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ABSTRACT

The inelastic response of a one-storey system with two-way eccentricities and subjected to bi-
directional spatial earthquake ground motion is analyzed in this paper. 20 sets of bi-directional spatially
varying horizontal earthquake ground motion time histories are numerically simulated for the analysis.
The simulated motions are compatible individually with Newmark-Hall design response spectrum with
5% damping and normalized to 0.5g, and are compatible with an empirical coherency loss function
between each other. Ensemble mean responses of the system to 20 sets of ground motions are estimated.
Effects of system parameters such as uncoupled torsional-to-lateral frequency ratios, stiffness
eccentricities in both directions, as well as the spatial ground motion wave passage effect, on coupled
inelastic torsional-lateral responses are investigated. Numerical results are presented in dimensionless
form. They are also compared with the code torsional provisions. For comparison purpose, some results
obtained with linear elastic analysis are also presented.
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INTRODUCTION

Coupled inelastic torsional-lateral responses of single storey asymmetric systems to earthquake
ground motions have been a subject of investigation of many researchers (Kan and Chopra, 1977, Hejal
and Chopra, 1989; Rutenberg and Pekau, 1987; Chandler and Duan, 1991; Duan and Chandler, 1993). In
those studies, only uni-directional ground motion and structural eccentricity in one direction were
considered. The effects of system parameters such as coupled torsional-to-lateral frequency ratios and
stiffness eccentricity on structural responses and design code coefficients were evaluated. Studies on the
coupled responses of one-way eccentric (Riddell and Santa-Maria, 1999) or two-way eccentric
(Hao, 1998) system to bi-directional earthquake ground motions were reported. It was concluded that the
effect of bi-directional ground motion on coupled torsional-lateral responses is significant. Recently,
much effort has been spent on methods for controlling the torsional responses of structures (Jangid and
Datta, 1997, Singh. et al., 2002).

Besides structural eccentricity, torsional responses of a structure can also be induced by torsional
ground motion or by spatially varying ground motions at various structural supports. In early studies of
torsional responses of structures to torsional base motion, torsional base motions were estimated - by
considering the wave passage effect of the travelling seismic wave, while the loss of coherency between
motions at various points owing to wave propagation was not considered (Newmark, 1969; Morgan et al.,
1983). In more recent studies of coupled torsional-lateral responses to torsional base motions, recorded
time histories at various points in a building were used to estimate torsional base motions (De La Llera
and Chopra, 1994a, 1994b, 1995).

Torsional responses of one-storey systems to spatially varying ground motions have also been
investigated. In those studies, the structural system considered is a symmetric (Veletsos and Prasad, 1989)
or asymmetric (Hahn and Liu, 1994) rigid deck rested on a circular rigid foundation; or a symmetric (Hao
and Duan, 1996), one-way eccentric (Hao and Duan, 1995) or a two-way eccentric (Hao, 1998) square
rigid plate supported by four columns. Either random vibration method or time history analyses were
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used. In all those studies, only linear elastic response analyses were performed. Except one study that
analyzed the two-way eccentric system to bi-directional ground motions (Hao, 1998), all the above
studies - considered only uni-directional spatially varying ground motions. It should be noted that
earthquake ground motion spatial variation effect is less significant, if a structure is supported by more
columns owing to the averaging effects by columns on ground motion spatial variations. The model of
circular deck resting on a rigid foundation is equivalent to a deck supported by infinite number of
columns; thus, it results in the least significant spatial variation effects on structural responses. On the
other hand, a rigid deck supported by four columns will induce the most pronounced ground motion
spatial variation effects on structural responses.

All the previous studies revealed that coupled torsional-lateral responses depend strongly on the
uncoupled torsional-to-lateral vibration frequency ratio of the system, and on structural eccentricity and
ground motion spatial variations. Torsional response usually induces torque but reduces storey shear. It
might also increase storey shear, if the system has significant two-way eccentricities (Hao, 1998). Based
on linear elastic analysis of a two-way eccentric one-storey system to bi-directional spatially varying
ground motions (Hao, 1998), it was found that, although the spatial variation of seismic motion over a
building base is not significant, its effect on coupled torsional-lateral responses could be more significant
than structural eccentricity effect on torsional response, if the system is torsionally flexible and has small
eccentricity. However, structural eccentricity effect is usually more pronounced if the system is
torsionally stiff, and/or has large eccentricity.

