
DISCOVERY AND AUTO-COMPOSITION OF SEMANTIC WEB
SERVICES

Philippe Larvet
Alcatel CIT, Research and Innovation, Route de Nozay, 91461 Marcoussis, France

Philippe.Larvet@alcatel.fr

Bruno Bonnin
Alcatel CIT, Research and Innovation, Route de Nozay, 91461 Marcoussis, France

Bruno.Bonnin@alcatel.fr

Keywords: Web service, semantic web service, orchestration, automatic web service composition, semantic service
discovery.

Abstract: In order to facilitate the on-demand delivery of new services for mobile terminals as well as for fixed
phones, we propose a user-centric solution based on Semantic Service-Oriented Architecture (SSOA) for
instant building and delivery of new services composed with existing Web services discovered and
assembled on-the-fly. This solution, based on semantic descriptions of Web services, is made of three main
mechanisms: a semantic service discoverer, transparent for the user, allows to find the pertinent Web
services matching with the user's original request, expressed vocally or by a SMS or a simple text ; a
semantic service composer, using the semantic descriptions of the Web services, allows to combine and
orchestrate the discovered services in order to build a new service fully matching the user's request, and a
service deliverer makes the new service immediately accessible by the user.

1 SEMANTIC WEB SERVICES

Web services, as they are easily accessible from any
point of Internet through an Application server, are
suitable to build rapidly on-demand applications.

From the point of view of their internal
complexity, Web services (WS) can be divided into
two families : elementary WS and composite WS.

Elementary WS provide a basic service,
comparable to mathematical libraries, and contain a
low level of data transformation, embedded in few
algorithms; for example, translation services are
elementary WS.

In the contrary, composite WS provide a high level
service and contain many levels of data accesses and
transformations, given by the cooperation of several
elementary services. Such a composite service,
resulting of the composition of several processes
logically assembled, can be called an orchestrated
service; for example, reservation services or secured-
payment services are composite orchestrated WS.

If the development of elementary WS is obviously
the domain of specialized software engineers, the
emerging technology of semantics, associated to web

services, allows a end user, through an appropriate
application accessible from his preferred phone
(mobile or fixed), to build transparently and to use
some new services made by an assembly of existing
elementary WS, discovered and orchestrated on-the-
fly. "Transparently", because the process of discovery,
composition and delivery of the new service has to be
totally transparent for the user whose the only demand
is to get a new easy-to-use service immediately
responding to his original easy-expressed request.

A second advantage of the semantic technology
attached to WS is to allow keeping only the semantic
descriptions of the requested services, instead of the
orchestrated resulting service, because the semantic
descriptions can be processed and re-processed at any
time, permitting a dynamic re-discover, re-orchestrate
and re-deliver of a "new" new service, matching better
with the original request.
2 EASY-EXPRESSING NEW

SERVICES

Let us develop a concrete use case to explain the
functioning of our solution. For example, a user wants
to get a french translation of the latest CNN news.

40

Internet/
Intranet

Application
Server

Click to use

Internet/
Intranet
Services
Semantic

Repository

Discover-
Orchestrate-

Deliver
Mechanism

Semantic
Repository

Services
Repository

notification
for the new service

1

2
4

6

Vocal request

SMS or text

1

1

1

Figure 1: Processing an Instant Building and Delivery use case (global view).

 Vocal request

Semantic
Analyzer

Semantic
Descriptions of

Requested Services

Discover

Orchestrate

Deliver

D-O-D Mechanisms
Internet/
Intranet
Services

Semantic
Repository

1

2

3

4

Services
Repository

SMS or text

5
6

7

9

10

11

Speech
to

text

Figure 2: Processing an Instant Service Discover-Orchestrate-Deliver use case (detailed view).

The user simply activates the "instant delivery"
function of his terminal, and expresses vocally his
demand : "I want to get a french version of the latest
CNN news". He could also send an SMS containing
this short text to the address of the Instant Delivery
Service. Indeed, there is no easier way to express a
requirement !

