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ABSTRACT 

 Formal extensions of the response spectrum method to include spatial seismic effects are reviewed. 
Two approaches are described in detail: the first based on random vibrations of a simple oscillator under 
two-component excitations, and the second analyzing multi-column building seismic response. The 
subjective choice of these two complementing approaches aims at analyzing the phenomenon of spatial 
seismic vibrations of structures from a broader physical perspective of various wave types propagating 
among structural supports, with detailed random vibration sensitivity analysis of a simple structural 
system still included. 
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INTRODUCTION 

 The question of why, after 75 years, the response spectrum method (Biot, 1932) still captures our 
attention and ignites our imagination is quite a pertinent one. Two different answers to this question come 
to mind. On one hand, the response spectrum method in its full form, generalized to multi-degree-of-
freedom (MDOF) systems, is quite effective and very early it became a standard tool for engineers 
designing structures to withstand seismic loads. On the other hand, even for single-degree-of-freedom 
(SDOF) systems, the conceptual clarity of a simple “mechanical analyzer for the prediction of earthquake 
stresses” (Biot, 1941) made it a very convenient vehicle for analyzing new structural models for various 
types of ground motions. 
 Indeed, in spite of the fact that advanced finite element method (FEM) softwares applying dedicated 
finite element models and nonlinear procedures can solve many sophisticated structural seismic problems 
using hundreds of thousands degrees of freedom, our ability to understand and predict structural response 
under seismic excitations still remains substantially limited. This is partly because the more advanced and 
extended such modeling becomes, and the greater are the dimensions of the analyzed structural system, 
the more case-dependent our analysis becomes, and the less general conclusions we can draw. 
Paradoxically, it seems that the larger we make our model the more we are losing the “big picture” of our 
problem. So, after all the expensive FEM efforts, we are often left powerless like Pooh Bear from the 
childish book (...but to his surprise, the more Pooh Bear, looked inside the house, the more Piglet wasn't 
there; A.A. Milne: “The House at Pooh Corner”). 
 The purpose of this paper is to review one particular aspect of the response spectrum method, namely, 
its formal extension to include the effects of seismic signal variations along or across the structural 
dimensions. In this case, the advantage of clear physical interpretation of the response spectrum concept 
is particularly appealing. It is obvious that the modeling simplifications can lead only to approximate 
results; yet by reducing the number of parameters to a very few—the most necessary ones—a clearer 
view of the physics of the analyzed problem may be possible. For many practical engineering situations, 
these approximations are quite adequate. 

SPATIAL SEISMIC EFFECTS ON STRUCTURES 

 The origin of spatial seismic effects can be attributed to following three main sources: 
• complexity of seismic focus, 
• finite velocity of wave propagation, and 
• geological and geometrical heterogeneities of the ground. 
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 The first source of spatial variability can be particularly important for near-field strong motion, and 
its effects are still difficult to quantify. The second source depends directly upon the ratio of the longest 
structural dimension to the shortest significant wavelength. The third source of spatial seismic variability 
leads on one hand to complicated problems of wave diffraction and interference (see, e.g., Aki and 
Richards, 1980), and on the other hand to local soil amplification (e.g., Trifunac, 1990; Safak, 1995). 
 Consider a general multi-support structure (as in Figure 1). The seismic waves propagating along this 
structure excite the motion of structural foundations with a phase shift depending upon the wavelength 
and the apparent propagation velocities. It can be seen that in addition to the familiar dynamic response 
the presence of pseudo-static motion will cause substantial strains in the structure. In a situation in which 
the excitations act slowly, say with vibration periods >> T1 (= fundamental period of the structure), the 
strains in the structure will be caused ‘solely’ by the asynchronous support movements. Thus, it is the 
combination of the dynamic vibrations and pseudo-static motions, depending upon the spectral content of 
excitations and the apparent wave propagation velocities, that will determine the overall structural 
performance under spatial seismic excitations. One should also note that the differential effects among 
columns of the structure will always be somewhat reduced by the soil compliance, or more generally, by 
the soil-structure-interaction (SSI) effects (see the zoomed area of Figure 1). 

