∫

F

Ssp(F ) dF. (5.271)

Since the integrand is real and positive, maximizing the integral is equivalent to
maximizing the integrand. Differentiating the integrand wrt Ssp(F ) and setting
the result to zero yields:

Ssp(F ) = C0 −
Sw(F )

|H̃(F )|2
(5.272)

where

C0 = − log2(e)

λ
(5.273)

is a constant. This result is known as the water-pouring solution to the channel
loading problem, as illustrated in Figure 5.23.
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Ssp (F )
C0

Sw(F )/|H̃(F )|2

F

Figure 5.23: Optimum psd of the transmitted signal.
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Figure 5.24: Squared magnitude response of the channel and noise psd.
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Example 5.3.1 The piecewise linear approximation for the squared magnitude
response of the channel and the noise psd is shown in Figure 5.24. Compute
the optimum power allocation for each subchannel. The total transmit power is
10 watts.

Solution: Integrating (5.272) over each subchannel for both positive and nega-
tive frequencies, we have:

P1 = K − 2

P2 = K − 5 (5.274)

where P1 and P2 are the power allocated to subchannel 1 and 2 respectively and
K is a constant to be determined. We also have:

P1 + P2 = 10. (5.275)

Solving for P1 and P2 we get:

P1 = 6.5 watts

P2 = 3.5 watts. (5.276)

Sw(F )× 10−6 (watts/Hz)

F (MHz)

0 7 9 11 13

F (MHz)

7 9 11 13

∣
∣
∣H̃(F )

∣
∣
∣

0

3
5

6

3
4

1

Figure 5.25: Magnitude response of the channel and noise psd.

Example 5.3.2 The piecewise linear approximation for the magnitude response
of the channel and the noise psd is shown in Figure 5.25 for positive frequencies.
Compute the optimum power allocation for each subchannel. The total transmit
power is 30 watts.

Solution: Integrating over each subchannel for both positive and negative fre-
quencies, we have:

P1 = K − 4/3
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P2 = K − 10/8

P3 = K − 24 (5.277)

where P1, P2 and P3 are the power allocated to subchannel 1, 2 and 3 respec-
tively and K is a constant to be determined. We also have:

P1 + P2 + P3 = 30. (5.278)

Solving for P1, P2 and P3 we get:

K = 18.86

P1 = 17.53 watts

P2 = 17.6 watts

P3 = −5.13 watts. (5.279)

However, since power cannot be negative we set P3 = 0, that is, we do not
use the third subchannel (11 ≤ |F | ≤ 13 MHz) and solve again over only two
subchannels to get

P1 = K − 4/3

P2 = K − 10/8

P1 + P2 = 30. (5.280)

From (5.280) we obtain

K = 16.292

P1 = 14.958 watts

P2 = 15.042 watts. (5.281)

To summarize, we have optimally allocated power to each subchannel such that
the overall transmission rate is maximized. We now give an intuitive expla-
nation to determine how many bits/symbol (κi) have to be allocated to each
subchannel. Recall from section 4.1.2 that the psd of a linearly modulated sig-
nal is proportional to the average power of the constellation, assuming that
the symbols are uncorrelated. We assume that all subchannels use the same
transmit filter. We further impose the constraint that the symbol-error-rate of
all subchannels are nearly identical. This implies that the minimum Euclidean
distance of the constellation is identical for all the subchannels. This leads us
to conclude that a subchannel requiring larger power must be allocated more
bits/symbol (implying a larger constellation).

The multicarrier communication system discussed in section 5.3 suffers from
two disadvantages. Firstly, the system is too complex to implement in discrete-
time for large values of N , since each subchannel requires a transmit filter and
a matched filter. Secondly, the assumption that the channel characteristics is
ideal over each subchannel is only approximately true. This motivates us to
look for more efficient techniques to implement the multicarrier communication
system. This is discussed in the next section.
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5.3.2 The Discrete Multitone (DMT)

Let s̃n and h̃n be two complex-valued, discrete-time periodic sequences having
a period N . That is

s̃n = s̃n+N

h̃n = h̃n+N . (5.282)

Let Sk and H̃k denote the corresponding N -point discrete Fourier transforms
(DFT), that is (for 0 ≤ k ≤ N − 1):

Sk =
N−1∑

n=0

s̃ne
−j 2πkn/N

H̃k =
N−1∑

n=0

h̃ne
−j 2πkn/N . (5.283)

Then, the N -point circular convolution of s̃n with h̃n yields another periodic
sequence z̃n whose DFT is

Z̃k = SkH̃k for 0 ≤ k ≤ N − 1. (5.284)

Now consider Figure 5.26. Let Sk denote a symbol drawn from an M -ary QAM

to

IDFT

DFT

Parallel

to

serial

Serial

parallel

Channel

h̃n

S0

SN−1

S0H̃0

SN−1H̃N−1

z̃0

z̃N−1

s̃0

s̃N−1

Figure 5.26: Illustrating the concept of DMT.

constellation corresponding to the kth subchannel. We assume that Sk and the
channel h̃n is periodic with period N . Note that s̃n is the N -point inverse
discrete Fourier transform (IDFT) of Sk and is given by (for 0 ≤ n ≤ N − 1):

s̃n =
1

N

N−1∑

k=0

Ske
j 2πkn/N . (5.285)
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From Figure 5.26 it is clear that the output of the DFT block is equal to the
symbols scaled by the DFT coefficients of the channel. Thus, ISI has been neatly
eliminated. The only problem is that in practical situations, neither the data
nor the channel are periodic. This is overcome by inserting a cyclic prefix on a
non-periodic data set.

In particular, let us assume that a (non-periodic) “frame” of data consists
of N samples given by

s̃0, . . . , s̃N−1 (5.286)

and the (non-periodic) discrete-time equivalent channel is time limited to L+1
coefficients

h̃0, . . . , h̃L (5.287)

where in practice L ≪ N . Note that s̃n is the IDFT of the input data frame Sk.
Once again let z̃n denote the N -point circular convolution of s̃n with h̃n (the
output we would have obtained by assuming s̃n and h̃n are periodic with period
N). Then the N samples of z̃n can be obtained by the linear convolution of h̃n

with the data sequence

s̃N−L, . . . , s̃N−1, s̃0, . . . , s̃N−1. (5.288)

Observe that we have prefixed the original data sequence with the last L samples.
Note also that what takes place in real-life is linear convolution and what we
require is circular convolution. We are able to “simulate” a circular convolution
by using the cyclic prefix. This is illustrated in Figure 5.27 for N = 4 and
L = 1. We find that by using the cyclic prefix, the steady-state output of the
linear convolution is identical to that of circular convolution.

With the introduction of the basic concept, we are now ready to generalize
the theory of DMT. Due to (5.288), the steady-state part of the received signal
can be written in the matrix form as:








r̃N−1

r̃N−2

...
r̃0







=








h̃0 h̃1 . . . h̃L 0 0 . . . 0

0 h̃0 . . . h̃L−1 h̃L 0 . . . 0
...

...
...

...
...

...
...

...

h̃1 h̃2 . . . 0 0 0 . . . h̃0















s̃N−1

s̃N−2

...
s̃0








+








w̃N−1

w̃N−2

...
w̃0








(5.289)

where w̃n denotes complex-valued samples of zero-mean AWGN with variance
σ2
w, that is

1

2
E
[
w̃nw̃

∗
n−m

]
= σ2

wδK(m) (5.290)

The equation in (5.289) can be written in matrix form as:

r̃ = h̃s̃+ w̃. (5.291)
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Figure 5.27: Comparison of circular convolution with linear convolution using a
cyclic prefix.
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Since h̃ is a circulant matrix, we can perform eigendecomposition (see (Ap-
pendix K)) to obtain

r̃ = Q̃Λ̃Q̃H s̃+ w̃ (5.292)

where

Λ̃ =








H̃N−1 0 . . . 0

0 H̃N−2 . . . 0
...

...
...

...

0 0 . . . H̃0







. (5.293)

Since

Q̃ =
1√
N










e j 2π(N−1)(N−1)/N e j 2π(N−2)(N−1)/N . . . 1
e j 2π(N−1)(N−2)/N e j 2π(N−2)(N−2)/N . . . 1

...
...

...
...

e j 2π(N−1)/N e j 2π(N−2)/N . . . 1
1 1 . . . 1










(5.294)

we can write:
s̃ = (1/

√
N)Q̃S (5.295)

where S is the sequence of symbols given by

S =
[
SN−1 . . . S0

]T
. (5.296)

Note that (5.295) represents an IDFT operation. Now, the DFT of r̃ is given
by:

ỹ =
√
N Q̃H r̃

= Q̃HQ̃Λ̃Q̃HQ̃S+
√
N Q̃Hw̃

= Λ̃S+ z̃ (5.297)

where we have used the fact that Q̃ is a unitary matrix and

ỹ
∆
=
[
ỹN−1 . . . ỹ0

]T

z̃
∆
=
[
z̃N−1 . . . z̃0

]T
. (5.298)

Thus we have
ỹk = H̃kSk + z̃k for 0 ≤ k ≤ N − 1. (5.299)

In other words, the detected symbol is a scaled version of the transmitted symbol
plus noise. We have thus mitigated the problem of intersymbol interference.

From (5.291) we observe that the transmitted signal s̃n is complex-valued
and it requires at least three wires for transmission. However, in practice only
real-valued signals are transmitted, since they require only two wires. This is
obtained by taking a 2N -point IDFT as follows:

sn =
1

2N

2N−1∑

k=0

Ske
j 2πnk/(2N) (5.300)
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with the constraint that S0 and SN are real-valued and

S2N−k = S∗
k for 1 ≤ k ≤ N − 1. (5.301)

The block diagram of a practical baseband DMT system is shown in Figure 5.28.
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Parallel-
to-

serial

add
cyclic
prefix

2N-point

IFFT

Serial-

to-

parallel

(K-bit
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AWGN
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to-
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transient
samples
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D/A

Channel

A/D

rn

ỹ0

ỹN−1

Discrete-time equivalent channel plus noise

s0

s2N−1

S0

SN−1

Input
bit stream R bits/sec

Figure 5.28: Block diagram of a DMT system.

The bufffer size K in Figure 5.28 satisfies (5.234), but not (5.233). However, if
κi in (5.234) is equal to κ for all i, then

κTb = κ/R = T (5.302)

where 1/T is the symbol-rate of Sk in Figure 5.28. Note that, for sn in (5.300)
to be real-valued, S0 and SN have to be mapped to a 2κ-ary pulse amplitude
modulated (PAM) constellation, whereas the remaining Sk have to be mapped
to a 2κ-ary QAM constellation. Note thatN must be a power of two, for efficient
implementation of the DFT and IDFT operation.

5.4 Summary

This chapter addressed the issue of detecting signals transmitted through chan-
nels that introduce distortion. Broadly speaking, three methods were discussed,
the first method is based on equalization, the second approach is to use the
maximum likelihood (ML) detector and the third is based on multicarrier com-
munication/discrete multitone (DMT). The equalizer is simple to implement
whereas the ML detector is fairly complex involving the use of a trellis. In fact,
the number of states in the trellis increases exponentially with the length of the
channel. The discrete multitone (DMT) is an elegant way to combat ISI.
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The equalizer, on the other hand can be classified into two types – linear
and non-linear. The symbol-spaced and fractionally-spaced equalizers come
under the class of linear equalizers. The decision-feedback equalizers belong
to the class of non-linear equalizers. It was shown that the fractionally-spaced
equalizers are more robust than symbol-spaced equalizers. Amongst all kinds of
equalizers, it is the decision-feedback equalizer that gives the best performance.
They however suffer from the drawback of error propagation.

The ML detectors can also be classified as symbol-spaced or fractionally-
spaced. It was shown that both types have the same performance, however the
fractionally-spaced ML detector is expected to be more robust. The chapter
concludes with the discussion of multicarrier communication system and its
practical implementation using the discrete multitone (DMT).



Appendix A

Complex Differentiation

Let f(x̃) denote a function of a complex variable x̃ = xI + jxQ. The derivative
of f(x̃) with respect to x̃ is defined as [213]:

df(x̃)

dx̃
= lim

∆x̃→0

f(x̃+∆x̃)− f(x̃)

∆x̃
(A.1)

where
∆x̃ = ∆xI + j∆xQ. (A.2)

When f(·) is a function of more than one complex variable, the derivative must
be replaced by the partial derivative.

The function f(x̃) is said to be analytic (or holomorphic) at some point x̃,
if f(x̃) is differentiable (the derivative exists and is unique) at x̃.

For example, consider
f(x̃) = x̃. (A.3)

Clearly
df(x̃)

dx̃
= 1 (A.4)

for all x̃, therefore the function in (A.3) is analytic for all x̃. Let us now consider

f(x̃) = x̃∗. (A.5)

We have
df(x̃)

dx̃
= lim

∆xI→0
∆xQ→0

∆xI − j∆xQ

∆xI + j∆xQ
(A.6)

which is not unique. For example when ∆xI = 0, (A.6) is equal to −1 and
when ∆xQ = 0, (A.6) equals 1. Therefore the function in (A.5) is not analytic
for any x̃. Many complex functions that are encountered in engineering are not
analytic. However, they can be converted to analytic functions by making the
following assumptions:

∂x̃

∂x̃
=

∂x̃∗

∂x̃∗ = 1
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∂x̃∗

∂x̃
=

∂x̃

∂x̃∗ = 0. (A.7)

These assumptions are based on the fact that x̃ and x̃∗ are two different vectors
and one can be changed independently of the other. In other words x̃∗ can be
kept constant while x̃ is varied, and vice versa, resulting in the derivative going
to zero in (A.7).