The Fig. 1 allows you to follow the building and
delivery of the final required service from the original
request.

The vocal message (flow 1) is taken into account
by the Discover-Orchestrate-Deliver Mechanism of a
given Application Server.

A fisrt block, Speech-to-Text (see Fig. 2),
"understands" the message and transforms it into a
text, that is processed by a Semantic Analyzer. If the
user has sent a text (flow 2) instead of speaking a
vocal message, this text directly enters the Analyzer
that extracts from the text content the needs for the
intermediate elementary required services. In the case
of our example, the needs are:

• french translation
• latest CNN news

These needs are kept in the Application Server
under the form of "semantic descriptions" of the
intermediate required services and they are stored in a
specific Semantic Repository (flow 4).

DISCOVERY AND AUTO-COMPOSITION OF SEMANTIC WEB SERVICES

41

The stored semantic descriptions are processed by
the Discover module (see fig. 2) that searches in a
public Semantic Services Repository (flow 6) some
service descriptions that match with the required
stored semantic descriptions.

The corresponding elementary web services (for
example a web service Translator and a web service
CNN News), fitting with the required semantic
descriptions, are passed to the Orchestrate module
(flow 7), which makes the composition of the
elementary web services, using the orchestration
handlers contained in their semantic descriptions.

The resulting composed service (flow 9) is taken
into account by the Deliver module, that stores the
new service in the Service Repository of the
Application Server (flow 10) and registers in the
public Intranet/Internet Semantic Services Repository
the semantic description of the new service (flow 11).

The Service Repository has a local intelligence
allowing to send to the user (and, occasionally, to
every user who previously subscribed to this service) a
notification (flow 12) informing him that the new
asked service is now available on his preferred server.

Then, and this is the end of our use case story, the
user can immediately activate and use the new service
– and to get a french version of the latest CNN news.

Beyond the obvious benefit of this process for the
user – getting a real-time and on-the-fly response to
his original demand, under the form of a new service
fully matching his request and immediately activable
and usable – another interest of this solution is set in
the notification mechanism of the Service Repository:
every user who previously subscribed to the "Instant
Delivery" service is informed that a new service is
available.

The following paragraphs explain in detail the
functioning of the three main blocks of the Discover-
Orchestrate-Deliver Mechanism, whose the process is
protected by an Alcatel patent.

3 THE DISCOVERY MECHANISM

From The User's Original Request To The
Pertinent Elementary Web Services
Before entering the Discover module, a pre-treatment
is made onto the text of the original request, in order to
transform it into semantic clauses, each of them
representing a precise need for an elementary web
service.

This need has to be expressed in a formal way, for
example under the form of a XML-based language, to
allow its easier post-processing.

In the context of our solution, we imagined a
simple semantic description language based onto
WSDL (Web Service Description Language, a W3C's
standard) and we developed such a semantic
description mechanism, taking into account the fact
that a WSDL description is always present for any
web service. The process of making semantic
descriptions from WSDL is protected by another
Alcatel patent.

A "semantic description" for a given service
contains:

• input data description (data category, types and
semantic tags)

• output data description (same structure than
input)

• semantics of operations
• "orchestration handlers", i.e. connection points

expressing how this very web service could
be automatically connected with another WS.
This automatic connection process is also
protected by an Alcatel patent.

The semantic descriptions for the required
elementary services, built by a Semantic Analysis
module from the text of the original request, are stored
in a specific Semantic Repository, local to the
Application Server (see Fig.2, flow 4).

These descriptions are used by the Discover block
(flow 5) to make a search into the Internet/Intranet
Semantic Service Repository (flow 6). The Discover
block contains a matching module that explores the
external Semantic Repository, looking for a match
between the external semantic descriptions (flow 6)
and the required semantic descriptions of the flow 5
that come from the user's request. This match is based
upon a correlation search between the main elements
of the semantic description: inputs, outputs and
semantics of operations.