 
Fig. 1  A structure subjected to multi-support, kinematic wave excitations 

 The significance and recognition of spatial seismic effects grew following the arrival of experimental 
evidence since late 1980s, when the records from extended seismic arrays like SMART-1 became 
available (Abrahamson et al., 1987). From that time the number of journal papers on this subject has 
increased significantly. 
 The spatial seismic effects on structures can be analyzed with varying degrees of sophistication. The 
simplest way to include the effect of spatial seismic effects on a multi-support structure is to simply carry 
out a time-history analysis with certain seismic record applied to structural supports with some time 
delay. The time shift among structural supports can be selected so that it reflects the apparent wave 
velocity in the ground motion. Such an analysis for a typical reinforced concrete bridge structure on 
multiple supports was described by Leger et al. (1990). Modern computer codes (e.g., ABAQUS) even 
make it possible to observe the time dependence of a map of particular stresses in the structure as the 
excitation propagates along the structural supports (Dulinska and Zieba, 2007). Such a simple 
deterministic analysis can be conceptually clear, but the following aspects of the spatial seismic effects 
may still not be properly addressed. 
The Arbitrary Choice of the Single Apparent Wave Velocity: Theoreticians will note that this 
approach ignores the fact that there exist multiple apparent wave velocities that also depend upon the 
frequencies of motion being analyzed and that result from the dispersion in strong-motion waves 
(Trifunac, 1971). 
The Assumption of Uniformity of the Ground Properties along the Structure: In many cases, the 
ground properties differ among different structural supports. This may be particularly true for the bridges 
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crossing alluvial valleys with rock outcrops. In such situations, ground motions at different supports of a 
structure may be very different. 
Loss of Coherence among the Motions at the Supports of the Structure: Simultaneous measurements 
of seismic signals at two distinct points on the ground surface display differences that result from 
substantial randomness in the medium through which the seismic signal is transmitted. This effect, called 
loss of coherency, should be taken into account. 
 Many spatial seismic ground motion models based on the SMART-1 measurements were formulated 
and analyzed through correlation/coherence functions describing the surface wave field in terms of the 
random field theory (e.g., Abramhamson and Bolt, 1985; Abrahamson et al., 1991; Harichandran and 
Vanmarcke, 1986; Shinozuka and Deodatis, 1991; Vanmarcke and Fenton, 1991), and became popular in 
the analyses of the multi-support structural response based on the random vibration approach. In the 
papers by Harichandran and Wang (1988, 1990), Zerva (1991), and Hao (1989, 1991), specific multi-
support structures were analyzed, taking into account one- or two-dimensional random field models and 
the orientation of the structure with respect to the source direction (Zembaty, 1997) or local site effects 
(Zembaty and Rutenberg, 1998). Most of these analyses (except for very few, e.g., Perotti (1990)) assume 
stationarity of random vibrations. However, such an assumption may be disputable for some important 
multi-support structures like large bridges with fundamental periods of several seconds or more. On the 
other hand, there are methods available now (e.g., Gupta and Trifunac, 1998) that properly account for the 
nonstationarity of seismic excitation and response within the framework of stationary random vibrations. 
 The random vibration-based approach utilizing SMART-1 data provided good and general results on 
the spatial seismic effects on structures. However, in the inevitable temporal averaging of the multiple 
records from dense arrays of instruments, some important pieces of information can be lost, particularly 
those regarding the phasing and contributions of the specific wave types in the ground motion. Thus, an 
alternative approach to investigating the effects of the spatial nature of strong ground motion is 
deterministic and includes analyses of particular wave types arriving at the structures (Trifunac, 1997; 
Trifunac and Todorovska, 1997; Trifunac and Gicev, 2006) and their propagation inside the structures 
(Todorovska and Lee, 1989; Todorovska and Trifunac, 1989, 1990a). 
 The spatial seismic effects were also analyzed for extended structures like dams (Kojic and Trifunac, 
1991a, 1991b), dikes (Todorovska et al., 2001a, 2001b), and selected lifeline structures (e.g., buried 
pipelines (Hindy and Novak, 1980; Datta, 1999). In this case, instead of differential motion among 
structural supports, continuous changes of the ground motion occur along the structure. Review of these 
problems is beyond the scope of this paper, but readers interested in this subject can find further examples 
in the papers by Novak (1990), Todorovska and Trifunac (1990b), Zerva and Shinozuka (1991), and Datta 
(1999), among others. 
 Since most of the analyses of spatial seismic effects on structures are strongly case-dependent, the 
generalizations of the response spectra to include the spatial effects were searched for, starting from the 
early proposals of Loh et al. (1982) and Abrahamson and Bolt (1985). Later, the concept of spatial 
response spectrum was further advanced to include its stochastic description (Zembaty and Krenk, 1993; 
Zembaty, 1996; Zembaty and Rutenberg, 2002). In a separate development, Der Kiureghian and 
Neuenhofer (1992) also proposed a concept of random vibration-based response spectrum method for 
MDOF systems under multi-support excitations, generalized from the earlier concepts of the response 
spectrum method for stationary random vibrations (Der Kiureghian, 1980, 1981). 
 In what follows, selected results from the analyses of the simplest SDOF stochastic spatial response 
spectra from Zembaty and Krenk (1993), Zembaty (1996), and Zembaty and Rutenberg (2002) will be 
reviewed. Some results of the column response spectra concept of Trifunac and Todorovska (1997), and 
Trifunac and Gicev (2006) will also be considered. These two approaches were chosen for this review 
because they cover, in the simplest possible way, most of the physically important aspects of structural 
response under spatial seismic excitations, and because, in a sense, they complement one another. Our 
review starts with the presentation of a stochastic model of spatial seismic excitations. 

A COMPOSITE COHERENCY MODEL OF SPATIAL SEISMIC EFFECTS 

 Consider two points A  and B  on the ground surface. A convenient stochastic measure of the 
difference between the seismic signals at these two points is its complex coherency )(ωγ AB : 



236 Spatial Seismic Excitations and Response Spectra 
 

 

 [ ] ( )( ) exp
( ) ( )
AB

AB AB AB
A B

Si
S S

ωγ ω γ
ω ω

= Θ =  (1) 

in which )(ωAS  and )(ωBS  stand for power spectral densities of accelerations measured along the same 
direction (x, y, or z) at points A  and B , respectively; ABγ  stands for the modulus of the coherence 

function; ABΘ  is the phase of the coherence function; and )(ωABS  represents the co-spectrum of the two 
signals. The modulus of coherency )(ωγ AB  is called loss of coherency or lagged coherency. It is a 
measure of the similarity of signals at point A  and B , excluding the effect of traveling waves, which is 
included in the phase ABΘ . Sometimes the real value of coherency, Re ( )( )ABγ ω , called the unlagged 
coherency, is analyzed. Equation (1) can be rewritten as 

 )()()()( ωωωγω BAABAB SSS =  (2) 

to display the dependence between the input spectral densities, AS  and BS , their coherence ABγ , and the 
output cross-spectral density function ABS . 