As a structure is usually designed to respond inelastically during strong shaking for economic and
energy dissipation purposes, it is necessary to analyze the inelastic responses of two-way eccentric
systems to bi-directional spatially varying earthquake ground motions in order to have a more realistic
and thorough understanding of the problem. This paper is an extension of the work done by the first
author previously, based on linear elastic assumption (Hao, 1998). Here, inelastic responses of the same
one-storey, two-way eccentric, square rigid plate, supported by four columns and subjected to
bi-directional spatially varying ground motions, are calculated by time history analysis. Similarly, 20 sets
of bi-directional, spatially varying ground motion time histories are simulated as input for 20 independent
analyses. The simulated motions are individually compatible with Newmark-Hall design spectrum with
5% damping and normalized to 0.5g, and are compatible with an empirical coherency loss function
between each other. Ensemble means and standard deviations of coupled torsional-lateral responses are
calculated. For comparison purposes, a few linear elastic results are also calculated and presented. Effects
on coupled torsional-lateral responses of system parameters, such as uncoupled torsional-to-lateral
vibration frequency ratio, stiffness eccentricity in both directions, as well as the ground motion phase
shift, are investigated. Numerical results are presented through dimensionless parameters. They are also
compared with code torsional provisions.
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Fig. 1 Single storey multiple supported building model
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STRUCTURAL MODEL AND EQUATIONS

The structural model considered in this study is the same as the one analyzed before with linear
elastic assumption (Hao, 1998). For completeness of the current paper, it is briefly introduced here. It is a
single storey, square rigid diaphragm, supported by four symmetric columns at the corners, as shown in
Figure 1. It should be noted that the model does not intend to represent a single-storey building structure;
rather it is an equivalent asymmetric system with multiple-supports used to study torsional responses of
asymmetric system to spatially varying ground motions. The original stiffness center CS coincides with
the geometric center, while the mass center CM is shified away from the geometric center with
eccentricities e, and e, in the x- and y-directions, respectively. The model has three structural degrees-
of-freedom. They are the translational displacements in the x- and y-directions, u_and u ,»and rotation
about the mass center, 6. Because spatially varying seismic motions in both the x- and y-directions are
considered, there are eight support displacements, v, = (v,;1 Vil Vi2 Vya Viz Vya Vi vy4)1, as shown
in Figure 1. ' :

The total structural responses are the summation of the dynamic and quasi-static responses

| u'=u+u” ¢))
where u’ = (u, u,, 8") is the total displacement vector. The quasi-static responses can be calculated by
u¥ =- Kn.IK:bvg (2)

where K, is the stiffness matrix corresponding to the three structural degrees of freedom, and K, is the
stiffness matrix corresponding to the coupled three structural degrees of freedom and eight support
movements,

By lumping the column and floor masses to the mass center, and neglecting the quasi-static velocity-
induced damping forces, which are zero if viscous damping is stiffness proportional and are very small
for other types of damping, the dynamic response equations can be derived in matrix form as

mii+C.u+K u=m, KK, N ¢))
where C, is the viscous damping matrix, and for the structural model shown in Figure 1,
m 0 0
m,=(0 m 0 @
0 0 1
[ 4 4 \
Zki 0 - Z kiy i
i=1 i=1
4 4 '
K, = 0 Zki Zkixl )
i=1 i=1
4 4 4
—zkiyi Zkixi Zki(xiz +y12)
\ =l i=1 i=1 J
and
-k, 0 -k, 0 ~k, 0 -k, 0
K,=| 0 -k 0 -k, 0 -k, 0 ~k, )

nk -xk vk, —-xk, yk, -xk, yk, -xk,
in which mis the lumped mass; I is the polar moment of inertia of the model about a vertical axis
through the mass center; k; is the ith column lateral stiffness; d is the building dimension; x;and y, are
the co-ordinates of the ith column with the origin at CM; and x, =x, =—d/2—e_, x, =x, =d/2—e¢_,
W=y, =-d[2-¢,,and y, =y, =d[2-¢,.
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Let K, represent the lateral stiffness of the structure and K, the torsional stiffness relative to the
CM, where