Let J(x̃) be a real-valued scalar function of a complex variable x̃. The
gradient of J(x) with respect to x̃ is defined as:

∇J(x̃) =
∂J(x̃)

∂x̃∗ . (A.8)

It is immediately clear that at the maxima and minima points of J(x)

∇J(x̃) = 0. (A.9)

Let us now try to justify the definition of the gradient in (A.8) using a simple
example. Consider the minimization of the cost function

J(x̃) = |x̃|2

= x̃ · x̃∗

= x2
I + x2

Q (A.10)

using the LMS algorithm (see sections 5.1.3 and 5.1.4). Clearly, Jmin(x̃) occurs
when xI = xQ = 0. The LMS algorithm starts from an arbitrary point x0, I ,
x0, Q and eventually converges to the correct solution. From (A.8) we have:

∇J(x̃) =
∂J(x̃)

∂x̃∗

= x̃∗ ∂x̃

∂x̃∗ + x̃
∂x̃∗

∂x̃∗

= x̃. (A.11)

Let x̃n = xn, I + jxn,Q denote the value of x̃ at the nth iteration. Then the
update equation for x̃n is given by:

x̃n = x̃n−1 − µ∇J(x̃n−1)

= x̃n−1 − µx̃n−1 (A.12)

where µ denotes the step-size and∇J(x̃n−1) is the gradient at x̃n−1. The update
equation in (A.12) guarantees convergence to the optimum solution for:

|1− µ| < 1. (A.13)

Thus we have justified the definition of the gradient in (A.8). Note that at the
optimum point

∂J(x̃)

∂x̃
=

∂J(x̃)

∂x̃∗ = 0. (A.14)

However ∂J(x̃)/∂x̃ is not the gradient of J(x̃).



Appendix B

The Chernoff Bound

eµ(Z−δ)

g(Z)

Z

δ

Figure B.1: The functions eµ(Z−δ) and g(Z).

In many applications, it is required to find out closed form expressions for the
probability of Z ≥ δ, given that Z is a real-valued, zero-mean Gaussian random
variable, having variance σ2

Z . Similar problems have already been encountered
in (2.20) and (2.120). In this Appendix, we derive the Chernoff bound for
P (Z ≥ δ) which is extremely tight.

Define the function g(Z) such that

g(Z) =

{
1 for Z ≥ δ
0 for Z < δ.

(B.1)

It is clear from Figure B.1 that

g(Z) ≤ exp (µ(Z − δ)) for all µ > 0. (B.2)

Let p(Z) denote the pdf of Z. It follows that

E [g(Z)] ≤ E [exp (µ(Z − δ))]

⇒
∫ ∞

Z=−∞
g(Z)p(Z) dZ ≤ E [exp (µ(Z − δ))]

⇒ 1

σZ

√
2π

∫ ∞

Z=δ

exp

(

− Z2

2σ2
Z

)

dZ ≤ E [exp (µ(Z − δ))]



314 K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in

⇒ 1

2
erfc

(√

δ2

2σ2
Z

)

≤ E [exp (µ(Z − δ))]

⇒ P (Z ≥ δ) ≤ E [exp (µ(Z − δ))] . (B.3)

We now need to find out the value of µ that minimizes the right-hand-side
(RHS) of the above equation. Differentiating the RHS of the above equation
with-respect-to (wrt) µ (this can be done by first interchanging the order of
differentiation and expectation) and setting the result to zero, we get:

E [Z exp (µ(Z − δ))] = δE [exp (µ(Z − δ))] . (B.4)

Computing the expectations in the above equation we get:

µσ2
Z exp

(
µ2σ2

Z

2

)

= δ exp

(
σ2
Zµ

2

2

)

⇒ µσ2
Z = δ

⇒ µ =
δ

σ2
Z

. (B.5)

Substituting the value of µ obtained in the above equation in (B.3) we get

1

2
erfc

(√

δ2

2σ2
Z

)

≤ exp

(

− δ2

2σ2
Z

)

⇒ P (Z ≥ δ) ≤ exp

(

− δ2

2σ2
Z

)

. (B.6)

The Chernoff bound is illustrated in Figure B.2.
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Figure B.2: Illustration of the Chernoff bound.



Appendix C

On Groups and Finite
Fields

The purpose of this appendix is to introduce a new system of algebra that is
useful in the area of error control coding. An exhaustive treatment of modern
algebra can be found in [214]. A brief introduction can be found in [61].

C.1 Groups

Let G denote a set of elements. Let ∗ denote a binary operation on G. For any
two elements a, b in G let there exist a unique element c in G such that:

a ∗ b = c. (C.1)

Then the set G is said to be closed under ∗.

Definition C.1.1 A set G in which a binary operation ∗ is defined, is called a
group if the following conditions are satisfied:

(a) The binary operation is associative, that is, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(b) G contains an identity element e such that a ∗ e = e ∗ a = a.

(c) For every element a in G there exists another element a′ also in G such
that a ∗ a′ = a′ ∗ a = e. a′ is called the inverse of a.

The group G is said to be commutative or abelian if a ∗ b = b ∗ a for all a, b
in G. The set of integers is a commutative group under real addition. Zero is
the identity element and −i is the inverse of i. The set of all rational numbers
excluding zero is a commutative group under real multiplication. One is the
identity element and b/a is the inverse of a/b.

Theorem C.1.1 The identity element in a group is unique.
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Proof: Let there be two identity elements e and e′. Then we have e = e ∗ e′ =
e′∗e = e′. Hence e′ = e, that is, there is one and only one identity element.

Theorem C.1.2 The inverse of any element in a group is unique.

Proof: Let the element a in G have two inverses, e and e′. Then we have
a′ = a′ ∗ e = a′ ∗ (a ∗ a′′) = e ∗ a′′ = a′′. Hence a′ = a′′, that is, there is
one and only one inverse of a.

The number of elements in a group is called the order of the group. A group
of finite order is called a finite group. We now illustrate examples of finite
groups.

Consider a set
G = {0, 1, . . . , m− 1} . (C.2)

Define an operator ⊕ such that:

a⊕ b
∆
= r (C.3)

where r is the reminder when a+b is divided bym. Here + denotes real addition.
It is clear that 0 is the identity element and the inverse of an element i in G is
m− i which is also in G. It is also clear that ⊕ is commutative. We now show
that ⊕ is also associative, that is

a⊕ (b ⊕ c) = (a⊕ b)⊕ c. (C.4)

Let
a+ b+ c = pm+ r (C.5)

and
b+ c = p1m+ r1. (C.6)

Then
b⊕ c = r1. (C.7)

Hence

a⊕ (b ⊕ c) = a⊕ r1

= reminder of (a+ r1)

= reminder of (a+ b+ c− p1m)

= reminder of (pm+ r − p1m)

= r. (C.8)

Similarly, let
a+ b = p2m+ r2. (C.9)

Then
a⊕ b = r2. (C.10)
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Hence

(a⊕ b)⊕ c = r2 ⊕ c

= reminder of (r2 + c)

= reminder of (a+ b+ c− p2m)

= reminder of (pm+ r − p2m)

= r. (C.11)

Thus we have proved that ⊕ is associative, that is

a⊕ (b⊕ c) = (a⊕ b)⊕ c = r. (C.12)

Hence the set G given in (C.2) is a commutative group under the operation ⊕.
In general, the operator ⊕ as defined above is referred to as modulo-m addition.
The group G in (C.2) is also called the additive group.

We now give an example of a multiplicative group. Let us now consider the
set

G = {1, . . . , p− 1} (C.13)

where p is a prime number greater than unity. Recall that a prime number has
only two factors, 1 and itself. Define an operator ⊙ such that

a⊙ b
∆
= r (C.14)

where r is the reminder when a · b is divided by p. Here · denotes real multipli-
cation. It is immediately obvious that ⊙ is commutative. We now show that r
is in G for all a, b in G. It is obvious that r < p. We only need to show that
r 6= 0.

Let us assume that there exists a, b, 1 ≤ a, b ≤ p− 1, such that r = 0. This
implies that

a · b = kp where k > 1 is an integer. (C.15)

Observe that since p is prime, k cannot be equal to unity. If k was equal to
unity, then it implies that either a or b is equal to p, since p is a prime. However,
by assumption a < p and b < p. Therefore we have a contradiction and k cannot
be equal to unity. If k > 1 then either a or b or both a and b must have p as a
factor, which is again not possible since a < p and b < p. Thus we have shown
that r 6= 0. We now need to show that every element in G has a unique inverse
which is also in G.

Consider two elements a and b in G. Let

a⊙ b = r1 where 0 < r1 < p. (C.16)

Consider also
a⊙ (b⊕ c) (C.17)

where ⊕ denotes modulo-p addition and c is an element of G such that b⊕c ∈ G.
This implies that c 6= p − b, where − denotes real subtraction. It is also clear
that b⊕ c 6= b. In fact, if b⊕ c = b then it implies that

b+ c = p+ b
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⇒ c = p (C.18)

which is a contradiction since 0 < c < p.

In the next section we show that ⊙ is distributive over ⊕. Hence (C.17) can
be written as:

(a⊙ b)⊕ (a⊙ c) = r1 ⊕ r2 (say) (C.19)

where

a⊙ c = r2 where 0 < r2 < p. (C.20)

Once again it is clear that r1 ⊕ r2 6= r1 since

r1 ⊕ r2 = r1

⇒ r1 + r2 = p+ r1

⇒ r2 = p (C.21)

which is a contradiction. Thus r1⊕ r2 6= r1. Let b⊕ c = d. Thus we have shown
that

a⊙ b 6= a⊙ d for b 6= d. (C.22)

Now as b varies from 1 to p− 1, we must get p− 1 distinct values of a⊙ b in G,
out of which one and only one result must be equal to unity. The corresponding
value of b is the multiplicative inverse of a. Thus, we have shown that there
exists one and only one multiplicative inverse of a.

Thus the set G in (C.13) is a commutative group under ⊙. In Figure C.1,

⊕ 0 1

0

1

0 1

1 0

⊙ 1

11

Figure C.1: Modulo-2 addition and multiplication.

⊕ 0 1 2

2100

1 1 2 0

1022

⊙ 21

1 1 2

2 2 1

Figure C.2: Modulo-3 addition and multiplication.

we show an example of modulo-2 addition and multiplication. In Figure C.2,
we illustrate an example of modulo-3 addition and multiplication. In the next
section, we introduce the concept of a field.
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C.2 Fields

A field is a set of elements in which we can do addition, subtraction, multipli-
cation and division such that the result is also an element in the set. Formally,
a field is defined as follows:

Definition C.2.1 Let F be a set of elements on which two binary operators
⊕ (addition) and ⊙ (multiplication) are defined. Then the set F together with
the two binary operators is a field if the following conditions are satisfied:

(a) F is a commutative group under ⊕. The identity element with respect to
⊕ is 0, is the additive identity of F .

(b) The set of non-zero elements in F is a commutative group under ⊙. The
identity element with respect to ⊙ is 1. It is also the multiplicative identity
of F .

(c) Multiplication is distributive over addition, that is, for any three elements
a, b, c in F

a⊙ (b ⊕ c) = (a⊙ b)⊕ (a⊙ c). (C.23)

The number of elements in a field is called the order of the field. A field with a
finite number of elements is called a finite field. In a field, the additive inverse
of an element a is denoted by −a, hence a ⊕ (−a) = 0. The multiplicative
inverse is denoted by a−1, hence a⊙ (a−1) = 1. We now state some of the basic
properties of a field:

Property C.2.1 For every element a in a field a⊙ 0 = 0⊙ a = 0.

Proof: Note that:

a = 1⊙ a = (1 ⊕ 0)⊙ a = a⊕ (0⊙ a). (C.24)

Adding −a to both sides of the above equation, we get the required result.

Property C.2.2 For any two non-zero elements a, b, a⊙ b 6= 0.

Proof: This is a consequence of the fact that non-zero elements of a field form
a group under multiplication. Hence the product of two non-zero elements
must be non-zero. Recall that zero is not an element of a multiplicative
group since it does not have an inverse.

Property C.2.3 If a⊙ b = 0, then either a or b or both a and b are zero.

Proof: This is a consequence of Property C.2.2.

Property C.2.4 For any two elements a and b in a field, −(a⊙b) = (−a)⊙b =
a⊙ (−b).
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Proof: Observe that

0 = 0⊙ b = (a⊕ (−a))⊙ b = a⊙ b⊕ (−a)⊙ b. (C.25)

Therefore (−a)⊙b must be the additive inverse of a⊙b. Hence −(a⊙b) =
(−a)⊙ b. Similarly it can be shown that −(a⊙ b) = a⊙ (−b).

Property C.2.5 For a 6= 0, a⊙ b = a⊙ c implies b = c.

Proof: Since a is non-zero, it must have a multiplicative inverse denoted by
a−1. Hence we have:

a⊙ b = a⊙ c

⇒ a−1 ⊙ (a⊙ b) = a−1 ⊙ (a⊙ c)

⇒ (a−1 ⊙ a)⊙ b = (a−1 ⊙ a)⊙ c

⇒ 1⊙ b = 1⊙ c

⇒ b = c. (C.26)

We now consider examples of fields.
Let

F = {0, 1, . . . , p− 1} (C.27)

where p is a prime number. In the previous section we have seen that F is a
commutative group under ⊕ (modulo-P ) addition. The non-zero elements of F
constitute a commutative group under ⊙ (modulo-P multiplication). To prove
that F is a field, we only need to show that ⊙ is distributive over ⊕ that is:

a⊙ (b ⊕ c) = (a⊙ b)⊕ (a⊙ c). (C.28)

Let

b+ c = x1 · p+ r1

⇒ b⊕ c = r1 (C.29)

where as usual + denotes real addition and · denotes real multiplication. There-
fore

a⊙ (b⊕ c) = a⊙ r1

= reminder of (a · r1)
= reminder of (a · (b+ c− x1p)). (C.30)

Let

a · b = x2 · p+ r2

⇒ a⊙ b = r2

a · c = x3 · p+ r3
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⇒ a⊙ c = r3

r2 + r3 = x4 · p+ r4

⇒ r2 ⊕ r3 = r4. (C.31)

Substituting the above equations in (C.30) we get:

a⊙ (b⊕ c) = reminder of ((x2 + x3 + x4 − x1) · p+ r4).

= r4. (C.32)

Now from (C.31)

(a⊙ b)⊕ (a⊙ c) = r2 ⊕ r3

= r4. (C.33)

Thus we have proved (C.28). Therefore the set F given by (C.27) is a field of
order p under modulo-p addition and multiplication. F is also called a prime
field and is denoted by GF(p).The term “GF” is an acronym for Galois field.
For p = 2 we obtain the binary field GF(2) which is used in convolutional codes.
Note that in GF(2):

1⊕ 1 = 0

⇒ −1 = 1. (C.34)

In the next section we explain the D-transform.

C.2.1 The D-Transform

Consider the summation:

A(D) = a0 + a1D + a2D
2 + . . .