 Der Kiureghian (1996) proposed a composite model of spatial seismic effects in which the cross-
spectral density of accelerations was 

 ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) exp ( ) ( )i w s i w s
AB AB AB AB AB AB ABiγ ω γ ω γ ω γ ω γ ω ω ω = = Θ + Θ   (3) 

This is composed of three principal factors, each representing a contribution from a different spatial 
seismic influence: )(i

ABγ  is a measure of the loss of coherency between A  and B ; )(w
ABγ  stands for 

complex coherency resulting from phase delay due to the wave propagation; and )(s
ABγ  represents local 

site effects, where )1(−=i . It should be pointed out that the loss of coherency is represented by a real 

function, whereas wave-passage and site effects result in the phase changes )(w
ABΘ  and )(s

ABΘ  of the 
complex coherency. 
 The complex coherency contains the key information on spatial distribution of seismic ground 
motions and constitutes the main input function for random vibration analyses of structural systems. 
Usually, its parameters are retrieved from the synchronized records of a particular seismic event (see, e.g., 
SMART-1 data processed by Hao (1989)). Two problems will be noted when analyzing physical 
interpretations of complex coherency: 
• The modulus of coherency appears to be very sensitive to spatial separation, even for relatively low 

frequencies (Der Kiureghian and Neuenhofer, 1992). On the other hand, there is experimental 
evidence that during strong earthquakes the peak values of ground motion do not change substantially 
over rather long distances (Todorovska and Trifunac, 1997). Thus, direct observations of the moduli 
of coherency can be misleading about important peak response measures of the seismic ground 
motion. 

• The second problem regarding the complex coherency concerns its phase. Usually, a single apparent 
wave velocity is assumed to describe the spatial phase changes of the coherency function, which is in 
direct violation of the observations of the records of real earthquakes. 

Thus, deeper research regarding rational stochastic models of spatial seismic ground motion seems 
necessary and inevitable. 

SPATIAL RESPONSE SPECTRUM FOR SDOF SYSTEM UNDER TWO-COMPONENT, 
RANDOM SEISMIC EXCITATIONS 

 Consider a simple oscillator under two different support excitations (Figure 2). Such a system, though 
very simple, can represent several important structural response cases, e.g., a symmetric beam vibrating in 
one dynamic mode (transverse, vertical, or axial; see Figure 3). Its equation of motion takes the form 
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where tq  and q  represent total and relative oscillator displacements, respectively (Figure 2). Introducing 

natural frequency )/(0 mk=ω  and damping ratio )2/( 0ωξ mc= , after some algebra, the above 
equation can be reduced to that for a SDOF system: 

 ( )BA uuqqq +−=++
2
12 2

00 ωξω  (5) 

The column shear forces )(tf A  and )(tfB  are 

 ( ) ( ) ( )( ) ( )
2 2 2 2

t B A
A A

k k u t u tf t q u q t = − = − + 
 

 (6a) 

 ( ) ( ) ( )( ) ( )
2 2 2 2

t A B
B B

k k u t u tf t q u q t = − = − + 
 

 (6b) 

 
Fig. 2  A single-degree-of-freedom system excited by two different motions 

 

Fig. 3 Examples of simple structures that can be modeled by the SDOF system shown in 
Figure 2 (after Zembaty and Rutenberg, 2002) 

 Equation (5) expresses the simple fact that the dynamic response of the analyzed SDOF system 
represents an oscillator response to the average of support excitations Au  and Bu . Unlike the relative 
displacements )(tq , the force responses (Equations (6a) and (6b)) combine both the dynamic response 
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and pseudo-static vibrations. Therefore, they are more influenced by the asynchronous support motions 
than by the displacements of the oscillator. 
 We assume next that the excitations )(tuA  and )(tuB  can be presented by spectral Stieltjes-Fourier 
decomposition of stationary random processes: 

 ˆ( ) d ( )i t
A Au t e uω ω

∞

−∞

= ∫  (7a) 

 ˆ( ) d ( )i t
B Bu t e uω ω

∞

−∞

= ∫  (7b) 

in which )(ˆ ωAu  and )(ˆ ωBu  stand for random processes in the frequency domain with orthogonal 
increments: 

 
1 2*

1 2
1 2

( )d forˆ ˆd ( )d ( )
0 forA B

BAu uS
u u

ω ω ω ω ω
ω ω

ω ω

= =< >= 
≠

 (8) 

Here the symbol < > denotes the mathematical expectation, asterisk stands for complex conjugate, and 
)(ω