4
K, =)k, (7a)
=l
4
Ko=) k(x}+y}) (7b)
=l

Substituting Equations (5), (6) and (7) into Equation (2), the quasi-static displacements are:
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From Figure 1, it can be derived that the base shear in the x-direction is
V= Sk v, -y, 0)
= I:(u; ~Va) + kU, = v,,) H Ry - v,5) k() - v,,) 10
+(k, +k,)(-‘21+e,)0' — Gk, +k,)(§-e,)o'
Similarly, the base shear in the y-direction is
V,= lgkﬂ(u; -V, +x,-6')
=k (u, —-v,) +k(u, -v,,) +ky(u, -v,) +k,(u, -v,,) an
~( + k)G +60" + (ky + k)G e, )6
The torque about the mass center is derived as
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4 ' N
T =) k[~ =v,)-y; +(, =v,)-x, + (] +37)-0'] (12)

i=1 .
As can be noticed, the formulae. derived above are considerably more complex than those given in the
previous study (Hao, 1998). This is because in the non-lincar analysis, owing to torsional responsc, the
four columns will not yield simultancously. On the other hand, in linear elastic analysis, both K, and
Ky are constants.

2
If K; =4k, Ky =K,(12—+e§ +e§),andk1 =k, =k3 =k, =k are substituted into the above

formulae, the formulae will be reduced to those presented before based on linear elastic assumption.
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It should also be noted that the base shear and torque now depend on total structural regponse, while
they depend only on dynamic response in elastic analysis. This is because both base shear and torque
depend on the relative displacement. of each column as indicated in Equations (11) and (12). In elastic
analysis, since the four columns have identical stiffness value, Equations (11) and (12) can be simplified
to be only dynamic response-dependent (Clough and Penzien, 1993; Hao, 1997, 1998). In inelastic
analysis, the four columns do not yield simultaneously because of nonuniform excitations and torsional
response, the stiffnesses k; of the four columns are not identical, and the above two equations can no
longer be simplified.

A tri-linear stiffness degrading hysteretic model is used in the present inelastic analysis,
as shown in Figure 2. This is modified from the model developed by others (Murakami and Penzien,
1975; Clough and Penzien, 1993). This model represents structural resistance behaviors of reinforced
concrete in non-linear inelastic deformation and failure characteristics controlled primarily by flexure
tension and compression. It is completely characterized by the following parameters,
K,.K,,K,,P, PV, V,,P., PV, and V,,. Based on material properties of reinforced concrete,

P,=20F,,P,=20P.,V, =40,V =40V, and V, = 6.0V, are used in the present

tesr Loy
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study. The model is thus completely defined, if initial stiffness K, and compression cracking
displacement ¥V, are known. The initial stiffness K, can be determined from structural natural vibration
period. The cracking displacement ¥, for RC structure is defined according to the NEHRP (1991)
recommendation as explained in the following.

If the deformed shape of a moment-resisting reinforced concrete frame building is assumed to be
linear, its yielding displacement A » at two-thirds height of the building can be calculated as

2 2
A,=Q C, g2 T _ 1.2/1‘;.35'_g T2 (13)
(27) RT (2n)
where Q is the frame over-strength factor and is assumed to be 1.67 in the present study, C, is the
NEHRP base shear coefficient, g is the gravity acceleration, and 7 is the fundamental vibration period
of the structure that can be estimated according to the NEHRP recommendation in terms of the building
height and the frame type. In determining C,, the coefficients A,=0.4, §=12, and R =8 are assumed.
The coefficients Q, C,. and the period T depend on the structural and material types and the
building dynamic behaviors. Usually, their exact values cannot be obtained for a structure in the design
process. For that reason, a conservative tensile-yielding displacement Ve=23A yis used in the analysis,
which is equivalent to the compressive cracking displacement V. =A,.

It should be noted that in seismic design, especially in performance-based design, besides shear force,
the structural response ductility ratio is also an important design parameter. In the present study, however,
only base shear and torque are presented in order for direct comparison with the results obtained before
based on linear elastic analysis (Hao, 1998). Since both base shear and torque are given in the present
paper, interested readers can have an approximate estimation of the ductility ratio, although it is not
straightforward, especially when the four columns do not yield simultaneously.
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Fig. 3 Typical simulated spatially correlated ground accelerations in x — direction at the four
structural supports
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Fig. 4 Typical simulaied spatially correlated ground displacements in x ~ direction at the four
structural supports

SPATIAL SEISMIC GROUND MOTION

Similar to the previous study (Hao, 1998), 20 sets of spatially varying seismic ground motions are
stochastically simulated and used as multiple inputs at the structural supports. The motions are simulated
with a duration of 20.48 sec and a time increment of df = 0.01 sec. The ground motion wave is assumed
to be propagating in the x-direction with an apparent velocity v = 1000 m/s. Thus, the principal ground
vibration direction coincides with the x-direction, and the ground motion components in the x- and y-
directions are statistically independent (Penzien and Watabe, 1975). Therefore, these components are
simulated independently.