When a match is found for each required semantic
description, the corresponding WSDL descriptions of
the elementary services are sent to the Orchestration
module.

4 THE COMPOSITION
MECHANISM

From The Elementary Components To The
Final New Service
Orchestration is the term used to describe the creation
of a "business process" (or a workflow) using Web
services (BPEL Editorial Team, 2005). A business
process is an aggregation of services whose the

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

42

operations, i.e. the processes, are logically linked
together in order to reach a given objective (Bruno,
2005).

Aggregating services to build an added-value
service have many solutions depending on the chosen
environment. For Web services, the orchestration is
usually expressed with a specific language like BPEL
for example (Business Process Execution Language
(BPEL Editorial Team, 2005)), that describes the
interactions between the services.

A business process is deployed itself as a service,
so it can be used by other processes. A business
process language describes the behaviour of business
processes based on Web services, i.e.:

• Control flow (sequences, loops, conditions,
parallelism, …)

• Variables, exceptions, timeout management.
By providing semantic descriptions of services, we

produce in fact specifications for all the layers of the
standard Web services stack, and so in the service
composition layer.

The stack has been enriched with new W3C
specifications, such OWL-S (OWL-S, 2004) for
example, for providing support of semantics. These
languages, and our "semantic descriptions"have the
same goal, provide a set of XML constructs for
describing the properties and capabilities of Web
services in order to facilitates the automation of Web
services processing, including automatic discovery and
composition.

In the previous step ("Discover" mechanism), we
have extracted the "semantics" from the service
descriptions to find the matching services. In the
current step, we automatically build the business
process with some specific semantic annotations
(that we call "semantic tags") included in the service
description in order to help the composition.

For example, the semantic annotations give
information about the input and output parameters:
in a business process, output parameters of a service
can be used as input parameters for another service.

The "semantic tags" are important to use the
parameters in the right way. The parameter types are
not sufficient to match output parameters of a service
with input parameters of another service. The
"semantic tags" help this composition.

In a business process, there is not only service
invocation activity: there are also condition activities,
loop activities, error processing, etc.

These activities are also taken into account: for
example, if an activity has an array of string as output
parameter and if the next service has only a string as
input parameter, the business process includes a loop
activity for processing all values of the array.

Once the business process has been defined and
described with a business process language, it is time
to deploy it.

5 THE DELIVERY MECHANISM

Serving The Newborn Service To The User
With the Service-Oriented Architecture
(SOA)(Nickolaos et al., 2004), (SOA explained, http),
we have a good level of dynamicity on server side.
But, on client side, as the client of the services is an
application that is installed on each machine, it must
also be as dynamic as possible to be able to invoke any
services.

There are two problems:
• How to access the new service?
• How the user knows there is a new service?

To access the new service, the user must have a
service client application on his terminal. But as all the
services are different, the service clients are different
(service parameters, user interface, etc.).

So, the service deployment step must include:
• A service client building,
• A user notification.

The service client application (see Fig.3) must
include the following functionalities:

• Business Process Server notification
management.

• Service client management. Its role:
o Download, start, stop, delete the

service clients
o Process events from the

notification manager
o Manage the user interface according

to the authorized service clients.
• Service clients execution: their main role is to

access the services. They have their own user
interface.

A new business process deployment includes the
following steps:

• Building of a new service client. It is built
from the new service description. For each
service argument, a user interface element is
created.

• Deployment of the service client.
• Notification of the user that a new service is

available and that he can access it.