=
∞∑

n=0

anD
n (C.35)

where an is an element from GF(p) (p is a prime number) occurring at time
instant n. The symbol D denotes a unit delay and Dn represents a delay of
n units. A(D) is called the D-transform of an. Note that for simplicity of
notation we have used ‘+’ and a space to denote addition and multiplication
over GF(p) respectively. Whether ‘+’ denotes real addition or addition over
GF(p) will henceforth be clear from the context. We now study some properties
of the D-transform.

Property C.2.6 Convolution in the time domain over GF(p) is equivalent to
multiplication in the frequency domain over GF(p).

Proof: Consider the element cn for n ≥ 0, given by the convolution sum:

cn = a0bn + a1bn−1 + a2bn−2 + . . .
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=
∞∑

k=0

akbn−k (C.36)

where an and bn are elements in GF(p). We assume that an = bn = 0 for
n < 0. Then the D-transform of cn is given by:

C(D) =
∞∑

n=0

∞∑

k=0

akbn−kD
n

=
∞∑

n=0

∞∑

k=0

akbn−kD
kDn−k. (C.37)

Interchanging the order of summation we get:

C(D) =
∞∑

k=0

akD
k

( ∞∑

n=0

bn−kD
n−k

)

. (C.38)

Substituting n− k = m and noting that bm = 0 for m < 0 we get:

C(D) =
∞∑

k=0

akD
k

( ∞∑

m=0

bmDm

)

=
∞∑

k=0

akD
kB(D)

= A(D)B(D). (C.39)

Thus we have proved that convolution in the time domain over GF(p) is
equivalent to multiplication in the transform domain over GF(p).

Property C.2.7 If A(D) is the D-transform of an, then D n0A(D) is the D-
transform of an−n0 .

Proof: Let bn = an−n0 . We also assume that an = 0 for n < 0. Then

B(D) =
∞∑

n=0

bnD
n

=
∞∑

n=0

an−n0D
n. (C.40)

Substituting m = n− n0 we get

B(D) =
∞∑

m=−n0

amDm+n0

= D n0

∞∑

m=0

amDn

= D n0A(D). (C.41)
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Note that A(D) in (C.35) can be considered as a polynomial with coefficients
from GF(p). The degree of a polynomial is the highest power of D whose
coefficient is non-zero. In the next section, we study operations on polynomials,
with coefficients from GF(2).

C.2.2 Polynomials over GF(2)

In this section we illustrate with the help of examples, how polynomials with
coefficients from GF(2) can be added, subtracted, multiplied and divided. Let

G1(D) = 1 +D +D2

G2(D) = 1 +D2. (C.42)

Then

G1(D) +G2(D) = G1(D) + (−G2(D))

= D (C.43)

since subtraction is the same as addition in GF(2). The result of multiplying
the polynomials is:

G1(D)G2(D) = 1 +D +D2 +D2 +D3 +D4

= 1 +D +D3 +D4. (C.44)

Consider the polynomial:
G(D) = 1 +D. (C.45)

Then G−1(D) is given by:

G−1(D)
∆
=

1

G(D)

= 1 +D +D2 +D3 +D4 + . . . (C.46)

The above result is obtained by long division, as illustrated in Figure C.3.
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1 +D +D2 +D3 + . . .

1
1 +D

D
D +D2

D2

D2 +D3

D3

D3 +D4

D4

...

1 +D

Figure C.3: Division of polynomials in GF(2).



Appendix D

Properties of the
Autocorrelation Matrix

Let R̃ṽṽ denote an L × L autocorrelation matrix of a wide sense stationary,
complex, discrete-time stochastic process represented by the L × 1 vector ṽ.
The elements of ṽ are given by:

ṽ =
[
ṽ1 . . . ṽL

]T
. (D.1)

We have

R̃ṽṽ
∆
=

1

2
E
[
ṽṽH

]

=








R̃ṽṽ, 0 R̃ṽṽ,−1 . . . R̃ṽṽ,−L+1

R̃ṽṽ, 1 R̃ṽṽ, 0 . . . R̃ṽṽ,−L+2

...
...

...
...

R̃ṽṽ, L−1 R̃ṽṽ, L−2 . . . R̃ṽṽ, 0







. (D.2)

If R̃ṽṽ, i, j denotes the element of R̃ṽṽ in the ith row and jth column, then we
have

R̃ṽṽ, i, j = R̃ṽṽ, i−j . (D.3)

This is known as the Toeplitz property of the autocorrelation matrix. Observe
that R̃ṽṽ is also Hermitian, i.e.

R̃H
ṽṽ = R̃ṽṽ. (D.4)

Let x̃ be an arbitrary non-zero L× 1 vector defined by

x̃ =
[
x̃1 . . . x̃L

]T
. (D.5)

Consider the inner product
ỹ = ṽH x̃. (D.6)
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It is clear that

1

2
E [ỹ∗ỹ] =

1

2
E
[
ỹH ỹ

]

=
1

2
E
[
x̃H ṽṽH x̃

]

=
1

2
x̃HE

[
ṽṽH

]
x̃

= x̃HR̃ṽṽx̃. (D.7)

Since
E [ỹ∗ỹ] ≥ 0 (D.8)

from (D.7) we get
x̃HR̃ṽṽx̃ ≥ 0 (D.9)

for non-zero values of x̃. This property of the autocorrelation matrix is called
positive semidefinite. In most situations, the autocorrelation matrix is positive
definite, that is

x̃HR̃ṽṽx̃ > 0. (D.10)

We now wish to find an L× 1 vector q̃ that satisfies:

R̃ṽṽq̃ = λq̃ (D.11)

where λ is a constant. The above equation can be rewritten as:

(

R̃ṽṽ − λIL
)

q̃ = 0 (D.12)

where IL is an L× L identity matrix. For a non-zero solution of q̃ we require

det
(

R̃ṽṽ − λIL
)

= 0 (D.13)

where det (·) denotes the determinant. Solving the above determinant yields an
Lth degree polynomial in λ which has L roots. These roots are referred to as
eigenvalues of R̃ṽṽ, and are denoted by λ1, . . . , λL. The corresponding values
of q̃ are known as eigenvectors and are denoted by q̃1, . . . , q̃L. We now explore
some of the properties of the eigenvalues and eigenvectors of an autocorrelation
matrix.

Property D.0.1 The eigenvalues of R̃ṽṽ are real and non-negative.

Proof: We have
R̃ṽṽq̃i = λiq̃i (D.14)

where q̃i is the eigenvector corresponding to the eigenvalue λi. Pre-
multiplying both sides of the second equation in (D.16) by q̃H

i we get

q̃H
i R̃ṽṽq̃i = λiq̃

H
i q̃i
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⇒ q̃H
i R̃ṽṽq̃i

q̃H
i q̃i

= λi. (D.15)

From (D.10) and the fact that q̃H
i q̃i is real and positive we conclude that

λi is positive and real.

Property D.0.2 The eigenvectors corresponding to distinct eigenvalues of R̃ṽṽ

are orthogonal.

Proof: Let λi and λj denote two distinct eigenvalues of R̃ṽṽ. Let q̃i and q̃j

denote the eigenvectors corresponding to λi and λj . We have

R̃ṽṽq̃i = λiq̃i

R̃ṽṽq̃j = λj q̃j . (D.16)

Multiplying both sides of the second equation in (D.16) by q̃H
i and making

use of the fact that R̃H = R̃, we get

q̃H
i R̃ṽṽq̃j = λj q̃

H
i q̃j

⇒
(

R̃ṽṽq̃i

)H

q̃j = λj q̃
H
i q̃j

⇒ (λiq̃i)
H
q̃j = λj q̃

H
i q̃j

⇒ λiq̃
H
i q̃j = λj q̃

H
i q̃j . (D.17)

Since λi 6= λj the only possibility is that

q̃H
i q̃j = 0. (D.18)

However, it can be shown that even if all the eigenvalues are not distinct,
there exists L linearly independent orthogonal eigenvectors [215].

Property D.0.3 Define the L× L matrix

Q̃ =
[
q̃1 . . . q̃L

]
(D.19)

where q̃i is the eigenvector corresponding to the eigenvalue λi. We assume that
all eigenvectors are orthonormal. Define another L× L diagonal matrix

Λ̃ = diag [λ1, . . . , λL] (D.20)

Then the autocorrelation matrix can be factored as

R̃ṽṽ = Q̃Λ̃Q̃H (D.21)

Proof: Since
R̃ṽṽq̃i = λiq̃i for 1 ≤ i ≤ L (D.22)

we can group the L equations to get

R̃ṽṽQ̃ = Q̃Λ. (D.23)



K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in 329

Since the L eigenvectors are orthonormal, we have

Q̃HQ̃ = IL

⇒ Q̃H = Q̃−1

⇒ Q̃Q̃H = IL (D.24)

where IL is an L × L identity matrix. Thus Q̃ is an unitary matrix.
Pre-multiplying both sides of (D.23) by Q̃H and using (D.24) we get

Q̃HR̃ṽṽQ̃ = Λ. (D.25)

Pre-multiplying both sides of (D.25) by Q̃ and post-multiplying both sides
by Q̃H and using (D.24) we get

R̃ṽṽ = Q̃ΛQ̃H . (D.26)

This decomposition of the autocorrelation matrix is called the unitary
similarity transformation.

Property D.0.4 The sum of the eigenvalues of R̃ṽṽ is equal to the trace of
R̃ṽṽ.

Proof: From (D.25) we have

tr
(

Q̃HR̃ṽṽQ̃
)

= tr (Λ) . (D.27)

Using the fact that the trace of the matrix product AB is equal to the
product BA, and once again using (D.24) we get

tr
(

R̃ṽṽQ̃Q̃H
)

= tr (Λ)

⇒ tr
(

R̃ṽṽ

)

=
L∑

i=1

λi. (D.28)



Appendix E

Some Aspects of
Discrete-Time Signal
Processing

In this appendix, we dwell upon some of the important topics in discrete-time
signal processing.

E.1 The Sampling Theorem

Consider a signal p̃(t) that is multiplied by a Dirac delta train a(t) where

a(t) =
∞∑

k=−∞
δD(t− kTs). (E.1)

Since a(t) is periodic it can be written as a Fourier series:

a(t) = b0 +
∞∑

k=1

(ck cos(2πkFst) + dk sin(2πkFst)) (E.2)

where
Fs = 1/Ts (E.3)

and

b0 =
1

Ts

∫ T−

s

t=0−
a(t) dt

=
1

Ts

ck =
2

Ts

∫ T−

s

t=0−
a(t) cos(2πkFst) dt
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=
2

Ts

dk =
2

Ts

∫ T−

s

t=0−
a(t) sin(2πkFst) dt

= 0. (E.4)

In the above equation, we have used the sifting property of the Dirac delta
function. Thus we get

a(t) =
1

Ts
+

1

Ts

∞∑

k=1

(exp (j 2πkFst) + exp (−j 2πkFst))

=
1

Ts

∞∑

k=−∞
exp (j 2πkFst) . (E.5)

The Fourier transform of a(t) is given by:

A(F ) =
1

Ts

∞∑

k=−∞
δD(F − kFs). (E.6)

The Fourier transform of the product p̃(t)a(t) is

Ã(F ) ⋆ P̃ (F ) =
1

Ts

∞∑

k=−∞
P̃ (F − kFs) (E.7)

where ⋆ denotes convolution, P̃ (F ) is the Fourier transform of p̃(t) and we
have once again used the sifting property of the Dirac delta function. The
above equation implies that multiplying p̃(t) by a Dirac delta train in the time
domain results in a periodic spectrum (with period Fs) in the frequency domain.
However, the Fourier transform of p̃(t)a(t) is also given by

∫ ∞

t=−∞
p̃(t)a(t) exp (−j 2πFt) dt

=
∞∑

k=−∞

∫ ∞

t=−∞
p̃(t)δD(t− kTs) exp (−j 2πFt) dt

=
∞∑

k=−∞
p̃(kTs) exp (−j 2πFkTs) . (E.8)

Equating (E.7) and (E.8) we get

∞∑

k=−∞
p̃(kTs) exp (−j 2πFkTs) =

1

Ts

∞∑

k=−∞
P̃ (F − kFs)

= P̃P(F ) (say). (E.9)
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R̃(F )

−B2 B2

R̃P(F )

−B1 B1

−2πB1
Fs

− 2π

2πB1
Fs

− 2π

−2πB1
Fs

2πB1
Fs

−2πB1
Fs

+ 2π

2πB1
Fs

+ 2π

F

(2πF )/Fs

Figure E.1: Illustrating the spectrum of a real-valued signal r(nTs) before and after
sampling.

The summation on the left-hand-side of the above equation is referred to as the
discrete-time Fourier transform (DTFT) [167]. The subscript P in P̃P(F )
is used to denote a periodic function. Figure E.1 illustrates the spectrum of a
real-valued signal sampled at Fs. Note that the x-axis is labeled in terms of the
normalized frequency in radians, that is, 2πF/Fs.

Now let

p(t) = cos(2πFst) ⇋
1

2
[δD(F − Fs) + δD(F + Fs)] = P (F ). (E.10)

Therefore if Ts = 1/Fs, then we have the important result

p(kTs) = 1

⇒
∞∑

k=−∞
e−j 2πFkTs =

1

2Ts

∞∑

k=−∞
[δD(F − Fs − kFs) + δD(F + Fs − kFs)]

=
1

Ts

∞∑

k=−∞
δD(F − kFs). (E.11)

Let us now multiply both sides of (E.9) by exp(j 2πFmTs) and integrate the
product with limits −Fs/2 and Fs/2 and divide the result by Fs. We obtain

1

Fs

∫ Fs/2

−Fs/2

∞∑

k=−∞
p̃(kTs) exp (j 2πF (m− k)Ts) dF
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=
1

Fs

∫ Fs/2

−Fs/2

P̃P(F ) exp (j 2πFmTs) dF. (E.12)

Interchanging the order of the integration and summation in the above equation
and noting that

1

Fs

∫ Fs/2

−Fs/2

exp (j 2πF (m− k)Ts) dF =

{
1 for m = k
0 otherwise.

(E.13)

we obtain

p̃(mTs) =
1

Fs

∫ Fs/2

−Fs/2

P̃P(F ) exp (j 2πFmTs) dF. (E.14)

The above equation is referred to as the inverse discrete-time Fourier transform.