Twenty sets of spatially correlated time histories are independently simulated to represent ground -
motions at the four structural supports in both the x- and y-directions. All the simulated time histories are
iterated to be compatible with the empirical coherency loss function between each other, and are
individually compatible with the Newmark and Hall (1982) response spectrum with 5% damping and
normalized to 0.5g. Figure 3 shows a typical set of simulated ground accelerations in the x-direction at the
four supports, and the corresponding displacements are shown in Figure 4. The coherency losses between
the simulated acceleratiots at any two supports are also calculated and compared with the model function.
Figure 5 shows a typical comparison. Figure 6 shows the response spectrum of a typical simulated time
history and the Newmark-Hall spectrum. As can be seen, the simulated motions are compatible with the
Newmark-Hall response spectrum individually, and with the coherency loss function between each other.
More detailed information on the simulated ground motions and simulation technique can be found in
references (Hao, 1989, 1998).

NUMERICAL EXAMPLES OF TORSIONAL RESPONSES

Linear elastic and non-linear inelastic responses are calculated in time domain by using the
Newmark method with constant acceleration assumption in step-by-step integration. A 5% viscous
damping is used for both the lateral and torsional modes. The 20 sets of independently simulated multiple
ground motion time histories in both the x- and y-directions are used as input. Twenty independent
calculations are carried out. As the standard deviations are much smaller (less than 10%) than the
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respective ensemble mean peak values obtained by using the results from the 20 time history analyses,
only the mean peak values are presented and discussed.
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Fig. 5 Model coherency loss function and typical coherency loss between 4, and a, with
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Fig. 6 Newmark-Hall response spectrum with 5% damping and normalized to 0.5g and the
response spectrum of a typical simulated motion

. In order to emphasize the coherency loss effect of non-uniform ground excitation on structure, the
structural dimension of d = 100 m is used again in this study, as in a previous study considering only
linear elastic response (Hao, 1998). It should be noted that this is only a virtual structural model. As it
was explained, the reason to choose a very large span of 100 m is to emphasize the ground motion
coherency loss effect. It has no physical meaning to structural vibration properties, as the vibration
frequency of the structural model is a varying parameter in the calculation. Because the vibration
frequency of the structural model or its stiffness is varied over a wide range in the parametric calculations,
the numerical results presented cover ground motion phase shift effect on structures for most credible
combinations of spatial ground motion, site and structure conditions. As ground motion coherency loss
depends on many factors and is not well understood yet, using a large separation distance, such as
d= 100 m, in multiple ground motion simulation will result in overestimation of the coherency loss
effect on structural responses.

For comparison, the responses to uniform base excitation are also calculated by using the simulated
motions at the support 1 as inputs to all supports. The uncoupled initial lateral vibration frequency
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f. =@, /27 of the model is varied from 0.2 to 20 Hz in the calculation. where @, = /K, /m . This is

achieved by continuously changing the mass of the model. Also, by varying the ratio of the lumped mass
to the polar moment of inertia, three torsional stiffness cases are analyzed. They are torsionally flexible

structure with an uncoupled torsional-to-lateral vibration frequency ratio @, / @, = 0.75, torsionally stiff
structure with @, /@, = 2.0, and torsionally intermediate stiff structure with @, /@, =1.0, in which
@, = ,/K ¢ /I is the uncoupled torsional vibration frequency.