DISCOVERY AND AUTO-COMPOSITION OF SEMANTIC WEB SERVICES

43

Service Client Container

Notification Manager

Service Client Manager

Service 1 Client Service 2 Client

Service 1 Service 2

Business
Process
Server

Service Clients
Server

Service requests
Download requests

Notifications

Figure 3: Detailed functional view of a Service Client
Application

When the user receives the notification, he activates
the service:

• The service client manager downloads the
service client

• The service client is activated
• The service client invokes the new service

The main advantages of this kind of service client
container are:

 Install once: only the Service Client Container has
to be installed on each machine, the other parts of
the application (service clients) are downloaded

 Context-aware: the application checks the
hardware and software environment for proposing
only usable applications and for using user’s
preferred tools such as web browser

 Dynamic upgrade: when running, if the Service
Client Container receives a notification from the
Business Process Server for any modification, it is
immediately taken into account; this mechanism
is transparent for the user and does not need any
restart.

6 MANAGING THE DISCOVER-
ORCHESTRATE-DELIVER
CONCEPT WITH A SEMANTIC
SERVICE-ORIENTED
ARCHITECTURE

Service-Oriented Architecture (SOA) is an
architectural style whose goal is to achieve loose
coupling among interacting software agents (SOA
explained, http). In this context, a service is seen as a
unit of work done by a service provider to achieve
desired end results for a service consumer. Both
provider and consumer are roles played by software
agents on behalf of their owners.

To achieve loose coupling among interacting
software agents, SOA employs two architectural
constraints:

1. A small set of simple and ubiquitous
interfaces to all participating software
agents. Only generic semantics are encoded
at these interfaces, that are universally
available for all providers and consumers.

2. Descriptive messages constrained by an
extensible schema delivered through the
interfaces. No, or only minimal, system
behavior is prescribed by messages. A
schema limits the vocabulary and structure
of messages – and an extensible schema
allows new versions of services to be
introduced without breaking existing
services.

Since we have only a few generic interfaces
available, we must express application-specific
semantics in messages. We can send any kind of
message over our interfaces, but there are three main
rules to follow before we can say that an architecture
is service-oriented:

1. The messages must be descriptive, rather
than instructive, because the service
provider is responsible for solving the
problem – when you go to a restaurant, you
tell the waiter your order and preferences
but you don't tell the cook how to cook
your dish step by step.

2. Service providers will be unable to
understand your request if your messages
are not written in a format, structure, and
vocabulary that is understood by all parties.
Limiting the vocabulary and structure of
messages is a necessity for any efficient
communication.

3. Extensibility is vitally important: the world
is an ever-changing place and so is any
environment in which a software system
lives. Those changes demand
corresponding changes in the software
system, service consumers, providers, and
the messages they exchange. If messages
are not extensible, consumers and providers
will be locked into one particular version of
a service.

There are numerous additional constraints one can
apply on SOA in order to improve its scalability,
performance and reliability. Among them, we mainly
retain the stateless service concept. Each message that
a consumer sends to a provider must contain all
necessary information for the provider to process it.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

44

This constraint makes a service provider more scalable
because the provider does not have to store state
information between requests. This is effectively
"service in mass production" since each request can be
treated as generic. It is also claimed that this constraint
improves visibility because any monitoring software
can inspect one single request and figure out its
intention. There are no intermediate states to worry
about, so recovery from partial failure is also relatively
easy. This makes a service more reliable.

Taking into account these main particularities of
SOA, we can consider the main challenges for our
Discovery-Orchestrate-Deliver concept in a Semantic
Service-Oriented Architecture (SSOA) are the
descriptions of messages and services, the
management of services and the process for facilitating
the access to services.

At "Discover" level, the semantic descriptions of
services – as they are made from the external
descriptions of messages found in WSDL – make
more easy the classification of services in the service
repository, because these descriptions are structured
upon a taxonomy of the concepts manipulated by the
services. This taxonomy facilitates the logical ordering
of services by domains, subdomains, topics and
subtopics, and consequently facilitates their
management. These semantic descriptions, as they can
match with the service requirements contained in the
user's original request, are also a good means to make
more easy the discovery of corresponding services.

At "Orchestrate" level, the "composition handlers"
contained in the semantic descriptions of services are a
good enabler for an automatic orchestration process
able to aggregate several convenient services.