Example E.1.1 Consider a continuous-time signal

x(t) = A2sinc2(Bt). (E.15)

Sketch the spectrum of

1. x(n/(3B)) in the range −3B ≤ F ≤ 3B

2. x(2n/(3B)) in the range −3B/2 ≤ F ≤ 3B/2

where n is an integer.

Solution: We begin with the following Fourier transform pair:

A rect(t/T ) ⇋ AT sinc(FT ). (E.16)

Using duality, we obtain:

A rect(F/B) ⇋ AB sinc(Bt)

⇒ (A/B) rect(F/B) ⇋ A sinc(Bt). (E.17)

Using the Fourier transform property that multiplication in the time domain
results in convolution in the frequency domain, we get:

x(t) = A2 sinc2(Bt)

⇋

{
(A2/B) (1− |F |/B) for |F | ≤ B
0 otherwise.

= X(F ). (E.18)

Now, if
x(t) ⇋ X(F ) (E.19)

then the spectrum of x(nTs) is

x(nTs) ⇋
1

Ts

∞∑

k=−∞
X(F − k/Ts) = XP(F ) (E.20)

where Ts denotes the sampling period. The spectrum of various signals are
shown in Figure E.2.
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−B B0−3B 3B−2B 2B

F

XP(F )
(c)

3A2/2

−B B0−3B 3B−2B 2B

F

(b)
XP(F )

−B B0

A2/B

F

X(F )

(a)

3A2

3B/2B/2

3A2/4

Figure E.2: (a) Spectrum of x(t). (b) XP(F ) for Fs = 3B. (c) XP(F ) for Fs =
3B/2.
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E.2 Sampling Rate Conversion

In this section, we discuss the effects of changing the sampling frequency of a
discrete-time signal. Reducing the sampling frequency is known as decimation,
whereas increasing the sampling frequency is interpolation.

E.2.1 Decimation by D

Consider a discrete-time, complex-valued signal x̃(n) with DTFT X̃d(ω). We
wish to find out the DTFT of x̃(nD − n0), where n0 is an integer and D is a
positive integer. Let the sampling frequency corresponding to x̃(n) be 1/Ts. We
know that

x̃(n) ≡ x̃(nTs) ⇋
1

Ts

∞∑

k=−∞
X̃

(

F − k

Ts

)

= X̃P(F ) ≡ X̃d(ω). (E.21)

where X̃(F ) is the Fourier transform of the continuous-time signal x̃(t), the
subscript d in X̃d(ω) denotes the digital frequency and

ω = 2πFTs (E.22)

and

X̃d(ω) =
∞∑

n=−∞
x̃(n)e−jωn. (E.23)

Now
ỹ(t) = x̃(t− t0) ⇋ X̃(F ) e−j 2πFt0 = Ỹ (F ). (E.24)

Therefore

ỹ(nTs) = x̃(nTs − t0) ⇋
1

Ts

∞∑

k=−∞
X̃

(

F − k

Ts

)

e−j 2π(F−k/Ts)t0

=
1

Ts
e−j 2πFn0Ts

∞∑

k=−∞
X̃

(

F − k

Ts

)

= ỸP, Ts(F )

≡ Ỹd(ω)

= e−jωn0X̃d(ω) (E.25)

where the subscript Ts in ỸP, Ts is used to explicitly denote the sampling period
and we have assumed that for integer n0

t0 = n0Ts. (E.26)

Let us now consider the DTFT of

ỹ(nD) ≡ ỹ(nDTs)
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= x̃(nDTs − t0)

⇋

1

DTs

∞∑

k=−∞
Ỹ

(

F − k

DTs

)

=
1

DTs

∞∑

k=−∞
X̃

(

F − k

DTs

)

e−j 2π(F−k/(DTs))t0

=
1

DTs
e−j 2πFn0Ts

∞∑

k=−∞
X̃

(

F − k

DTs

)

e j 2πkn0/D

=
1

DTs
e−jωn0

∞∑

k=−∞
X̃

(

F − k

DTs

)

e j 2πkn0/D

= ỸP,DTs(F )

≡ Ỹd(ωy) (E.27)

where we have once again substituted for t0 from (E.26) and

ωy = 2πFDTs (E.28)

and

Ỹd(ωy) =
∞∑

n=−∞
ỹ(nD)e−jωyn. (E.29)

Let us now substitute

k = mD + l for −∞ < m < ∞, 0 ≤ l < D (E.30)

where m and l are integers. Therefore (E.27) becomes

ỸP,DTs(F ) =
e−jωn0

DTs

D−1∑

l=0

∞∑

m=−∞
X̃

(

F − (mD + l)

DTs

)

e j 2π(mD+l)n0/D

=
e−jωn0

DTs

D−1∑

l=0

∞∑

m=−∞
X̃

(

F − m

Ts
− l

DTs

)

e j 2πln0/D

=
e−jωn0

D

D−1∑

l=0

X̃P

(

F − l

DTs

)

e j 2πln0/D (E.31)

where X̃P(F ) is defined in (E.21). It only remains to express X̃P(F ) in terms
of X̃d(ωy). Therefore (E.31) can be rewritten as

Ỹd(ωy) =
e−jωn0

D

D−1∑

l=0

X̃d

(

ω − 2πl

D

)

e j 2πln0/D

∣
∣
∣
∣
∣
ω=ωy/D

=
e−jωyn0/D

D

D−1∑

l=0

X̃d

(
ωy − 2πl

D

)

e j 2πln0/D (E.32)
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where we have used (E.22) and (E.28) and made the following substitutions in
the last equation on the right-hand-side of (E.31):

F → ω

1/Ts → 2π (E.33)

since X̃P(·) is periodic with period 1/Ts.

E.2.2 Upsampling by I

Consider a discrete-time, complex-valued signal x̃(n) with DTFT X̃d(ω), as
given by (E.23). We wish to find out the DTFT of

z̃(n) =

{
x̃((n/I )− n0) for n = kI
0 for n 6= kI .

(E.34)

where n0 is an integer and I is a positive integer. Let the sampling frequency
corresponding to x̃(n) be 1/Ts. Let

ωz = 2πFTs/I

= ω/I (E.35)

where ω is defined by (E.22). We have

Z̃d(ωz) =
∞∑

n=−∞
z̃(n)e−jωzn

=
∞∑

n=−∞
n=kI

x̃((n/I )− n0)e
−jωzn. (E.36)

Let

n

I
− n0 = m for n = kI . (E.37)

Therefore

Z̃d(ωz) =
∞∑

m=−∞
x̃(m)e−jωzI (m+n0)

= e−jωzI n0X̃d(ωzI ). (E.38)

In the next section we discuss the fast Fourier transform.

E.3 The Fast Fourier Transform

Consider a discrete-time complex-valued signal x̃(nTs) = x̃n of length N sam-
ples, labelled as

x̃0, . . . , x̃N−1. (E.39)
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We assume that N is a power of two, that is

N = 2m (E.40)

where m is a positive integer. If N is not a power of two, zero-padding can be
used to make the number of samples a power of two, as shown below

x̃0, . . . , x̃N−1, 0, . . . , 0. (E.41)

Recall that the discrete Fourier transform [167] of x̃n is given by

X̃k =
N−1∑

n=0

x̃ne
−j 2πnk/N for 0 ≤ k ≤ N − 1. (E.42)

Observe that the complexity of (E.42) is O
(
N2
)
. The fast Fourier transform

is used to reduce the complexity [216]. This is explained with an example. Let
N = 8, as shown in Figure E.3. We make the following observations

Binary
representation

Index in
decimal

0
1
2
3

representation
Modified index

in decimal

0

4
5
6
7

000
001
010
011
100
101
110
111

4
2
6
1
5
3
7

100
010
110

000

001
101
011
111

reversed
Bit

binary

x̃0, x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7

x̃1, x̃3, x̃5, x̃7x̃0, x̃2, x̃4, x̃6

x̃3, x̃7x̃1, x̃5x̃2, x̃6x̃0, x̃4

x̃4 x̃2 x̃6 x̃1 x̃5 x̃3 x̃7x̃0

Figure E.3: An 8-point FFT computation.

x̃n
1
⇋ x̃n (E.43)

where
1
⇋ denotes a 1−point DFT. In other words, the 1−point DFT of a sample

is the sample itself. Next, consider

ỹn =

{
x̃(n/2) for n = 2m
0 otherwise.

(E.44)
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for n = 0, 1, . . . , 2N − 1. We have

Ỹk =
2N−1∑

n=0

ỹne
−j 2πnk/(2N)

=
2N−1∑

n=0
n=2m

x̃n/2e
−j 2πnk/(2N) for 0 ≤ k ≤ 2N − 1. (E.45)

Substituting n = 2m in (E.45) we obtain

Ỹk =
N−1∑

m=0

x̃me−j 2πmk/N

= X̃k. (E.46)

Note that X̃k in (E.42) is periodic with period N , hence Ỹk in (E.46) is also
periodic with the same period. Now, refer to Figure E.3. The first step is to
split the 8−point sequence into eight 1−point sequences. Now the 1−point DFT
of x̃n is equal to x̃n. Next, we find out the 2−point DFT of {x̃0, x̃4}, {x̃2, x̃6},
{x̃1, x̃5} and {x̃3, x̃7}. The 2−point DFT of {x̃0, x̃4} is equal to the sum of the
2−point DFT of {x̃0, 0} and {0, x̃4}. Now

{x̃0, 0}
2
⇋ {x̃0, x̃0}

{x̃4, 0}
2
⇋ {x̃4, x̃4}

⇒ {0, x̃4}
2
⇋

{

x̃4, x̃4 e
−j 2π/2

}

(E.47)

where we have used the circular time shift property of the DFT. Hence

{x̃0, x̃4}
2
⇋







x̃0 + x̃4
︸ ︷︷ ︸

=Ã0

, x̃0 + x̃4 e
−jπ

︸ ︷︷ ︸

=Ã1







(E.48)

which is also known as a “butterfly” [167]. The operation in (E.48) is also known
as “in-place” computation since the number of outputs is equal to the number
of inputs. The term e−jπ in (E.48) is known as the “twiddle factor” [167].
Similarly the other butterflies are

{x̃2, x̃6}
2
⇋







x̃2 + x̃6
︸ ︷︷ ︸

=Ã2

, x̃2 + x̃6 e
−jπ

︸ ︷︷ ︸

=Ã3







{x̃1, x̃5}
2
⇋







x̃1 + x̃5
︸ ︷︷ ︸

=Ã4

, x̃1 + x̃5 e
−jπ

︸ ︷︷ ︸

=Ã5






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{x̃3, x̃7}
2
⇋







x̃3 + x̃7
︸ ︷︷ ︸

=Ã6

, x̃3 + x̃7 e
−jπ

︸ ︷︷ ︸

=Ã7







. (E.49)

Now

{x̃0, 0, x̃4, 0}
4
⇋

{

Ã0, Ã1, Ã0, Ã1

}

{x̃2, 0, x̃6, 0}
4
⇋

{

Ã2, Ã3, Ã2, Ã3

}

⇒ {0, x̃2, 0, x̃6}
4
⇋

{

Ã2, Ã3 e
−j 2π/4, Ã2 e

−j 4π/4, Ã3 e
−j 6π/4

}

. (E.50)

Thus we have a butterfly as follows

{x̃0, x̃2, x̃4, x̃6}
4
⇋







Ã0 + Ã2
︸ ︷︷ ︸

=B̃0

,

Ã1 + Ã3 e
−j 2π/4

︸ ︷︷ ︸

=B̃1

,

Ã0 + Ã2 e
−j 4π/4

︸ ︷︷ ︸

=B̃2

,

Ã1 + Ã3 e
−j 6π/4

︸ ︷︷ ︸

=B̃3







. (E.51)

Note the twiddle factors in (E.51). Similarly the other butterfly is

{x̃1, x̃3, x̃5, x̃7}
4
⇋







Ã4 + Ã6
︸ ︷︷ ︸

=B̃4

,

Ã5 + Ã7 e
−j 2π/4

︸ ︷︷ ︸

=B̃5

,

Ã4 + Ã6 e
−j 4π/4

︸ ︷︷ ︸

=B̃6

,

Ã5 + Ã7 e
−j 6π/4

︸ ︷︷ ︸

=B̃7







. (E.52)

The final butterfly is

{x̃0, x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7}
8
⇋







B̃0 + B̃4
︸ ︷︷ ︸

=X̃0

,
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B̃1 + B̃5 e
−j 2π/8

︸ ︷︷ ︸

=X̃1

,

B̃2 + B̃6 e
−j 4π/8

︸ ︷︷ ︸

=X̃2

,

B̃3 + B̃7 e
−j 6π/8

︸ ︷︷ ︸

=X̃3

,

B̃0 + B̃4 e
−j 8π/8

︸ ︷︷ ︸

=X̃4

,

B̃1 + B̃5 e
−j 10π/8

︸ ︷︷ ︸

=X̃5

,

B̃2 + B̃6 e
−j 12π/8

︸ ︷︷ ︸

=X̃6

,

B̃3 + B̃7 e
−j 14π/8

︸ ︷︷ ︸

=X̃7







. (E.53)

The complexity of the 8−point DFT is O
(
82
)
. The complexity of the 8−point

FFT is O (8 log2(8)), since eight values of Ãk, B̃k, X̃k have to be computed.
The next section is devoted to the discrete-time matched filtering of signals
that have been delayed by an amount which is not an integer multiple of Ts.