BAuuS  is the cross power spectral density of random processes )(tuA  and )(tuB . It should be noted 

that for stationary processes, 4/)()( ωωω
BABA uuuu SS = , and for brevity, the acceleration cross spectrum 

will be denoted by )(ωABS  and the displacement cross spectra will be denoted by )(ω
BAuuS . When the 

processes )(tuA  and )(tuB  are identical, the cross-spectral density in Equation (8) reduces to the 
respective auto-spectra ( )

AuS ω  = ( )
BuS ω  = )(ωuS . The solution of Equation (5) can be given in the 

form of Duhamel integral: 

 
0 0

1 1( ) ( ) ( )d ( ) ( )d
2 2

t t

A Bq t h u t h u tτ τ τ τ τ τ= − − − −∫ ∫  (9) 

 Transforming the above equation into the frequency domain, assuming stationarity, and substituting 
respective spectral representations (as in Equations (7a) and (7b)) for both displacements and 
accelerations leads to the following solution of Equation (5): 

 
1 1ˆ ˆ( ) ( ) d ( ) ( ) d ( )
2 2

i t i t
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∞ ∞

−∞ −∞
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where 1
0

22
0 )2()( −+−= ωξωωωω iH  is the frequency response function of the oscillator. Analogous 

solutions for the forces Af  and Bf  are 
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 Taking into account that )()()( 42 ωωωωω uuu SSS == , and introducing the complex coherency 
)(ωγ AB  for signals )(tu A  and )(tuB  (in the format of Equation (1)), we can formulate the following 

spectral matrix for the vector, [ ]( ) ( ) ( ) ( ) ,T
A B A Bu t u t u t u t  which will be useful in deriving 

formulas for the spectral densities of displacements and forces in the next two points, 
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The symbols ( ), ( )A A B BS S S Sω ω≡ ≡  denote (real) point spectral densities of the accelerations )(tu A  
and ( ).Bu t  Further analysis depends upon the type of spatial seismic effects to be analyzed (see   
Equation (3)). 

1. The Effect of Wave Passage and Loss of Coherency on Response Spectra 

 We first assume that both supports A and B have exactly the same site conditions and are separated by 
the distance ABd = . In this case, both input spectral densities of accelerations are identical, 

( ) ( )
BAu uS Sω ω= , and are denoted here for brevity by )(ωS . Following Equation (2), their cross-

spectral density equals  
 )()()( ωωγω SS ABAB =  (13) 

The matrix in (12) can then be simplified to 
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Since only the loss of coherence and wave passage effects are analyzed, following Equation (3), it follows 
that 

 ( ) ( )( ) ( ) exp ( ) ( )i w
AB AB ABS i Sω γ ω ω ω = Θ   (15) 

The loss of coherency denoted here as || )(i
ABγ  is a real function of frequency ω and distance d, decreasing 

from 1 at d = 0 to 0 for d → ∞. A simple form of the loss of coherency was proposed by Luco and    
Wong (1986): 

 ( ) 2( ) exp ( )i
AB dγ ω κ ω = −   (16) 

where κ is a real parameter that controls the dependence of the loss of coherency to remain between 0 and 
1. 
 The auto-spectrum of accelerations )(ωS  often applied in engineering random vibration analyses 
consists of the familiar Kanai-Tajimi spectral density (Kanai, 1957; Tajimi, 1960) with a filter proposed 
later by Ruiz and Penzien (1969). Its detailed form is given in Appendix A.  
 Assuming the plane waves to be propagating with the same apparent velocity, gν , for all frequencies, 
the phase term in Equation (15) becomes 

 
g

w
AB v

dωω =Θ )()(  (17) 
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Taking into account Equations (10)–(11) and 14, we can write the equations for spectral densities of 
relative displacements: 

 ( )2
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and for column shear forces: 
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 The above force spectral densities consist of three terms reflecting (a) the pseudo-static dynamic 
contribution, (b) cross pseudo-static-dynamic contribution, and (c) the dynamic contribution, respectively. 
It is noted that the sign of the second term depends upon the wave direction (from A to B or vice-versa). 
However, as shown by Zembaty (1996), the contribution of the second term does not exceed a few 
percent for the realistic values of excitation parameters. Thus, the force spectrum can be approximated by 
a formula that does not depend upon the direction of wave propagation: 

 ( ) ( )
2

2
0 04

1( , ) 1 Re ( ) ( , ) 1 Re ( ) ( )
8f AB AB
kS H Sω ω γ ω ω ω γ ω ω

ω
 ≅ − + +        

 (20) 

In Figure 4, this force spectral density is shown as a function of separation distance d for structural 
damping ratio ξ  = 0.05 and ν  = 1000 m/s. It can be seen from this figure how the pseudo-static 
contribution in the response (the second “hill” close to the resonance peak) increases with the increasing 
separation distance. 

 
Fig. 4 Spectral density of force response versus frequency and separation distance ABd =  for 

0ω  = 2π rad/s, structural damping ratio ξ  = 0.05, and apparent wave velocity ν  =    
1000 m/s (after Zembaty and Krenk, 1993) 

 Integrating the preceding spectral densities with respect to ω  for various values of natural frequency 
0ω , we obtain the displacement mean-square response spectrum: 
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 2
0 0( ) ( , )dq qSσ ω ω ω ω

∞
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= ∫  (21) 

and the force mean-square response spectrum: 

 2
0 0( ) ( , )df fSσ ω ω ω ω

∞

−∞

= ∫  (22) 

 In Figure 5, the force root-mean-square (RMS) response spectrum is shown for gν  = 1000 m/s and 
five values of separation distance d from zero to 400 m. When d = 0 (see the dashed line), the force 
response spectrum goes to zero with decreasing natural period, as it does for a typical displacement 
response spectrum. This is so because, for the uniform excitations, the force response is a direct function 
of relative displacement q. It is interesting to note how, for spatial excitations, the force response 
spectrum goes to a finite, constant value reflecting the purely pseudo-static oscillator response for longer 
support distances. 