The semantic descriptions of a new service, and
mainly their taxonomic abilities, are still used at
"Deliver" level, when the Discover-Orchestrate-
Deliver mechanism has to store them as logically as
possible and to insert them in the existing structure of
the semantic repository.

7 CONCLUSION

Within a wide-communicating world where services
become more and more sophisticated and are on the
beginning to expose their semantic dimension, we
consider it is important to propose solutions in which
anybody could be able to create his own services in
some simple clicks. This paper reveals one of the
reflexion axis we currently have in this direction, and
we hope we could convince the reader that a semantic
approach, through the use of semantic descriptions of

services, helps in an important way the mechanisms
for building, holding and processing any kind of Web
service.

Moreover, we tried to show how Semantic SOA-
based mechanisms, if possible leant on IMS
development platforms, can provide high-value
capabilities for new generation service creation and
delivery: a simpler way to express a service, a faster
way to get and use it, a cheaper solution for the end-
user because it is simpler and faster.

We are convinced that IMS services are the good
base to develop such kind of rich services and use
interaction, including dynamic search, discovery and
publishing of web information associated to a multi-
media call session, and we think semantic Web
services are the good means to do it.

REFERENCES

BPEL Editorial Team, BPEL Learning Guide, February
2005, http://searchwebservices.techtarget.com/original
Content/0,289142,sid26_gci880731,00.html

OWL-S, Semantic Markup for Web services, W3C Member
Submission, November 2004, http://www.w3.org/
Submission/OWL-S/

Bonnin Bruno, Larvet Philippe, Fontaine Patrick, Ferres
Lamia, A Multi-Actor Agnostic Platform for Web
Services Development and Deployment, June 2005,
Article published in W3C Workshop on Frameworks
for Semantics in Web Services, Innsbruck (Austria)

Kavantzas Nickolaos, WS-CDL, Web Service Choreography
Description Language, December 2004,
http://www.ebpml.org/ws_-_cdl.htm and
http://www.w3.org/TR/ws-cdl-10/

Kavantzas Nickolaos & al., Process-centric realization of
SOA : BPEL moves into the limelight, Web Services
Journal, Nov.2004, http://www.findarticles.com/p/
articles/mi_m0MLV/is_11_4/ai_n7071401

Nanda Mangala & al., Decentralized Orchestration of
Composite Web Services, IBM Research Computer
Science, Innovation Matters, November 2004,
http://www.research.ibm.com/compsci/project_spotlight
/distributed/

Peltz Chris, Web services orchestration, a review of
emerging technologies, tools, and standards, Hewlett-
Packard Co, January 2003, http://devresource.hp.com/
drc/technical_white_papers/WSOrch/WSOrchestration.
pdf

Smith Howard, BPM and MDA, Competitors, Alternatives
or Complementary, Business Process Trends, White
Paper, July 2003, http://www.bptrends.com/publication
files/07%2D03%20WP%20BPM%20and%20MDA%2
0Reply%20%2D%20Smith%2Epdf

SOA explained: http://webservices.xml.com/pub/a/ws/2003/
09/30/soa.html

DISCOVERY AND AUTO-COMPOSITION OF SEMANTIC WEB SERVICES

45

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/ws-cdl-10/
http://www.research.ibm.com/compsci/project_spotlight/distributed/
http://www.research.ibm.com/compsci/project_spotlight/distributed/
http://www.bptrends.com/publicationfiles/07%2D03%20WP%20BPM%20and%20MDA%20Reply%20%2D%20Smith%2Epdf
http://www.bptrends.com/publicationfiles/07%2D03%20WP%20BPM%20and%20MDA%20Reply%20%2D%20Smith%2Epdf
http://www.bptrends.com/publicationfiles/07%2D03%20WP%20BPM%20and%20MDA%20Reply%20%2D%20Smith%2Epdf