Fig. 7 Normalized linear elastic base shear and torque with different e, (@, /o, =1.0)

The eccentricity effect is investigated by varying the two eccentricities €, and e, from 0 to 30 m.
This is achieved by varying the location of mass center. Numerical results are presented and discussed in
terms of non-dimensional parameters f, d/v,e,/d and e,/d.The parameter f, d/v measures the
phase difference between the uncoupled lateral vibration mode and the ground motion phase shift, in
which d/v is the time lag for ground motion to propagate over a distance d. f, d/v = 0.0 implies
uniform ground excitation, which is equivalent to using d = 0.0 in multiple ground motion
simulation; /. d/v= 0.5 and 1.5 imply out-of-phase condition between the lateral vibration mode and the
dominant ground motion propagation phase shift; and f, d/v = 1.0 and 2.0 imply in-phase condition
between them. In this study, the non-dimensional parameter f, d/v varies from 0.0 to 2.0, when
f, varies from 0.2 to 20 Hz and v= 1000 m/s. It should be noted that the lateral vibration frequency of
concrete building can be approximately estimated by f, = 50/h, as given in many seismic codes, in
which A is thé building height in meters (Paz, 1994). Then, f, d/v=50d/(hv)=50/(vn), where n="h/d
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is the slendemess ratio of the building. It is obvious that the ratio of Jxd/v =0.0-2.0 covers a wide
spectrum of realistic building structures for any credible combination of slenderness ratio n and ground
motion apparent propagation velocity v. 7

For comparison purpose, linear elastic responses by using the initial stiffness of the non-linear
stiffness model are also calculated. Figure 7 shows the normalized base shear in the x-direction and the
normalized torque obtained by linear elastic analysis of the torsionally intermediate stiff structure with
different eccentricities and vibration frequencies. The base shear V. is normalized by V,,, the base shear
of a symmetric structure (e,/d=0.0 and e,/d=0.0) in the x-direction induced by uniform ground
excitation. The torque is normalized by the design torque T, = Vos-€.a +V,, .€,4,in which Voyis the
base shear of a symmetric structure in the y-direction induced by uniform ground motion, e,; and e, are
design eccentricities, defined as e =ae, + fd and e, =ae, + fd where a is a coefficient for
stiffness eccentricity and B is an accidental eccentricity coefficient. The accidental eccentricity is
specified to cover the torsional responses induced by stiffness and mass eccentricity that is different from
the one used in design when earthquake strikes, and it also implicitly accounts for the torsional responses
induced by torsional and spatially varying ground motions. Different codes give different @ and S
values. In the present study, = 1.5 and S = 0.1 are used as specified, for example, in Mexico code
(National University of Mexico, 1977) and Canadian code (NBCC, 1990).

Same observations as those reported in the previous study (Hao, 1998) can be drawn here. The
normalized base shear and torque oscillate with the increase of dimensionless parameter Jf.d/v.Fora
symmetric structure, the base shear reaches its maximum values at JS:d/v = 1.0 and 2.0, and minimum
values at f, d/v = 0.5 and 1.5, whereas the normalized torque reaches the peak values at f, d/v = 0.5
and 1.5, and the minimum values at f, d/v = 1.0 and 2.0. These indicate that when the ground motion
phase shift is in-phase with the lateral vibration mode (f, d/v = 1.0 and 2.0), spatially varying ground
motions produce ‘the largest shear force, whereas they generate the smallest shear force when their phase
shift is out-of-phase with the lateral vibration mode (f, d/v = 0.5 and 1.5). On the other hand, in-phase
ground motion with the torsional vibration mode ( f, d/v = 1.0 and 2.0) generates the smallest torque,
while out-of-phase motion ( f, d/v = 0.5 and 1.5) produces the largest torque. When the system is not
symmetric, the responses still oscillate with £, d/v, but the maximum and minimum values do not occur
exactly at f, d/v = 0.5 and 1.5 or at 1.0 and 2.0. This is because coupled lateral and torsional vibration
frequencies of the asymmetric system are not exactly equal to J. and f,. Thus, the in-phase and out-of-
phase excitations will not occur at those values.

In general, eccentricity and ground motion spatial variation cause reduction in base shear and induce
torque. However, the base shear might increase slightly, when the system has significant eccentricities in
both directions and is subjected to uniform excitation. The base shear is always reduced, when the system
is subjected to spatially varying ground motions, indicating that the reduction of base shear by spatially
varying ground motions is more significant than its increase due to the large twp-way eccentricities.