 
Fig. 5 RMS response spectrum for separation distance d = 0 (dashed line) and d = 50, 100, 200, 

400 m (solid lines, ‘1’, ‘2’, ‘3’ and ‘4’, respectively) (after Zembaty and Krenk, 1993) 

 The RMS response spectra can be normalized with respect to coherent excitations ( 0).d =  This leads 
to the following displacement and force response ratios: 
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It can be seen that the response spectra are controlled by three parameters: loss of coherency )(ωγ AB  

measured by the parameter κ , support distance d , and the velocity of wave propagation gν . To make 

the analysis more clear, a reduced velocity, dgr /νν = , and a parameter of reduced loss of coherency, 

dr κκ = , are introduced now. The reduced velocity measures the apparent wave velocity in terms of 
support distance d , while rκ  is a measure of the actual loss of coherency. With these changes, the 
equation for complex coherency takes the following form: 

 ( ) ( ) [ ]2, , exp exp /AB r r r rv i vγ ω κ κ ω ω = −   (25) 

Substituting for the complex coherency in Equations (18) and (20), its exponential form (Equation (25)), 
and applying Euler’s formula gives the following results for displacement and force spectral densities: 
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 We illustrate the effects of rκ  and rν  on the displacement (see Figure 6) and force response ratio 
(see Figure 7) for natural period 0T  = 1 s ( 0ω  = 2π  rad/s). The displacement spectrum always stays 
below 1, expressing the fact that the combined displacements represent the averaging effect of both 
support excitations. On the other hand, the force ratio stays either below 1 or above 1, mostly when the 
velocity is low or rκ  is high (i.e., faster loss of coherency). The values of fΦ  greater than 1 indicate a 
non-conservative result of spatial seismic effects, occurring mostly in situations when the pseudo-static 
effects dominate the structural vibrations. It can be seen from Figure 7 that the effect of parameter rκ  on 
the force response ratio is more important for higher velocities than for the lower ones. 

 

Fig. 6 Effect of loss of coherency rκ  and reduced velocity rν  on the displacement response 
ratio for 0ω  = 2π rad/s and ξ  = 0.05 (after Zembaty, 1996) 

 
Fig. 7 Effect of loss of coherency rκ  and reduced velocity rν  on the force response ratio for 

0ω  = 2π rad/s and ξ  = 0.05 (after Zembaty, 1996) 
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 Next, consider various limits of coefficients qΦ  and fΦ  (see Equations (23) and (24)). When ABγ  

goes to 1 (or rκ  goes to 0), there is no loss of coherency for the excitations at points A and B (e.g., for 
short support distance or no wave attenuation), and only the wave passage contributes to the spatial 
effects. Equations (26) and (27) then simplify to 

 [ ]2
0 0

1( , , , ) ( , ) 1 cos( / ) ( )
2q r r rS v H v Sω ω κ ω ω ω ω= +  (28) 

 [ ] [ ]
2

2
0 04

1( , , , ) 1 cos( / ) ( , ) 1 cos( / ) ( )
8f r r r r
kS v v H v Sω ω κ ω ω ω ω ω

ω
 = − + + 
 

 (29) 

 The displacement response ratio (see Equations (23) and (28)) and the force response ratio (see 
Equations (24) and (29)) are shown in Figures 8 and 9, respectively, as the functions of natural frequency 
and velocity for rν  varying from 1 to 5. The displacement ratio is always less than 1 and oscillates 
rapidly with both natural frequency and velocity. On the other hand, the force ratio can be either less or 
greater than 1, depending upon the natural frequency and velocity. For a low natural frequency, the force 
ratio increases with increasing velocity and approaches 1. For a higher natural frequency the force ratio 
decreases with increasing velocity. This difference is based on the fact that for a higher natural frequency 
and lower velocity the pseudo-static motion dominates in the force response. 

 

Fig. 8 Displacement response ratio (Equations (15) and (23)) versus reduced velocity rν  and 
natural frequency 0ω  (after Zembaty, 1996) 

 
Fig. 9 Force response ratio (Equations (20) and (24)) versus reduced velocity rν  and natural 

frequency 0ω  (after Zembaty, 1996) 
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 Consider now a situation in which ABγ  goes to 0 (or rκ  goes to infinity):  
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In this case there is a total loss of coherency between support points, regardless of the distance or wave 
velocity. The oscillating cosine terms (from wave propagation) vanish. The displacement spectral density 
equals just half of the solution for uniform excitations. The force spectral density displays two terms 
contributing to both the pseudo-static and dynamic motions. 
 Next, we consider the limits of Equations (26) and (27) when the reduced velocity rν  goes to 
infinity. The spectral densities depend now only upon the loss of coherency, and again the oscillating 
terms vanish: 

 [ ]2
0 0

1( , , , ) ( , ) 1 | ( , ) | ( )
2q ABr r rS v H Sω ω κ ω ω γ ω κ ω= +  (32) 
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 If rν  goes to 0, formulas as in Equations (26) and (27) diverge and the outcome cannot be predicted. 