E.4 Discrete-Time Matched Filtering

Let us now consider a signal p̃(t − α), where α is not an integer multiple of
Ts. If P̃ (F ) denotes the Fourier transform of p̃(t) then the Fourier transform of
p̃(t− α) is

∫ ∞

t=−∞
p̃(t− α) exp (−j 2πFt) dt = exp (−j 2πFα) P̃ (F ). (E.54)

Now, if p̃1(t) = p̃(t−α) is sampled at rate 1/Ts, the periodic spectrum is given
by

P̃P, 1(F ) =
1

Ts

∞∑

k=−∞
exp

(

−j 2π

(

F − k

Ts

)

α

)

P̃

(

F − k

Ts

)

. (E.55)

Let us assume that p̃1(t) is sampled at Nyquist rate or above so that there is
no aliasing. In this situation we get

P̃P, 1(F ) =
1

Ts
exp (−j 2πFα) P̃ (F ) for −π ≤ 2πF/Fs ≤ π. (E.56)
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Consider a filter p̃2(t), that is matched to p̃1(t). Note that

p̃2(t) = p∗1(−t) = p∗(−t− α). (E.57)

The spectrum of p̃2(t) sampled at 1/Ts is

P̃P, 2(F ) =
1

Ts
exp (j 2πFα) P̃ ∗ (F ) for −π ≤ 2πF/Fs ≤ π. (E.58)

Now, if p̃1(nTs) is convolved with p̃2(nTs), the result in the frequency domain
is

P̃P, 1(F )P̃P, 2(F ) =
1

T 2
s

∣
∣
∣P̃ (F )

∣
∣
∣

2

for −π ≤ 2πF/Fs ≤ π (E.59)

which is independent of the time delay α.
Thus we have arrived at an important conclusion, which is stated below:

p̃(nTs − α) ⋆ p̃∗(−nTs − α) =
∞∑

k=−∞
p̃(kTs − α)p̃∗(kTs − nTs − α)

=
1

T 2
s Fs

∫ Fs/2

F=−Fs/2

∣
∣
∣P̃ (F )

∣
∣
∣

2

exp (j 2πFnTs) dF

=
1

Ts

∫ Fs/2

F=−Fs/2

∣
∣
∣P̃ (F )

∣
∣
∣

2

exp (j 2πFnTs) dF

=
R̃p̃p̃(nTs)

Ts
(E.60)

is independent of α, provided the sampling frequency is at Nyquist rate or
higher. This is illustrated in Figures E.4 and E.5. Observe that the matched
filter output is identical in both cases. Note that (see also (4.19))

R̃p̃p̃(nTs) =

∫ ∞

t=−∞
p̃(t)p̃∗(t− nTs) dt

=

∫ ∞

F=−∞

∣
∣
∣P̃ (F )

∣
∣
∣

2

exp (j 2πFnTs) dF

=

∫ Fs/2

F=−Fs/2

∣
∣
∣P̃ (F )

∣
∣
∣

2

exp (j 2πFnTs) dF (E.61)

since we have assumed that P̃ (F ) is bandlimited to [−Fs/2, Fs/2].
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Figure E.4: (a) Samples of the transmit filter obtained by the receiver when α = 0.
(b) Samples of the matched filter (MF). (c) MF output. Here T/Ts = 2.
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Figure E.5: (a) Samples of the transmit filter obtained by the receiver when α =
1.8Ts. (b) Samples of the matched filter (MF). (c) MF output. Here
T/Ts = 2.



Appendix F

The Root Raised Cosine
Pulse

From (4.88) we get [126, 127]

P̃ (F ) =







1√
2B

for −F1 ≤ F ≤ F1

1√
2B

cos
(

π(|F |−F1)
4B−4F1

)

for F1 ≤ |F | ≤ 2B − F1

0 elsewhere.

(F.1)

Note that P̃ (F ) is real and an even function of F . Hence its inverse Fourier
transform is given by:

p(t) = 2

∫ 2B−F1

0

P̃ (F ) cos(2πFt) dF

= 2

∫ F1

0

P (F ) cos(2πFt) dF + 2

∫ 2B−F1

F1

P (F ) cos(2πFt) dF. (F.2)

The first integral in the above equation equals

p1(t) = 2

∫ F1

0

1√
2B

cos(2πFt) dF

=
1√
2B

[
sin(2πB(1− ρ)t)

πt

]

(F.3)

where we have made use of the relation

F1 = B(1− ρ). (F.4)

The second integral in (F.2) is equal to

p2(t) =
1√
2B

∫ B(1+ρ)

B(1−ρ)

[

cos

(
πF (1 + 8Bρt)− πF1

4Bρ

)
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+ cos

(
πF (1 − 8Bρt)− πF1

4Bρ

)]

dF. (F.5)

Note that the upper limit of the above integral is

2B − F1 = B(1 + ρ). (F.6)

Let

α =
π(1 + 8Bρt)

4Bρ

γ =
π(1 − 8Bρt)

4Bρ

β =
πF1

4Bρ
. (F.7)

Then the first integral in (F.5) becomes

p3(t) =
4Bρ√
2B

[
sin(αB(1 + ρ)− β)− sin(αB(1 − ρ)− β)

π(1 + 8Bρt)

]

=
4Bρ√
2B

[
2 cos(αB − β) sin(αBρ)

π(1 + 8Bρt)

]

. (F.8)

Now

αB − β =
π

4
+ 2πBt

αBρ =
π

4
+ 2πBρt. (F.9)

Let

2πBt = θ1

2πBρt = θ2. (F.10)

Hence

p3(t) =
4Bρ√
2B

[
(cos(θ1)− sin(θ1)) (cos(θ2) + sin(θ2))

π(1 + 8Bρt)

]

=
4Bρ√
2B

[
cos(θ1 + θ2)− sin(θ1 − θ2)

π(1 + 8Bρt)

]

. (F.11)

Similarly, the second integral in (F.5) reduces to

p4(t) =
4Bρ√
2B

[
cos(θ1 + θ2) + sin(θ1 − θ2)

π(1− 8Bρt)

]

. (F.12)

Adding (F.11) and (F.12) we get

p2(t) =
4Bρ√
2B

[
2 cos(θ1 + θ2) + 16Bρt sin(θ1 − θ2)

π(1 − 64B2ρ2t2)

]

. (F.13)
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Substituting (F.10) in (F.3) we get

p1(t) =
1√
2B

[
sin(θ1 − θ2)

πt

]

. (F.14)

Adding (F.13) and (F.14) we get the final expression for the time domain re-
sponse for the root raised cosine spectrum as:

p(t) =
1

π
√
2B(1− 64B2ρ2t2)

[

8Bρ cos(θ1 + θ2) +
sin(θ1 − θ2)

t

]

. (F.15)



Appendix G

Parseval’s Energy Theorem

Here we show that for a finite energy signal p̃(t), whose Fourier transform exists
∫ ∞

t=−∞
|p̃(t)|2 dt =

∫ ∞

F=−∞

∣
∣
∣P̃ (F )

∣
∣
∣

2

dF. (G.1)

The proof is as follows. The left hand side of the above equation can be written
as

∫ ∞

t=−∞
|p̃(t)|2 dt

=

∫ ∞

t=−∞
p̃(t)p̃∗(t) dt

=

∫ ∞

t=−∞

∫ ∞

x=−∞

∫ ∞

y=−∞
P̃ (x)P̃ ∗(y) exp (j 2π(x− y)t) dx dy dt

=

∫ ∞

x=−∞

∫ ∞

y=−∞
P̃ (x)P̃ ∗(y)

∫ ∞

t=−∞
exp (j 2π(x− y)t) dt dx dy. (G.2)

Since the Fourier transform of the Dirac delta function is
∫ ∞

t=−∞
δD(t) exp (−j 2πFt) dt = 1 (G.3)

the inverse Fourier transform of unity is
∫ ∞

F=−∞
exp (j 2πFt) dt = δD(t). (G.4)

Using the above relation in (G.2) we get
∫ ∞

t=−∞
|p̃(t)|2 dt =

∫ ∞

x=−∞

∫ ∞

y=−∞
P̃ (x)P̃ ∗(y)δD(x− y) dx dy

=

∫ ∞

x=−∞

∣
∣
∣P̃ (x)

∣
∣
∣

2

dx. (G.5)
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Hence proved.
Parseval’s theorem is valid for discrete-time signals as well. We know that

for a discrete-time energy signal g̃(nTs)

g̃(nTs) ⋆ g̃
∗(−nTs) ⇋

∣
∣
∣G̃P(F )

∣
∣
∣

2

. (G.6)

Therefore ∑

n

|g̃(nTs)|2 = g̃(nTs) ⋆ g̃
∗(−nTs)|n=0 (G.7)

is also equal to the inverse discrete-time Fourier transform of |G̃P(F )|2 evalu-
ated at n = 0. Hence

∑

n

|g̃(nTs)|2 = Ts

∫ 1/Ts

F=0

∣
∣
∣G̃P(F )

∣
∣
∣

2

dF (G.8)

which proves the Parseval’s energy theorem in discrete-time.



Appendix H

Transmission of a Random
Process Through a Filter

H̃(F )
X̃(t) Ỹ (kT )Ỹ (t)

Figure H.1: Filtering a random process followed by sampling.

Consider a complex wide sense stationary random process X̃(t). Assume
that X̃(t) is passed through a linear time-invariant filter with complex impulse
response h̃(t) and Fourier transform H̃(F ). This is illustrated in Figure H.1.
Denote the output process as Ỹ (t). It is clear that

E
[

Ỹ (t)
]

=

∫ ∞

τ=−∞
E
[

X̃(t− τ)
]

h̃(τ) dτ

= m̃XH̃(0) (H.1)

where m̃X is the mean value of X̃(t).
The autocorrelation of Ỹ (t) is given by

1

2
E
[

Ỹ (t)Ỹ ∗(t− τ)
]

∆
= R̃Ỹ Ỹ (τ)

=

∫ ∞

α=−∞

∫ ∞

β=−∞

1

2
E
[

X̃(t− α)X̃(t− τ − β)∗
]

h̃(α)h̃∗(β) dα dβ

=

∫ ∞

α=−∞

∫ ∞

β=−∞
R̃X̃X̃(τ + β − α)h̃(α)h̃∗(β) dα dβ. (H.2)

Taking the Fourier transform of both sides we get the power spectral density of
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Ỹ (t) as:

SỸ (F ) = SX̃(F )
∣
∣
∣H̃(F )

∣
∣
∣

2

. (H.3)

In many situations, X̃(t) is white, that is

R̃X̃X̃(τ) = N0δD(τ). (H.4)

Hence (H.2) becomes

E
[

Ỹ (t)Ỹ ∗(t− τ)
]

=

∫ ∞

α=−∞

∫ ∞

β=−∞
N0δD(τ + β − α)h̃(α)h̃(β) dα dβ

= N0

∫ ∞

α=−∞
h̃(α)h̃∗(α− τ) dα

= N0R̃h̃h̃(τ)

= R̃Ỹ Ỹ (τ) (H.5)

and the power spectral density of Ỹ (t) is given by

SỸ (F ) = N0

∫ ∞

τ=−∞
R̃h̃h̃(τ) exp (−j 2πFτ) dτ

= N0

∣
∣
∣H̃(F )

∣
∣
∣

2

. (H.6)

Let us now assume that Ỹ (t) is sampled at rate 1/T . The autocorrelation of
Ỹ (kT ) is given by

1

2
E
[

Ỹ (kT )Ỹ ∗(kT −mT )
]

= R̃Ỹ Ỹ (mT ) (H.7)

which is equal to the autocorrelation of Ỹ (t) sampled at rate 1/T . Hence the
power spectral density of Ỹ (kT ) is given by (using the sampling theorem)

S
P, Ỹ (F ) =

1

T

∞∑

k=−∞
SỸ

(

F − k

T

)

(H.8)

where the subscript P denotes “periodic”. Note that S
P, Ỹ (F ) has the unit of

power (watts).
The variance of the samples Ỹ (kT ) is given by

R̃Ỹ Ỹ (0)
∆
= T

∫ 1/(2T )

F=−1/(2T )

S
P, Ỹ (F ) dF

=

∫ ∞

−∞
SỸ (F ) dF (H.9)

where, in the first part of the above equation we have made use of (E.14) with
m = 0 and in the second part it is assumed that SỸ (F ) is bandlimited to
[−1/(2T ), 1/(2T )]. The above equation leads us to an important conclusion
that the power of bandlimited noise (before sampling) is equal to the variance
of the noise samples (obtained after sampling), independent of the sampling
frequency.



Appendix I

Lowpass Equivalent
Representation of Passband
Systems

Consider the communication system shown in Figure I.1. In this sequel, we
assume that s̃1(t) is a complex Dirac delta function given by:

s̃1(t) = δD(t)(1 + j)

∆
= s1, I(t) + j s1, Q(t). (I.1)

Hence s̃(t) is given by:

s̃(t) = p(t)(1 + j)

∆
= sI(t) + j sQ(t). (I.2)

Note that s̃(t) has a lowpass frequency response and its Fourier transform
exists. The transmitted (passband) signal is given by

sp(t) = sI(t) cos(2πFct)− sQ(t) sin(2πFct) (I.3)

where the subscript “p” in sp(t) denotes a passband signal. The channel cp(t)
is given by the passband representation [5]:

cp(t) = cI(t) cos(2πFct)− cQ(t) sin(2πFct). (I.4)

The complex envelope of the channel is given by:

c̃(t) = cI(t) + j cQ(t). (I.5)

We now show that

sp(t) ⋆ cp(t) = ℜ{q̃(t) exp ( j 2πFct)}
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− sin(2πFct)

sp(t)

cp(t)

w(t)

psd N0/2

2 cos(2πFct+ φ)

−2 sin(2πFct+ φ)

uQ(t)

uI(t)

ũ(t) = uI(t) + j uQ(t)

s̃(t) = sI(t) + j sQ(t)

r(t)

p(nTs)

p(nTs)

cos(2πFct)

sI(t)

sQ(t)

s1, Q(t)

s1, I(t)

Bandpass

channel

Figure I.1: Block diagram of a digital communication system.

s̃(t)

psd 2N0

ṽ(t)

ũ(t)
c̃1(t)

Figure I.2: Lowpass equivalent representation for the system in Figure I.1.



