Sentiment Analysis Using Semi-Supervised Recursive Autoencoder

Vinay Kumar(12806)
CSE, IIT Kanpur

INTRODUCTION

Sentiment analysis is a growing field targeting to extract insights or subjective conclusions from the sources like text or large amount of data.

Applications: Getting significant attention from both business and research communities, sentiment analysis has many potential applications like summarizing user-reviews, brand-management and public relations management of business organizations and governments.

Past work: Most of the past work has been focused on classifying the data in two classes: positive and negative. In my project, I have classified the data in five classes: very positive, positive, neutral, negative and very negative.

METHODS

I am using the Semi-Supervised Recursive Autoencoders algorithm from Richard Socher. The algorithm consists of an unsupervised part and a supervised part.

Recursive Autoencoder (RAE): The unsupervised part is a recursive auto-encoder that creates an N-dimensional vector that represents the phrase or simply called as the ‘code’.

Supervised Learning Classifier (Multinomial Logistic Regression): In the second part after obtaining an N-dimensional vector or ‘code’ for each phrase from the unsupervised recursive auto-encoder, supervised learning is used to classify this vector into a particular class.

Google Word2Vec: Instead of using the randomly initialized N-dimensional vectors, I will use google word2vec tool [4] which maps words with similar meaning to similar positions in the N-dimensional vector space.

DATASET

I am using the sentiment analysis dataset from Kaggle [3], which contains phrases and sentences from Rotten Tomatoes movie reviews. This dataset [3] consists of 8544 sentences which is converted to 156640 English phrases from movie reviews.

RESULTS

I have the following results for Using Recursive Auto-Encoder with Multinomial Logistic Regression. My Overall Accuracy: 85.8%

PAST WORK:
One-vs-all LR (RAE): 85.3%
SVM: 85.6%
Stanford Model(Socher): 86.4%

MINFUNC

I used minFunc which is a Matlab function for unconstrained optimization of differentiable real-valued multivariate functions using line-search methods.

REPRESENTATION

Randomized N-dimensional vector: Using word2vec to map similar words nearby to exploit the similarity of meaning/context
Belong to more than one class -> Unnecessary errors: Using Softmax regression instead of logistic regression
Altering the values of random parameter, \(\alpha \), the parameter that controls the relative weighting between the reconstruction error.
Using MinFunc: When using Matlab’s minfit to train a multinomial logistic regression classifier recently, I found it rather memory-consuming. I used minFunc for optimization of multivariate functions.

REFERENCES

CONCLUSION

Softmax regression gave a slight improvement over one-vs-all regression.

Using pre-trained word vectors instead of randomly initialized vector gave a better mapping to the model of the semantic order of words. Changing the values of random parameters like \(\alpha \) can also improve the accuracy slightly.

We could try increasing the training dataset size. Because recursive neural network is a more complex algorithm (non-linear), it needs more training data to reach a certain upper bound on the error with high probability. Therefore, if we increase the size of the training data, the marginal improvement of neural network would be more.