2. Spatial Response Spectra and Local Site Effects 

 We consider next a situation depicted schematically in Figure 10. The simple two-support oscillator 
shown in Figure 2 is now supported with its left column (A) on a rock outcrop, while its right column (B) 
is on a soil layer overlaying the bedrock. Such a situation may easily happen for folded sedimentary rocks 
exposed at the surface or in the basins generated by the folding of sedimentary rocks in alluvial river 
valleys. In such cases, the significant lateral heterogeneity may be observed even for the adjacent sites, 
for which the wave passage effects and loss of coherency effects may be less important. For this reason, 
and to make further analysis more clear, it is assumed now that only site effects are considered and that 
there is “neither loss of coherency nor wave passage between the sites A and B” (the “bedrock” motion 
x(t) in Figure 10 is assumed to be identical for the two sites). The site effects are modeled by the local soil 
frequency response functions ( )AH ω  and )(ωBH  at the two stations. This leads to the following 
relation between the bedrock acceleration cross-spectral density )()( ωb

ABS  and the surface acceleration 
cross-spectral density )()( ωr

ABS : 

 )()()( )(*)( ωωω b
ABBA

r
AB SHHS =  (34) 

 

Fig. 10 Ground motion from bedrock to the surface for rock outcrop (left) and for a soil layer 
(right) (after Zembaty and Rutenberg, 2002) 

 When the two sites A and B coincide, these cross-spectra reduce to the respective auto-spectra, and 
instead of Equation (34) we can write two equations for the sites A and B: 
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 2( ) ( )( ) ( ) ( )r b
AA A AAS H Sω ω ω=  (35a) 

 2( ) ( )( ) ( ) ( )r b
BB B BBS H Sω ω ω=  (35b) 

When only the site effects are considered, as is the case for this point, the complex coherency ABγ  
includes only the third term of Equation (3): 

 ( ) ( )( ) ( ) exp ( )s s
AB AB ABiγ ω γ ω ω = = Θ   (36) 

with the phase difference )()( ωs
ABΘ  given by 
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Using Equations (10) and (11) and applying the orthogonality property (Equation (8)) together with the 
co-spectral matrix (Equation (12)), we can obtain the mean square displacements from 
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and forces from 
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in which the dependence on ω  for the parameters on the right side of these equations is dropped for 
brevity. As before, the difference between forces Af  and Bf  depends upon the sign of the second, cross-
acceleration-displacement component. As will be shown later, the difference between these two forces 
may be substantial, particularly when the properties of the sites are drastically different. Integrating the 
spectral densities (Equations (38), (39a), and (39b)) with respect to ω  leads to the RMS response 

 2
resp 0 resp 0( ) ( , )dSσ ω ω ω ω

∞

−∞

= ∫  (40) 

where subscript ‘resp’ represents either displacement q  or force Af  or Bf . Normalization of the 
resulting RMS response may be done with respect to the RMS response at the soil site at one of the two 
points A or B or with respect to the rock properties at both sites. The latter normalization seems more 
appropriate in this case: 
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σ ω

ω
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Φ =  (41) 
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 Next, we present selected examples of the sensitivity analysis of the above spatial seismic coefficient 
for the SDOF system shown in Figure 2, when it is resting on a rock-soil system (see Figure 10). 
Adopting the soil model of Safak (1995), after some algebra (Zembaty and Rutenberg, 2002), transfer 
function of the soil layer is obtained as  
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in which Sτ  is the S-wave propagation time in soil ( SS h ντ /= ; see Figure 10), and Q  is the quality 
factor measuring the ability of the medium to attenuate seismic waves. This can be related to the soil 
damping ratio as soil 1/(2 ).Qξ =  Finally, r  is the wave-reflection coefficient: 
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for two media with mass densities, Rρ  and Sρ , and S-wave velocities, Rν  and Sν  (here, these media are 
rock and soil, respectively). An analogous measure of the two media interfaces can be given by the 
rock/soil impedance ratio (e.g., Roesset, 1977): 
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In contrast to the soil transfer function )(ωSH , the transfer function of the rock outcrop represents only 
the propagation time in rock RR h ντ /=  and equals 

 )(exp)( RR iH ωτω −=  (45) 

 Consider now the rock and soil parameters as follows: Rρ  = 3 g/cm3, Rν  = 1500 m/s, Sρ  = 2 g/cm3, 

Sν  = 750 m/s, h  = 150 m, Q  = 30. For these data, the reflection coefficient r  = 0.5; propagation times 
in soil and rock are, respectively, Sτ  = 0.2 s, Rτ  = 0.1 s; and the first three soil “resonant” frequencies are 
7.85, 23.6, and 39.3 rad/s (i.e., the peaks of transfer functions from Equations (39a) and (39b)). In    
Figure 11, the spectral density of displacements (as in Equation (38); see upper part of the figure) and 
forces Af  and Bf  (as in Equations (39a) and (39b); see lower part of the figure) are plotted for the 
oscillator with 0ω  = 2 rad/s ( 0T  = 1 s). The displacement spectral density is that of a typical oscillator 
response to wide-band excitations, with most of the spectrum concentrated about the resonant frequency 