354 K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in

∆
= qp(t) (say) (I.6)

where

q̃(t) =
1

2
(s̃(t) ⋆ c̃(t)) . (I.7)

The proof is as follows.
Let S̃(F ) and C̃(F ) denote the Fourier transforms of s̃(t) and c̃(t) respec-

tively. Similarly, let S̃p(F ) and C̃p(F ) denote the Fourier transforms of sp(t)
and cp(t) respectively. Note that

sp(t) = ℜ{s̃(t) exp ( j 2πFct)}

=
1

2
(s̃(t) exp ( j 2πFct) + s̃∗(t) exp (−j 2πFct))

cp(t) = ℜ{c̃(t) exp ( j 2πFct)}

=
1

2
(c̃(t) exp ( j 2πFct) + c̃∗(t) exp (−j 2πFct)) . (I.8)

Hence we have

S̃p(F ) =
1

2

(

S̃(F − Fc) + S̃∗(−F − Fc)
)

C̃p(F ) =
1

2

(

C̃(F − Fc) + C̃∗(−F − Fc)
)

. (I.9)

Now, the Fourier transform of qp(t) defined in (I.6) is given by

Q̃p(F ) = S̃p(F )C̃p(F )

=
1

4

(

S̃(F − Fc)C̃(−F − Fc) + S̃∗(−F − Fc)C̃
∗(−F − Fc)

)

(I.10)

where we have used the fact that the product of non-overlapping frequency
bands is zero, that is:

S̃(F − Fc)C̃
∗(−F − Fc) = 0

S̃∗(−F − Fc)C̃(F − Fc) = 0. (I.11)

By inspection, it is easy to see that the inverse Fourier transform of Q̃p(F ) in
(I.10) is given by

qp(t) =
1

2
ℜ{(s̃(t) ⋆ c̃(t)) exp ( j 2πFct)} . (I.12)

Comparing (I.6) and (I.12) we conclude that

q̃(t) =
1

2
(s̃(t) ⋆ c̃(t)) . (I.13)

Next, we derive the complex baseband signal obtained at the output of the
receiver multipliers in Figure I.1. We first consider the noise term w(t) in
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Figure I.1, which denotes an AWGN process with zero mean and psd N0/2.
The noise at the output of the receiver multipliers is given by:

vI(t) = 2w(t) cos(2πFct+ φ)

vQ(t) = −2w(t) sin(2πFct+ φ) (I.14)

where φ is a uniformly distributed random variable in [0, 2π). The noise terms
vI(t) and vQ(t) satisfy the relations given in (4.53) and (4.54) in Chapter 4.

Since the signal component at the input to the receiver multipliers is given
by (I.6), the (complex baseband) signal at the multiplier output is equal to
q̃(t) exp(−jφ). Thus the composite signal at the receiver multiplier output is:

ũ(t)
∆
= uI(t) + juQ(t)

= q̃(t) exp (−jφ) + ṽ(t)

=
1

2
(s̃(t) ⋆ c̃(t)) exp (−jφ) + ṽ(t) (I.15)

where
ṽ(t)

∆
= vI(t) + j vQ(t). (I.16)

Hence, for the sake of analytical simplicity, we may consider the lowpass equiv-
alent system shown in Figure I.2 where the modified complex envelope of the
channel is given by:

c̃1(t)
∆
=

1

2
c̃(t) exp (−jφ) . (I.17)



Appendix J

Linear Prediction

In this Appendix, we derive the theory of optimum linear prediction. In partic-
ular, we discuss the principle of forward and backward prediction. Important
properties of prediction filters are also discussed.

J.1 Forward Prediction

Consider a wide sense stationary (WSS), correlated, complex-valued random
process x̃n with zero mean. The statement of the forward prediction problem
is as follows: Given the samples x̃n−1, . . . , x̃n−P+1, try to predict x̃n. Mathe-
matically, this can be written as:

x̂n = −
P−1∑

k=1

ãP−1, kx̃n−k. (J.1)

For notational simplicity, we have denoted the estimate of x̃n by x̂n instead
of ˆ̃xn. The terms ãP−1, k are referred to as the forward prediction coefficients.
Note that x̃n is predicted using P − 1 past values, hence the predictor order
in the above equation is P − 1, which is also denoted by the subscript P − 1
in ãP−1, k. The negative sign in the above equation is just for mathematical
convenience, so that the (P −1)th-order forward prediction error can be written
as:

ẽ f
P−1, n = x̃n − x̂n

=
P−1∑

k=0

ãP−1, kx̃n−k (J.2)

with ãP−1, 0 = 1. Note that the above equation is similar to the convolution

sum. Note also that ẽ f
P−1, n denotes the error computed at time n, corresponding

to the (P − 1)th-order forward predictor which estimates x̃n.
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In order to compute the optimum prediction coefficients which minimize the
mean squared prediction error, we set:

∂E

[∣
∣
∣ẽ

f
P−1, n

∣
∣
∣

2
]

∂ã∗P−1, j

= 0 for 1 ≤ j ≤ P − 1 (J.3)

which simplifies to:

E
[

ẽ f
P−1, nx̃

∗
n−j

]

= 0

⇒ E

[(
P−1∑

k=0

ãP−1, kx̃n−k

)

x̃∗
n−j

]

= 0

⇒
P−1∑

k=0

ãP−1, kR̃x̃x̃, j−k = 0 for 1 ≤ j ≤ P − 1 (J.4)

where

R̃x̃x̃, k
∆
=

1

2
E
[
x̃nx̃

∗
n−k

]
. (J.5)

Thus we get a set of P − 1 simultaneous equations, which can be used to solve
for the unknowns, ãP−1, k for 1 ≤ k ≤ P − 1. The equations can be written in
a matrix form as follows:







R̃x̃x̃, 0 R̃x̃x̃,−1 · · · R̃x̃x̃,−P+2

R̃x̃x̃, 1 R̃x̃x̃, 0 · · · R̃x̃x̃,−P+3

...
...

...
...

R̃x̃x̃, P−2 R̃x̃x̃, P−3 · · · R̃x̃x̃, 0















ãP−1, 1

ãP−1, 2

...
ãP−1, P−1







= −








R̃x̃x̃, 1

R̃x̃x̃, 2

...

R̃x̃x̃, P−1







.

(J.6)
The above set of linear equations are referred to as the normal equations. The
minimum mean squared error so obtained is given by (using the fact that the
error is orthogonal to the past inputs, x̃n−1, . . . , x̃n−P+1):

E f
P−1

∆
=

1

2
E

[∣
∣
∣ẽ

f
P−1, n

∣
∣
∣

2
]

=
1

2
E
[

ẽ f
P−1, nx̃

∗
n

]

=
1

2
E

[(
P−1∑

k=0

ãP−1, kx̃n−k

)

x̃∗
n

]

=
P−1∑

k=0

ãP−1, kR̃x̃x̃,−k

=
P−1∑

k=0

ãP−1, kR̃
∗
x̃x̃, k. (J.7)

Equation (J.7), in combination with the set of equations in (J.6) are called the
Yule-Walker equations.



358 K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in

J.2 Backward Prediction

Let us again consider a wide sense stationary, correlated, complex random pro-
cess x̃n having zero mean. The statement of the backward prediction problem is
as follows: Given the samples x̃n−1, . . . , x̃n−P+1, try to estimate x̃n−P . Math-
ematically this can be formulated as:

x̂n−P = −
P−2∑

k=0

b̃P−1, kx̃n−1−k. (J.8)

The minus sign in the above equation is just for mathematical convenience and
b̃P−1, k denotes the backward prediction coefficient. The subscript P − 1 in

b̃P−1, k denotes the predictor order. The (P − 1)th-order backward prediction
error can be written as:

ẽ b
P−1, n−1 = x̃n−P − x̂n−P

=
P−1∑

k=0

b̃P−1, kx̃n−1−k (J.9)

which is again similar to the convolution sum, with b̃P−1, P−1 = 1. Note that
ẽ b
P−1, n−1 denotes the error computed at time n− 1, corresponding to the (P −
1)th-order backward predictor which estimates x̃n−P .

The optimum predictor coefficients, that minimize the mean squared error,
is obtained by setting:

∂E
[∣
∣ẽ b

P−1, n−1

∣
∣
2
]

∂b̃∗P−1, j

= 0 for 0 ≤ j ≤ P − 2 (J.10)

which simplifies to:

E
[
ẽ b
P−1, n−1x̃

∗
n−1−j

]
= 0

⇒ E

[(
P−1∑

k=0

b̃P−1, kx̃n−1−k

)

x̃∗
n−1−j

]

= 0

⇒
P−1∑

k=0

b̃P−1, kR̃x̃x̃, j−k = 0 for 0 ≤ j ≤ P − 2. (J.11)

The above set of equations can be rewritten in matrix form as follows:








R̃x̃x̃, 0 R̃x̃x̃,−1 · · · R̃x̃x̃,−P+2

R̃x̃x̃, 1 R̃x̃x̃, 0 · · · R̃x̃x̃,−P+3

...
...

...
...

R̃x̃x̃, P−2 R̃x̃x̃, P−3 · · · R̃x̃x̃, 0















b̃P−1, 0

b̃P−1, 1

...

b̃P−1, P−2







= −








R̃x̃x̃,−P+1

R̃x̃x̃,−P+2

...

R̃x̃x̃,−1








(J.12)
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which are also called the normal equations. Taking the complex conjugate of
both sides in the above equation we get:








R̃∗
x̃x̃, 0 R̃∗

x̃x̃,−1 · · · R̃∗
x̃x̃,−P+2

R̃∗
x̃x̃, 1 R̃∗

x̃x̃, 0 · · · R̃∗
x̃x̃,−P+3

...
...

...
...

R̃∗
x̃x̃, P−2 R̃∗

x̃x̃, P−3 · · · R̃∗
x̃x̃, 0















b̃∗P−1, 0

b̃∗P−1, 1
...

b̃∗P−1, P−2







= −








R̃∗
x̃x̃,−P+1

R̃∗
x̃x̃,−P+2

...

R̃∗
x̃x̃,−1








(J.13)
which can be rewritten as:








R̃x̃x̃, 0 R̃x̃x̃, 1 · · · R̃x̃x̃, P−2

R̃x̃x̃,−1 R̃x̃x̃, 0 · · · R̃x̃x̃, P−3

...
...

...
...

R̃x̃x̃,−P+2 R̃x̃x̃,−P+3 · · · R̃x̃x̃, 0















b̃∗P−1, 0

b̃∗P−1, 1
...

b̃∗P−1, P−2







= −








R̃x̃x̃, P−1

R̃x̃x̃, P−2

...

R̃x̃x̃, 1








(J.14)
which is similar to (J.6). Comparing (J.6) and (J.14) we conclude that:

b̃∗P−1, k = ãP−1, P−1−k for 0 ≤ k ≤ P − 2. (J.15)

Since
b̃P−1, P−1 = ãP−1, 0 = 1 (J.16)

(J.15) can be rewritten as

b̃∗P−1, k = ãP−1, P−1−k for 0 ≤ k ≤ P − 1. (J.17)

Thus the backward prediction filter can be visualized as a “matched filter” for
the forward prediction filter.

The minimum mean squared backward prediction error is given by (using
the fact that the error is orthogonal to the inputs, x̃n−1, . . . , x̃n−P+1):

E b
P−1

∆
=

1

2
E
[∣
∣ẽ b

P−1, n−1

∣
∣
2
]

=
1

2
E
[
ẽ b
P−1, n−1x̃

∗
n−P

]

=
1

2
E

[(
P−1∑

k=0

b̃P−1, kx̃n−1−k

)

x̃∗
n−P

]

=
P−1∑

k=0

b̃P−1, kR̃x̃x̃, P−1−k. (J.18)

Taking the complex conjugate of both sides, we get (since the mean squared
error is real):

E b
P−1 =

P−1∑

k=0

b̃∗P−1, kR̃
∗
x̃x̃, P−1−k
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=
P−1∑

k=0

b̃∗P−1, P−1−kR̃
∗
x̃x̃, k

=
P−1∑

k=0

ãP−1, kR̃
∗
x̃x̃, k

= E f
P−1. (J.19)

Thus we have arrived at an important conclusion that the minimum mean
squared error of forward and backward predictors of the same order are identical.

Having derived the basic theory behind forward and backward predictors,
we now proceed to analyze them in more detail. In particular, we are interested
in two important questions:

(a) Given that we have found out the optimum predictor of order P − 1, does
increasing the predictor order to P , reduce the minimum mean squared
error.

(b) Given that we have found out the optimum predictor of order P − 1, is
it possible to compute the coefficients of the P th-order predictor directly
from the (P−1)th-order predictor, without having to solve the Yule-Walker
equations.

In the next section, we discuss the Levinson-Durbin algorithm, which addresses
both the above problems.

J.3 The Levinson Durbin Algorithm

Recall that the error corresponding to the P th-order forward predictor that
estimates x̃n, computed at time n is given by:

ẽ f
P, n = x̃n − x̂n

=
P∑

k=0

ãP, kx̃n−k. (J.20)

The above equation can be written in terms of the (P − 1)th-order forward and
backward error as follows:

ẽ f
P, n = ẽ f

P−1, n + K̃P ẽ
b
P−1, n−1 (J.21)

where K̃P is a complex constant to be determined such that the P th-order
forward mean squared error is minimized. Observe that ẽ f

P−1, n and ẽ b
P−1, n−1

are given by (J.2) and (J.9) respectively. Moreover, from (J.20) and (J.21) we
note that

K̃P = ãP, P . (J.22)

The relationship between the P th-order forward predictor and the (P − 1)th-
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x̃n x̃n−1 x̃n−P+1 x̃n−P

ãP−1, 0 ãP−1, 1 ãP−1, P−1

b̃P−1, 0 b̃P−1, P−2 b̃P−1, P−1

ãP, 0 ãP, 1 ãP, P−1 ãP, P

Figure J.1: Relationship between the P th-order forward predictor and the (P −1)th-
order forward and backward predictors.

order forward and backward predictors is illustrated in Figure J.1.
Thus, if K̃P is known, ãP, k can be immediately found out. To compute K̃P

we set

∂E

[∣
∣
∣ẽ

f
P, n

∣
∣
∣

2
]

∂K̃∗
P

= 0. (J.23)

Simplifying the above equation we get:

E
[

ẽ f
P, n

(
ẽ b
P−1, n−1

)∗]
= 0

⇒ E
[(

ẽ f
P−1, n + K̃P ẽ

b
P−1, n−1

) (
ẽ b
P−1, n−1

)∗]
= 0. (J.24)

Hence

K̃P = −
E
[

ẽ f
P−1, n

(
ẽ b
P−1, n−1

)∗]

E

[∣
∣
∣ẽ b

P−1, n−1

∣
∣
∣

2
]

= −
E
[

ẽ f
P−1, n

(
∑P−1

k=0 b̃∗P−1, kx̃
∗
n−1−k

)]

2E b
P−1

. (J.25)

Once again using the principle of orthogonality we get:

K̃P = −
E
[

ẽ f
P−1, nx̃

∗
n−P

]

2E b
P−1

= −
E
[(
∑P−1

k=0 ãP−1, kx̃n−k

)

x̃∗
n−P

]

2E b
P−1



362 K. Vasudevan Faculty of EE IIT Kanpur India email: vasu@iitk.ac.in

= −
∑P−1

k=0 ãP−1, kR̃x̃x̃, P−k

E b
P−1

. (J.26)

Thus the minimum mean squared error corresponding to the P th-order forward
prediction filter is given by:

1

2
E
[

ẽ f
P, n

(

ẽ f
P,n

)∗]
=

1

2
E
[

ẽ f
P, n

(

ẽ f
P−1, n

)∗]
(J.27)

where we have used (J.24). Simplifying the above equation we get:

1

2
E
[(

ẽ f
P−1, n + K̃P ẽ

b
P−1, n−1

)(

ẽ f
P−1, n

)∗]
= E f

P−1 +
1

2
K̃P

(

−2K̃∗
PE b

P−1

)

=

(

1−
∣
∣
∣K̃P

∣
∣
∣

2
)

E f
P−1

= E f
P (J.28)

where we have used (J.25) and (J.19). Now, if we can prove that

∣
∣
∣K̃P

∣
∣
∣ ≤ 1 (J.29)

it follows that
E f
P ≤ E f

P−1. (J.30)

In other words, the prediction error variance due to a P th-order predictor is
never greater than that due to a (P − 1)th-order predictor. We now proceed to
prove (J.29).