The normalized torque is generally less than unity, when the system has -significant eccentricities,
implying the adequacy of the code torsional provisions. However, it is larger than unity when the system
is symmetric or asymmetric with small stiffness eccentricities, indicating that the accidental torsional
provision coefficient # might not be sufficient to cover the torque produced by spatially varying ground
motions for torsionally intermediate stiff structures. Numerical results for other torsional stiffness cases
(@y/w, =0.75 and @,/®, =2.0), which are not shown here, indicate thai spatial ground motion
effect is more pronounced in torsionally flexible structures, and less important in torsionally stiff
structures. f = 0.1 is sufficient to cover the torsional responses of symmetric or small-eccentricity

structures induced by spatiai ground motion, if they are torsionally stiff: but this will substantially
underestimate the torsional responses of torsionally flexible structures. However, it should be noted that
this observation is based on results from the simplified structural model, which results in overestimation
of the ground motion spatial variation effects on structures, especially when the structures have more
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supports, or site has one large mat foundation. More detailed analyses are deemed neceésary to study the
adequacy of code-specified accidental eccentricity coefficient.

e,/d=0 e.,/d=03

o>

v d o® of

Fig. 8 Normalized non-linear inelastic base shear with different ¢, (0, /o0, =1.0)

e,/d=0 e,/d=03

Fig: 9 Normalized non-linear inelastic torque with different e, (@, /o, =1.0)

Figure 8 shows the normalized base shear in the x-direction for the torsionally intermediate stiff
structure. As shown, like those illustrated in Figure 7 for linear elastic analysis, both eccentricity and
ground motion spatial variation generally reduce base shear, except when the system has significant
eccentricities in both directions and is subjected to uniform excitation. Base shear in such cases, and the
increment could be about 10%, when e, /d =e, /d =03. The normalized base shear is always less than

unity, when the system is subjected to spatially varying ground motions. These observations are similar to
those described for linear elastic analysis. With the increase in parameter f, d/v, the base shear oscillates
and decreases in an overall trend. The oscillation, however, is not as prominent as in the elastic responses.
The maximum and minimum shear forces do not necessarily occur at f, d/v = 0.5, 1.5 or 1.0 and 2.0
ecither. This is because of the degradation of stiffness in inelastic response which reduces the vibration
frequency. Hence, in-phase and out-of-phase vibrations will not occur at the same f, d/v values.

The normmalized baze shear corresponding to the other two torsional stiffness cases, namely
w,/w, =075 and w,/®, = 2.0, are not shown here as they are very similar to those in Figure 8. This



116 Inelastic Response of One-Storey Asymmetric Systems to
Bi-directional Spatial Earthquake Ground Motions

indicates that the normalized base shear is insensitive to the torsional stiffness. This observation is the
same as that reported in a previous paper from linear elastic analysis.

Figure 9 shows the normalized torque of the torsionally intermediate stiff system. It shows again that
the code torsional provision is sufficient, when the structure has large eccentricities or is subjected to
uniform ground excitation. It is insufficient, when the system is symmetric or asymmetric with small
eccentricities and is subjected to spatial ground motions. The out-of-phase and in-phase response is still
observed here, but not exactly at f, d/v=0.5, 1.5 or 1.0 and 2.0 due to yielding and eccentricities. When
the structure has large eccentricities, spatially varying ground motions tend to produce smaller torque.
Out-of-phase excitation is not observed, when the structure has large eccentricities. This is because of the
coupling of the lateral and torsional modes, as well as due to the yielding owing to the increase in
torsional responses for large eccentricities.

e/d=0 s e/d=03

®) /0, =2.0
Fig. 10 Normalized non-linear inelastic torque with different e, (v, /@, = 0.75,2.0)

Figure 10 shows the normalized torque for the other two torsional stiffness cases. As shown, the .
normalized torque of the torsionally stiff case (@, /@, = 2.0) is always less than unity, even when the
structure is symmetric and subjected to spatially varying ground motions. For the torsionally flexible case
(@, /@, =0.75), it is less than unity when the structure is under uniform excitation. But it is larger than
unity, when the structure is symmetric or one-way eccentric and is subjected to spatially varying groun .
motions with f, d/v less than 1.0. When the structure is two-way eccentric with e./d= 0.3, it s slightly
larger than unity, only when e, /d is small; otherwise, it is less than unity.

" The present results are very similar to those obtained by linear elastic analysis (Hao, 1998), except
that the effects of in-phase and out-of-phase excitations of spatial ground motion are not as significant,
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owing to stiffness degradation of the non-linear structure, as discussed above. They indicate that, no
matter whether a torsional structure responds elastically or inelastically, current torsional provision of
a=15and S = 0.1 is sufficient for structures under uniform excitation. When a structure is under

spatially varying ground motions, this is sufficient only when the structure is torsionally stiff. When the
structure is torsionally intermediate stiff or torsionally flexible, this is adequate only when the structure
has large eccentricities. However, this might not be sufficient when the structure is symmetric or
asymmetric with small eccentricities, indicating that the code accidental torsional provision with 5 = 0.1
~ is not sufficient to cover the torsional responses induced by spatially varying ground motions.