0ω  = 2π. On the other hand, in addition to the resonance peak, the force spectral densities display a low 
frequency “peak” resulting from the pseudo-static component of motion. The difference between the 
spectral densities of the forces Af  and Bf  is very small for the above values of soil and oscillator 
parameters, and the presence of soil resonance cannot be seen in the displacement spectral density plots. 
Also, the second resonance of the forces at ω  = 23.6 rad/s can hardly be detected (see the lower part of 
Figure 11). 
 Next, consider the mean-square response. The RMS displacement response spectrum is shown in 
Figure 12(a) for the soil parameters, Sρ  = 2 g/cm3, Sν  = 750 m/s, Q  = 30, and soil depth h  = 150 m. 
The same displacement response spectrum is shown again in Figure 12(b), after normalization with 
respect to Equation (41). The two plots in Figures 12(a) and 12(b) differ substantially. As would be 
expected, the RMS displacement response spectrum decreases steadily as 0T  goes to zero. In contrast, the 
normalized plot stays well below 1 for 0T  less than about 0.1 s, showing some excursions above 1 for 

11.0 0 << T , and it decays to 1 for 10 >T . The peaks of the plot in Figure 12(b) reflect the oscillator-soil 
resonance. As the natural period decreases, the peaks also decrease. 
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Fig. 11 SDOF system spectral densities (for 0ω  = 2π rad/s, ξ  = 0.05, Rρ  = 3 g/cm3, Rν  =    
1500 m/s, Sρ  = 2 g/cm3, Sν  = 750 m/s, h  = 150 m, Q  = 30, r  = 0.5): displacements 
(upper) and forces Af  and Bf  (lower) (after Zembaty and Rutenberg, 2002) 

 

 
Fig. 12 RMS response spectra for (a) displacements, and (b) displacements normalized with 

respect to uniform excitations at A and B (rock at both sites) (after Zembaty and 
Rutenberg, 2002) 
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 The plots of force response spectra (for forces Af  and Bf ) are shown for the same set of parameters 
( Sρ  = 2 g/cm3, Sν  = 750 m/s, Q  = 30) in Figure 13. Unlike the displacements, the force response spectra 
in Figure 13(a) do not vanish with falling 0T . This is due to the fact that as the inertial effects are reduced, 
the pseudo-static effects remain, and the response spectra stabilize at some level. In contrast, the force 
response spectra calculated for uniform excitations go down to zero (similarly as the displacements do) 
because in this case the pseudo-static effects do not induce forces, i.e., there is no differential motion 
between the two supports. Thus, the normalized RMS forces increase to infinity with vanishing natural 
period. Similar effects can be observed when considering the wave-passage effects for multi-support 
structures on uniform soil (Trifunac and Todorovska, 1997; Zembaty and Krenk, 1993; Zembaty, 1996). 
Obviously, the large values of the normalized response at very low natural periods shown in Figure 13(b) 
represent in some cases an “artificial” effect, as soil compliance can reduce it substantially. 

 

Fig. 13 (a) Spectra for forces Af  and Bf ; (b) Force spectra normalized with respect to uniform 
excitations (rock at A and B) (after Zembaty and Rutenberg, 2002) 

 Finally, the ranges of the analyzed response spectra are illustrated in Figure 14 for Sν  = 750 m/s and 

Sρ  varying from 2 to 3 g/cm3 (see Figures 14(a) and 14(c)), as well as for Sν  = 200 m/s and Sρ  = 1.5–
2.5 g/cm3  (see Figures 14(b) and 14(d)). These two values of Sν  represent firm (soft) rock and very soft 
soils, respectively. The range of Sρ  represents variations in soil properties that are likely to be found in 
practice. The corresponding variations of the rock/soil impedance ratio range from 2 to 3 for Sν  =        
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750 m/s, and from 9 to 15 for Sν  = 200 m/s. As can be seen from the plots in Figures 14(a) –14(d), these 
variations of soil properties do not substantially affect the results for firm soil ( Sν  = 750 m/s). They do 
affect the displacements and force response spectra for soft soils ( Sν  = 200 m/s), but only for the first 
resonance peak at 0T ≈ 3 s. For the force response spectra and Sν  = 200 m/s, a shift in the first resonance 
peaks of forces Af  and Bf  can be observed. It can also be seen that the differences among shear forces 

Af  and Bf  can be more pronounced even for quite realistic values of soil parameters. 