From (J.25) we observe that K̃P is of the form:

K̃P =
E [x̃ỹ∗]

2σxσy
(J.31)

where x̃ and ỹ are zero-mean, complex random variables and

σx = σy =
√

E f
P−1 =

√

E b
P−1. (J.32)

In other words, the expression for K̃P is identical to the correlation coefficient
between two random variables. Though it is well known that the magnitude of
the correlation coefficient is less than unity, nevertheless we will give a formal
proof for the sake of completeness.

We begin by noting that:

E
[

(a |x̃| − |ỹ∗|)2
]

≥ 0 (J.33)

for any real constant a. Expanding the above equation we get:

2a2σ2
x − 2aE [|x̃ỹ∗|] + 2σ2

y ≥ 0. (J.34)
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The above quadratic equation in a implies that its discriminant is non-positive.
Hence:

4E2 [|x̃ỹ∗|]− 16σ2
xσ

2
y ≤ 0

⇒ E [|x̃ỹ∗|] ≤ 2σxσy. (J.35)

Let

x̃ỹ∗ = z̃ = α+ jβ (say). (J.36)

Since in general for any real x and complex g̃(x)

∫

x

|g̃(x)| dx ≥
∣
∣
∣
∣

∫

x

g̃(x) dx

∣
∣
∣
∣

(J.37)

similarly we have

E [|z̃|] =
∫

α

∫

β

√

α2 + β2 p(α, β) dα dβ

≥
∣
∣
∣
∣

∫

α

∫

β

(α+ jβ) p(α, β) dα dβ

∣
∣
∣
∣

= |E [z̃]| (J.38)

where we have made use of the fact that a probability density function is real
and positive, hence

|p(α, β)| = p(α, β). (J.39)

Substituting (J.38) in (J.35) we get the desired result in (J.29). The term K̃P is
commonly referred to as the reflection coefficient in prediction theory literature.

Finally, the Levinson-Durbin algorithm for recursively computing the opti-
mal predictor coefficients is summarized below:

(a) Compute the reflection coefficient (which is also equal to the P th coeffi-
cient) for the P th-order predictor:

K̃P = −
∑P−1

k=0 ãP−1, kR̃x̃x̃, P−k

E b
P−1

= ãP, P . (J.40)

(b) Compute the remaining P th-order forward predictor coefficients (From
(J.15), (J.20) and (J.21)):

ãP, k = ãP−1, k + K̃P ã
∗
P−1, P−k for 1 ≤ k ≤ P − 1. (J.41)

(c) Compute the prediction error variance for the P th-order predictor:

E f
P =

(

1−
∣
∣
∣K̃P

∣
∣
∣

2
)

E f
P−1. (J.42)
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The initial conditions for the recursion are:

ã0, 0 = 1

K̃1 = − R̃x̃x̃, 1

R̃x̃x̃, 0

E f
0 = R̃x̃x̃, 0. (J.43)

Thus the Levinson-Durbin algorithm is order-recursive, as opposed to many
algorithms, e.g. the Viterbi algorithm, that are time-recursive.

Let us now discuss two interesting situations concerning the reflection coef-
ficient.

(a) When
∣
∣
∣K̃P

∣
∣
∣ = 1 then E f

P = 0. This implies that x̃n can be perfectly

estimated.

(b) When
∣
∣
∣K̃P

∣
∣
∣ = 0 then E f

P = E f
P−1. This implies that x̃n has been com-

pletely decorrelated (whitened), and hence increasing the predictor order
would not reduce the prediction error variance any further.

Rxx,m = E[xnxn−m]

wn

hn

xn

Figure J.2: System block diagram.

Example J.3.1 Consider the system in Figure J.2. The input wn is a real-
valued, zero-mean white noise process with autocorrelation defined as:

Rww,m = E[wnwn−m] = 2δK(m) (J.44)

where δK(·) is the Kronecker delta function. The impulse response of the filter
is given by:

hn = δK(n) + 2δK(n− 1) + 3δK(n− 2). (J.45)

Using the Levinson-Durbin algorithm, compute the coefficients of the optimum
3rd-order forward predictor.

Solution: In general, the filter output xn is given by the discrete-time convolu-
tion

xn =
∞∑

k=−∞
hkwn−k. (J.46)

Observe that all variables in this problem are real-valued. Therefore the auto-
correlation of xn is given by

Rxx,m = E [xnxn−m]
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= E

[ ∞∑

k=−∞
hkwn−k

∞∑

l=−∞
hlwn−m−l

]

=
∞∑

k=−∞

∞∑

l=−∞
hkhlE [wn−kwn−m−l]

=
∞∑

k=−∞

∞∑

l=−∞
2hkhlδK(m+ l − k)

=
∞∑

k=−∞
2hkhk−m

= 2Rhh,m (J.47)

where Rhh,m denotes the autocorrelation of hn. Clearly

Rxx, 0 = 28

Rxx, 1 = 16

Rxx, 2 = 6

Rxx,m = 0 for |m| ≥ 3. (J.48)

Therefore

K1 = −Rxx, 1

Rxx, 0
= −0.5714 = a1, 1. (J.49)

Hence

E f
1 =

(
1−K2

1

)
E f
0

=
(
1−K2

1

)
Rxx, 0

= 18.8571. (J.50)

Similarly

K2 = −
∑1

k=0 a1, kRxx, 2−k

E f
1

= 0.1666 = a2, 2. (J.51)

Therefore, the second order forward predictor coefficients are

a2, 0 = 1

a2, 1 = a1, 1(1 +K2)

= −0.6665

a2, 2 = 0.1666 (J.52)

and the variance of the prediction error at the output of the second order pre-
dictor is

E f
2 =

(
1−K2

2

)
E f
1

= 18.3337. (J.53)
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Again

K3 = −
∑2

k=0 a2, kRxx, 3−k

E f
2

= 0.0727 = a3, 3 (J.54)

and finally the coefficients of the optimum 3rd-order forward predictor are

a3, 0 = 1

a3, 1 = a2, 1 +K3a2, 2

= −0.6543

a3, 2 = a2, 2 +K3a2, 1

= 0.1181

a3, 3 = 0.0727. (J.55)

Example J.3.2 Consider a random process given by

x̃n = e j (ω0n+θ) (J.56)

where ω0 is a constant and θ is uniformly distributed in [0, 2π).
State whether x̃n is completely predictable. Justify your answer.

Solution: The autocorrelation of x̃n is given by:

R̃x̃x̃,m =
1

2
E
[
x̃nx̃

∗
n−m

]
=

1

2
e jω0m. (J.57)

Therefore

K̃1 = − R̃x̃x̃, 1

R̃x̃x̃, 0

= −e jω0 . (J.58)

Hence from (J.42) we have E f
1 = 0, which implies that x̃n can be perfectly

predicted.
In the next section we prove the minimum phase property of the optimum

forward prediction filters.

J.4 Minimum Phase Property of the Forward
Prediction Filter

A filter is said to be minimum phase when all its poles and zeros lie inside
the unit circle. In order to prove the minimum phase property of the forward
prediction filter, we first need to know some properties of all-pass filters [167].
The z̃-transform of an all-pass filter is of the form:

H̃ap(z̃) =
ã∗P−1 + ã∗P−2z̃

−1 + . . .+ ã∗1 z̃
−(P−2) + z̃−(P−1)

1 + ã1z̃−1 + . . .+ ãP−2z̃−(P−2) + ãP−1z̃−(P−1)
. (J.59)
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It is easy to verify that:

H̃ap(z̃)H̃
∗
ap(z̃)

∣
∣
∣
z̃=e jω

= 1 (J.60)

where
ω = 2πFT (J.61)

where T is the sampling period and F is the frequency in Hz. In (J.60) it is
assumed that the region of convergence (ROC) [167] of H̃ap(z̃) includes the
unit circle. From (J.59) we also observe that the numerator coefficients are the
complex-conjugate, time-reversed form of the denominator coefficients. This re-
minds us of the relation between the forward and backward predictor coefficients
in (J.15). More specifically, the numerator polynomial in (J.59) corresponds to
the (P − 1)th-order backward prediction filter and the denominator polynomial
corresponds to the (P − 1)th-order forward prediction filter.

The all-pass filter in (J.59) can also be written in an alternate form as follows:

H̃ap(z̃) =

∏P−1
k=1

(
z̃∗k + z̃−1

)

∏P−1
k=1 (1 + z̃kz̃−1)

. (J.62)

From the above equation we observe that the zeros of the (P−1)th-order forward
prediction filter are given by −z̃k.

Theorem J.4.1 When |z̃k| < 1 for 1 ≤ k ≤ P − 1 then

∣
∣
∣H̃ap(z̃)

∣
∣
∣

2

= H̃ap(z̃)H̃
∗
ap(z̃) is







> 1 for |z̃| < 1
= 1 for |z̃| = 1
< 1 for |z̃| > 1.

(J.63)

Proof: Consider a single term of H̃ap(z̃) given by:

H̃ap, 1(z̃) =
z̃∗k + z̃−1

1 + z̃kz̃−1
for |z̃k| < 1. (J.64)

Observe that H̃ap, 1(z̃) is also an all-pass filter and we only need to prove
that:

H̃ap, 1(z̃)H̃
∗
ap, 1(z̃) is







> 1 for |z̃| < 1
= 1 for |z̃| = 1
< 1 for |z̃| > 1

(J.65)

since H̃ap(z̃) is just a product of the individual terms. We have:

H̃ap, 1(z̃)H̃
∗
ap, 1(z̃) =

(
z̃∗k + z̃−1

) (

z̃k +
(
z̃−1
)∗)

(1 + z̃kz̃−1)
(
1 + z̃∗k (z̃

−1)∗
)

=
|z̃k|2 +

∣
∣z̃−1

∣
∣
2
+ z̃∗k

(
z̃−1
)∗

+ z̃kz̃−1

1 + |z̃kz̃−1|2 + z̃∗k (z̃
−1)∗ + z̃kz̃−1

. (J.66)
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From the above equation we find that there are two common terms in the
numerator and the denominator. Thus the problem reduces to proving:

|z̃k|2 +
∣
∣z̃−1

∣
∣
2

1 + |z̃kz̃−1|2
is







> 1 for |z̃| < 1
= 1 for |z̃| = 1
< 1 for |z̃| > 1.

(J.67)

The proof is as follows. Obviously for |z̃k| < 1:

∣
∣z̃−1

∣
∣ (1− |z̃k|) is







> (1− |z̃k|) for |z̃| < 1
= (1− |z̃k|) for |z̃| = 1
< (1− |z̃k|) for |z̃| > 1.

(J.68)

Rearranging terms in the above equation we get:

∣
∣z̃−1

∣
∣+ |z̃k| is







> 1 +
∣
∣z̃−1z̃k

∣
∣ for |z̃| < 1

= 1 +
∣
∣z̃−1z̃k

∣
∣ for |z̃| = 1

< 1 +
∣
∣z̃−1z̃k

∣
∣ for |z̃| > 1.

(J.69)

Squaring both sides and expanding we get:

∣
∣z̃−1

∣
∣
2
+ |z̃k|2 is







> 1 +
∣
∣z̃−1z̃k

∣
∣
2

for |z̃| < 1

= 1 +
∣
∣z̃−1z̃k

∣
∣
2

for |z̃| = 1

< 1 +
∣
∣z̃−1z̃k

∣
∣
2

for |z̃| > 1

(J.70)

from which (J.67) follows immediately. Thus proved.

Equipped with this fundamental result, we are now ready to prove the min-
imum phase property of the optimum forward prediction filter. The proof is
by induction [167]. We assume that the input process x̃n is not deterministic.
Hence ∣

∣
∣K̃P

∣
∣
∣ < 1 (J.71)

for all P .
The z̃-transform of the first-order prediction filter is given by:

Ã1(z̃) = 1 + K̃1z̃
−1. (J.72)

The zero is at −K̃1, which is inside the unit circle due to (J.71). Taking the
z̃-transform of (J.20) and (J.21) and dividing both equations by the z̃-transform
of the input, X̃(z̃), we get:

ÃP (z̃) = ÃP−1(z̃) + z̃−1K̃P B̃P−1(z̃). (J.73)

Let z̃i denote a zero of ÃP (z̃). Then:

1

K̃P

= − z̃−1
i B̃P−1(z̃i)

ÃP−1(z̃i)
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= −z̃−1
i H̃ap(z̃i)

= −z̃−1
i

∏P−1
k=1

(
z̃∗k + z̃−1

i

)

∏P−1
k=1

(
1 + z̃kz̃

−1
i

) . (J.74)

where −z̃k, 1 ≤ k ≤ P − 1, denotes the zeros of the (P − 1)th-order forward
prediction filter. By induction we assume that the (P − 1)th-order forward
prediction filter is minimum phase, that is

|z̃k| < 1 for 1 ≤ k ≤ P − 1. (J.75)

We also assume that the (P − 1)th-order forward prediction filter has not com-
pletely decorrelated the input process, x̃n, hence

∣
∣
∣K̃P

∣
∣
∣ > 0. (J.76)

We now have to prove that:

|z̃i| < 1 for 1 ≤ i ≤ P . (J.77)

The proof is as follows. Note that due to (J.71)

∣
∣
∣
∣
∣
z̃−1
i

∏P−1
k=1

(
z̃∗k + z̃−1

i

)

∏P−1
k=1

(
1 + z̃kz̃

−1
i

)

∣
∣
∣
∣
∣

2

> 1. (J.78)

Then obviously due to (J.63) and (J.78):

|z̃i| 6= 1. (J.79)

If
|z̃i| > 1 (J.80)

then due to (J.63)
∣
∣
∣
∣
∣
z̃−1
i

∏P−1
k=1

(
z̃∗k + z̃−1

i

)

∏P−1
k=1

(
1 + z̃kz̃

−1
i

)

∣
∣
∣
∣
∣

2

< 1 (J.81)

which contradicts (J.78). Hence

|z̃i| < 1 for 1 ≤ i ≤ P . (J.82)

Thus we have proved by induction that all the zeros of the optimal P th-order
predictor lie inside the unit circle.