EFFECTS OF SIMULTANEOUS BI-DIRECTIONAL GROUND MOTIONS

All of the above results are obtained by using simultaneous bi-directional ground motion inputs.
These results indicate some increase in base shear force, when the structure has large two-way
eccentricities, even if it is under uniform ground excitation. This implies that the assumed equivalence, as
allowed in the design of lateral-load-resisting elements and ground motions in the x- and y-directions
separately, might not be appropriate. To demonstrate this, some torsional responses of linear structures
will be analyzed in the following by considering structural stiffness and ground motion in the x- and y-
directions separately, and by comparing the results with those presented above.

The base shear in the x-direction subjected to bi-directional ground motion ¥, is normalized by V,

the respective base shear obtained by considering ground motion in the x-direction only. Figure 11 shows
the normalized base shear with varying e, and e,/d = 0.0 and 0.3 for the torsionally intermediate stiff
structure (@, /®, =1.0}. As shown, when structure is symmetric or one-way eccentric (e, /d = 0.0) and
is subjected to uniform ground motion, ¥, is equal to V. If it is subjected to spatially varying ground
excitation, ¥, is equal to ¥, only when it is symmetric in the y-direction with e, / d = 0.0. Otherwise,
bi-directional ground motion will result in the increase of base shear. This effect is particularly
significant, when the structure is subjected to non-uniform ground motion and has large eccentricities. Bi-
directional and uni-directional uniform input results in the same shear force in the x-direction of the one-
way eccentric structure with eccentricity in the y-direction, because the input motion in the y-direction is
not coupled with the structural eccentricity in the same direction. Similarly, spatially varying input motion
in the y-direction will not produce any shear force in the x-direction of a structure with e, /d = 0.0

because of the uncoupling. Once the spatially varying ground motions are coupled with the structural
eccentricity, ground motion in the y-direction will also produce some shear force in the x-direction. Thus,
this results in the increase of shear force. The increment could be very significant, and is as much as 60%
under the present conditions.

Figure 11 also shows the normalized mean torque of the structure by 7, =7, + T, where T, and 7,

are mean peak torques obtained by applying ground motion in the x- and y-directions separately. It shows
that when the structure is one-way eccentric and is subjected to uniform ground motion, T is equal to 7;

otherwise, T is generally less than 7. These observations can be explained by examining Equation (12).
When structure is one-way eccentric with e, = 0.0, and with linear elastic assumption, Equation (12)

2
becomes 7 =K [eu, + (12-+e§)0], i.e., torque depends on lateral displacement u,and rotation 6.

Since uniform excitation in the y-direction will not produce any response u, and €, the normalized
torque T/T, is unity. When structure is two-way eccentric and is subjected to uniform ground excitation,
the normalized torque T/T, is always less than unity in the present example, indicating that the absolute
summation of the largest 7, and T, in the two directions overestimates the actual torque T . This is
because T, and T, usually will not reach the maximum values at the same time instant.

Results for other two torsional stiffness cases, namely @, /@, =0.75 and @, /@, = 2.0, are also
calculated, but are not shown here as those are very similar to the ones illustrated in Figure 11. Results
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obtained by linear clastic analyses are not shown here cither. They have the similar trends as shown in
Figure 11, but appear more regular because of the constant stiffness of the four columns.

Fig. 11 Normalized base shear ¥, /V,, and torque T/T, with different e, (a), /o, =1.0)

CONCLUSIONS

The responses of asymmetric building model subjected to two-directional horizontal non-uniform
base excitations have been calculated by using non-linear analyses. The results have been presented and
discussed in terms of non-dimensional parameters. It is found that the conclusions drawn before based on
linear elastic analysis can still be made here, except that the effects of in-phase and out-of-phase
excitations of spatial ground motion are less significant here owing to stiffness degradation of the
non-linear structures.

It is also found that bi-directional ground motions will cause increase in base shear and might

increase or decrease torque, especially when the structure has large eccentricities in both the x- and y-
directions and is subjected to rion-uniform ground motions.
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