Finally, we prove another important property which is given by the following
equation:

1

j 2π

∮

C

ln
∣
∣
∣ÃP (z̃)

∣
∣
∣

2

z̃−1 dz̃ = 0 (J.83)

where ÃP (z̃) denotes the z̃-transform of an FIR (finite impulse response) filter
of order P and the contour integral is taken in the anticlockwise direction in
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the region of convergence (ROC) of ln
∣
∣
∣ÃP (z̃)

∣
∣
∣

2

. The proof of (J.83) is given

below.

Observe that (J.83) is just the inverse z̃ transform of ln
∣
∣
∣ÃP (z̃)

∣
∣
∣

2

evaluated

at time n = 0. Moreover

ln
∣
∣
∣ÃP (z̃)

∣
∣
∣

2

=
P∑

i=1

(

ln
(
1 + z̃iz̃

−1
)
+ ln

(

1 + z̃∗i
(
z̃−1

)∗))
(J.84)

where −z̃i is a zero of ÃP (z̃). If we can prove that when |z̃i| < |z̃|

1

j 2π

∮

C

ln
(
1 + z̃iz̃

−1
)
z̃−1 dz̃ = 0 (J.85)

where C is in the ROC of ln
(
1 + z̃iz̃−1

)
, which is |z̃| > |z̃i|, then the result in

(J.83) follows immediately.
Using the power series expansion for ln (1 + x̃) for |x̃| < 1 we get:

ln
(
1 + z̃iz̃

−1
)
=

∞∑

n=1

(−1)n+1z̃ni z̃
−n

n
. (J.86)

Using the basic definition of the z̃-transform we get:

x̃n =

{
(−1)n+1z̃n

i

n for n ≥ 1
0 for n < 1.

(J.87)

Thus (J.85) and hence (J.83) is proved.
When all the zeros of ÃP (z̃) lie inside the unit circle, then the ROC of

ln
∣
∣
∣ÃP (z̃)

∣
∣
∣

2

includes the unit circle. Hence substituting

z̃ = e j 2πFT (J.88)

in (J.83) we get:

∫ 1/T

F=0

ln
∣
∣
∣ÃP

(
e j 2πFT

)
∣
∣
∣

2

dF = 0

⇒
∫ 1/T

F=0

ln
∣
∣
∣ÃP, P (F )

∣
∣
∣

2

dF = 0 (J.89)

where F denotes the frequency in Hz and T denotes the sampling period. Note
that

ÃP

(
e j 2πFT

) ∆
= ÃP, P (F ) (J.90)

is the discrete-time Fourier transform of the sequence {ãP, n}.
Thus we have proved that in the case of an optimal P th-order forward pre-

diction filter, (J.89) is satisfied since all its zeros are inside the unit circle.
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J.5 Cholesky Decomposition of the Autocovari-
ance Matrix

Consider an L×1 noise vector w̃ consisting of zero-mean, wide sense stationary
correlated noise samples. Thus

w̃ =
[
w̃0 . . . w̃L−1

]T
. (J.91)

The autocovariance of w̃ is given by:

1

2
E
[
w̃w̃H

]
= Φ̃ (say). (J.92)

Let
1

2
E
[

|w̃j |2
]

= σ2
w for 0 ≤ j ≤ L− 1. (J.93)

Consider another L× 1 noise vector z̃ such that:

z̃ = Ãw̃ (J.94)

where

Ã
∆
=








1 0 . . . 0
ã1, 1 1 . . . 0
...

...
...

...
ãL−1, L−1 ãL−1, L−2 . . . 1








(J.95)

is the lower triangular matrix consisting of the optimal forward predictor coef-
ficients and

z̃
∆
=
[
z̃0 . . . z̃L−1

]T
. (J.96)

Due to the fact that the prediction error is orthogonal to the inputs (see (J.4))
we have

1

2
E
[
z̃nz̃

∗
n−j

]
=

1

2
E

[

z̃n

(
n−j∑

k=0

ã∗n−j, kw̃
∗
n−j−k

)]

=







0 for 1 ≤ j ≤ n, 1 ≤ n ≤ L− 1
σ2
z, n for j = 0, 1 ≤ n ≤ L− 1

σ2
z, 0 = σ2

w for j = 0, n = 0.
(J.97)

Hence

1

2
E
[
z̃z̃H

]
= ÃΦ̃ÃH

= D (say) (J.98)

where

D
∆
=






σ2
z, 0 . . . 0

...
... 0

0 . . . σ2
z, L−1




 . (J.99)
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From (J.98) we have

Φ̃ = Ã−1D
(

ÃH
)−1

⇒ Φ̃−1 = ÃHD−1Ã. (J.100)

The first part of the above equation is referred to as the Cholesky decomposition
of the autocovariance matrix Φ̃.



Appendix K

Eigendecomposition of a
Circulant Matrix

An N ×N circulant matrix Ã is given by:

Ã =








ã0 ã1 . . . ãN−1

ãN−1 ã0 . . . ãN−2

...
...

...
...

ã1 ã2 . . . ã0







. (K.1)

The circulant matrix can also be expressed in terms of the permutation matrix
as follows:

Ã =
N−1∑

n=0

ãnP
n
N (K.2)

where PN is the N ×N permutation matrix given by

PN =








0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

1 0 0 . . . 0







. (K.3)

Note that

P0
N

∆
= IN

Pn
N

∆
= PN × . . .×PN (n-fold multiplication). (K.4)

For example

P3 =





0 1 0
0 0 1
1 0 0



 . (K.5)
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The eigenvalues of P3 are given by:

∣
∣
∣
∣
∣
∣

−λ̃ 1 0

0 −λ̃ 1

1 0 −λ̃

∣
∣
∣
∣
∣
∣

= 0

⇒ λ̃3 = 1

⇒ λ̃3 = e−j 2πk (K.6)

where k is an integer. Thus the eigenvalues of P3 are

λ̃k = e−j 2πk/3 for 0 ≤ k ≤ 2. (K.7)

Similarly, it can be shown that the eigenvalues of PN are

λ̃k = e−j 2πk/N for 0 ≤ k ≤ N − 1. (K.8)

It can also be shown that the eigenvector of PN corresponding to λ̃k is

q̃k =
1√
N










e j 2πk(N−1)/N

e j 2πk(N−2)/N

...
e j 2πk/N

1










. (K.9)

Note that
q̃H
n q̃m = δK(n−m). (K.10)

Interestingly, it turns out that all the eigenvectors of PN are also eigenvectors
of Pn

N . The eigenvalue λ1, k corresponding to q̃k is computed as

Pn
N q̃k = λ̃1, kq̃k

⇒ λ̃n
k q̃k = λ̃1, kq̃k

⇒ λ̃n
k = λ̃1, k. (K.11)

Using the above result, we can conclude that q̃k is also an eigenvector of A and
the corresponding eigenvalue λ̃2, k is given by

Aq̃k =
N−1∑

n=0

ãnλ̃
n
k q̃k

= λ̃2, kq̃k for 0 ≤ k ≤ N − 1

⇒ λ̃2, k =
N−1∑

n=0

ãnλ̃
n
k

=
N−1∑

n=0

ãne
−j 2πnk/N
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= Ãk for 0 ≤ k ≤ N − 1 (K.12)

where Ãk is the N point discrete Fourier transform (DFT) (see (5.283) for the
definition of the DFT) of ãn.

Let us now construct a matrix Q̃ and Λ̃ as follows:

Q̃ =
[
q̃N−1 . . . q̃0

]

Λ̃ =








λ̃2, N−1 0 . . . 0

0 λ̃2, N−2 . . . 0
...

...
...

...

0 0 . . . λ̃2, 0







. (K.13)

Observe that Q̃ is a unitary matrix, that is

Q̃HQ̃ = IN

⇒ Q̃H = Q̃−1. (K.14)

Combining the N equations in the first part of (K.12) we get

ÃQ̃ = Q̃Λ̃

⇒ Ã = Q̃Λ̃Q̃H (K.15)

where we have used (K.14). The result in (K.15) is known as eigendecomposition
of the circulant matrix.



Appendix L

The Channel Capacity
Theorem

In this appendix, we derive the minimum average SNR per bit for error-free
transmission. Consider the signal

rn = xn + wn for 0 ≤ n < N (L.1)

where xn is the transmitted signal (message) and wn denotes samples of in-
dependent zero-mean noise, not necessarily Gaussian. Note that all the terms
in (L.1) are real-valued. We also assume that xn and wn are ergodic random
processes, that is, the time average is equal to the ensemble average. The time-
averaged signal power is given by, for large values of N

1

N

N−1∑

n=0

x2
n = Pav. (L.2)

The time-averaged noise power is

1

N

N−1∑

n=0

w2
n = σ2

w

=
1

N

N−1∑

n=0

(rn − xn)
2 . (L.3)

The received signal power is

1

N

N−1∑

n=0

r2n =
1

N

N−1∑

n=0

(xn + wn)
2

=
1

N

N−1∑

n=0

x2
n + w2

n
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= Pav + σ2
w

= E
[

(xn + wn)
2
]

(L.4)

where we have assumed independence between xn and wn and the fact that wn

has zero-mean. Note that in (L.4) it is necessary that either xn or wn or both,
have zero-mean.

Next, we observe that (L.3) is the expression for an N -dimensional noise
hypersphere with radius σw

√
N and center given by the coordinates

[x0 . . . xN−1]1×N . (L.5)

Similarly, (L.4) is the expression for an N -dimensional received signal hyper-
sphere with radius

√
N(Pav + σ2

w) and center at

[0 . . . 0]1×N . (L.6)

Now, the problem statement is: how many noise hyperspheres (messages)
can fit into the received signal hypersphere, such that the noise hyperspheres do
not overlap (reliable decoding), for a given N , Pav and σ2

w? Note that each noise
hypersphere is centered at the message, as given in (L.5). The solution lies in
the volume of the two hyperspheres. Note that an N -dimensional hypersphere
of radius R has a volume proportional to RN . Therefore, the number of possible
messages is

M =
(N(Pav + σ2

w))
N/2

(Nσ2
w)

N/2

=

(
Pav + σ2

w

σ2
w

)N/2

(L.7)

over N samples (transmissions). The number of bits required to represent each
message is log2(M), over N transmissions. Therefore, the number of bits per
transmission, defined as the channel capacity, is given by [217]

C =
1

N
log2(M)

=
1

N

N

2
log2

(

1 +
Pav

σ2
w

)

=
1

2
log2

(

1 +
Pav

σ2
w

)

bits per transmission (L.8)

per dimension1.
Note that the channel capacity is additive over the number of dimensions1.

In other words, channel capacity over D dimensions, is equal to the sum of

1Here the term “dimension” implies a communication link between the transmitter and
receiver, carrying only real-valued signals. This is not to be confused with the N-dimensional
hypersphere mentioned earlier or the M -dimensional orthogonal constellations in Chapter 2.
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the capacities over each dimension, provided the signals are independent across
dimensions [201–203,218].

The channel capacity in (L.8) can be expressed in an alternate form. Let
rn in (L.1) be obtained by sampling r(t) at a frequency of Fs = 2B Hz. We
assume that r(t) is bandlimited in the range [−B, B] Hz. If r(t) is bandlimited
to Fc −B ≤ |F | ≤ Fc +B Hz where Fc ≫ B (see section 4.1.7, item (e)), then
the sampling frequency is Fs = 4B or Fs = 2B, depending on whether r(t) is
given by (4.121) or (4.122). Multiplying both sides of (L.8) by Fs transmissions
per second, we get

FsC = C =
Fs

2
log2

(

1 +
Pav

σ2
w

)

bits per second. (L.9)

It can be shown that for complex-valued signals given by

r̃n = x̃n + w̃n for 0 ≤ n < N (L.10)

the channel capacity is given by

C = log2

(

1 +
Pav

2σ2
w

)

bits per transmission (L.11)

over two dimensions, where

Pav = E
[

|x̃n|2
]

σ2
w =

1

2
E
[

|w̃n|2
]

. (L.12)

Let us now consider a communication system employing a rate-k/n convo-
lutional code with BPSK signalling (all signals are real-valued, with xn = Sn

drawn from a BPSK constellation). Clearly

C = k/n = r bits per transmission (L.13)

per dimension. Observe that in (L.13), the term “bits” refers to the data bits
and r denotes the code-rate. Next, we note that Pav in (L.8) refers to the
average power in the code bits. From (3.73) in Chapter 3 we have

kPav, b = nPav. (L.14)

The average SNR per bit (over two dimensions1) is defined from (2.32) in Chap-
ter 2 as

SNRav, b =
Pav, b

2σ2
w

=
nPav

2kσ2
w

⇒ Pav

σ2
w

= 2r SNRav, b. (L.15)
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Substituting (L.15) in (L.8) we get

2r = log2 (1 + 2r SNRav, b)

⇒ SNRav, b =
22r − 1

2r

=
e2r ln(2) − 1

2r
. (L.16)

In the limit r → 0, using the first two terms in the Taylor series expansion of
ex, we get SNRav, b → ln(2). In other words, error-free transmission (r → 0)
is possible when SNRav, b > ln(2), which is also known as the Shannon limit.
Conversely for a given r, the minimum SNRav, b for error-free transmission is
given by (L.16).

Finally we note that when xn = hnSn, where hn denotes real-valued gains of
a flat fading channel and Sn denotes symbols drawn from a real-valued M -ary
pulse amplitude modulated (PAM) constellation, the expression for the channel
capacity in (L.8) remains unchanged.
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