 
Fig. 14 Range of normalized displacement response spectra ((a), (b)) and force response spectra 

((c), (d)) reflecting the range of soil densities Sρ  = 1.5–2.0 g/cm3 for Sν  = 750 m/s ( r  = 
0.333–0.500, shear moduli SG  = 1125–1687 MPa, /R SI  = 2–3), and densities Sρ  = 1.5–
2.0 g/cm3 for Sν  = 200 m/s ( r  = 0.800–0.875, /R SI  = 9–15) (after Zembaty and 
Rutenberg, 2002) 

RESPONSE SPECTRA FOR COLUMN VIBRATIONS UNDER KINEMATIC WAVE 
EXCITATIONS 

1. Response Spectra for In-plane Differential Motion of Columns of a Building Structure 

 Trifunac and Todorovska (1997) explored another approach to the problem of spatial seismic 
response spectra. They analyzed a multi-support, multi-column structure with a stiff first floor (see  
Figure 15). This structure is excited by the horizontal ground motions 1 2( ), ( ),..., ( )nu t u t u t  and is 
situated along the radial direction of the wave propagation from the earthquake source (it is the most 
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conservative assumption in this case). Two types of waves may take part in these excitations: body waves 
incident with some angle γ , and surface (Rayleigh) waves. To simplify the analysis, the equivalent phase 
velocity eqc  was introduced, which is constant in time and frequency domain and represents all of the 
surface wave modes and the body waves propagating among the supports of the structure (Trifunac and 
Lee, 1996; Trifunac et al., 1996). Based on the detailed experimental data (Trifunac, 1971; Bycroft, 
1983), it was possible to assume eq avc β≈ , where avβ  is the average shear-wave velocity in the top 30 m 
below the ground surface. Next, a special reference point R on the ground surface was defined (see  
Figure 15), to which the individual support motion )(tui  was related. The point R was defined in such a 
way that its displacement )(0 tu  was a weighted average of the motions at the base of the columns: 
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 By considering the strain field in the ground, together with limits for the possible wavelengths along 
the structure, and by making further detailed assumptions based on earlier experimental studies (Trifunac 
and Lee, 1996; Trifunac et al., 1996), Trifunac and Todorovska (1997) proposed quite a simple 
formulation of the response spectrum for differential motion of columns defined for the one-storey 
structure of Figure 15: 

 21
2( , , ) max ( ) ( ) ( )r

t
SDC T u t v t a tξ τ τ τ = + −   (47) 

Here, T  stands for the natural period of the structure, ξ  is the damping ratio, ru  denotes the relative 
displacements of the mass (with respect to the reference point R), )(tν  and )(ta  stand for the velocity 
and acceleration of the point R , and finally τ is the time required for a wave to propagate from the point 
R  to the ith analyzed column. Assuming reasonable building dimensions and taking into account 
realistic, experimentally verified wavelengths the values of τ  were suggested to stay between 0.001 and 
0.1 s. 

 

Fig. 15 Model of the one-storey structure excited by horizontal components of Rayleigh and/or 
SV waves (the columns have stiffness ik ; absolute displacement at the base of the ith 
column is iu ; the point R and the z axis move with displacement 0u ; the displacement of 
the mass relative to the point R is ru ) (after Trifunac and Todorovska, 1997) 
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 To include in the analysis the multi-storey buildings vibrating in their first natural mode, an 
equivalent SDOF system was analyzed (see Figure 16). After a detailed modal analysis, which took into 
account characteristic simplifications relevant to the multi-storey buildings, an additional parameter δ  
was added to the whole analysis. This parameter equals 1 for the one-storey structural model of Figure 15, 
while for a multi-storey building it depends on the number of its storeys as well as on the assumed shape 
of the 1st mode (sinusoidal or straight line). For example, δ  is 0.15 for a 10-storey building with the first 
natural period 1T  = 1 s. Again, the respective response spectrum definition has a very simple form: 

 2
1

1
2( , , , ) max ( ) ( ) ( )r

t
SDC T u t v t a tδ ξ τ δ τ τ = + −   (48) 

 
Fig. 16 A multi-storey building excited by asynchronous motion at the base of the first-storey 

columns (point R and the z axis move with the displacement 0u ; Cu  is the relative 
displacement of the equivalent SDOF oscillator excited by the acceleration 0 ( ),u t  and d1 
is the relative displacement of the first storey) (after Trifunac and Todorovska, 1997) 

 The SDC spectra can be easily calculated from the existing earthquake records for specific values of 
δ  characteristic of certain building types, with values of τ  specified according to column configurations 
and wave patterns specific for particular ground conditions. Furthermore, as shown by Trifunac and 
Todorovska (1997), the SDC response spectrum (see Equation (48)) can effectively be approximated by 
the “square-root-of-sum-of-squares” rule as follows: 

 ( ) ( )222 2 2
1 max max

1
21

2( , , , ) ( , )SDC T SD T v aδ ξ τ δ ξ τ τ ≈ + −  
 (49) 

where ),( ξTSD  is the familiar displacement response spectrum while maxν  and maxa  denote the 
respective maxima of )(tν  and )(ta . 

 In Figure 17, the plots of the column differential response spectra for a one-storey structure (δ  = 1) 
and damping ratio ξ  = 0.05 are illustrated for various values of τ , with solid lines denoting the 
application of Equation (48) and dashed lines denoting the approximation (as in Equation (49)). It is 
interesting to note the flat zones on the left side of Figure 17, in which the SDC response spectrum 
diverges from the classic displacement response spectrum. It shows the domination of the pseudo-static 
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component in the structural response for short-natural-period (stiff) buildings. This result can also be 
observed in the independently obtained plot of force spatial response spectrum as shown in Figure 5. 

 
Fig. 17 In-plane building column response spectrum for the S16W component of the 

acceleration recorded at Station # 53 of the Los Angeles Strong Motion Network during 
the Northridge, CA, earthquake of 17 January 1994 (M = 6.7), at the epicentral distance 
of 6 km with 05.0=ξ  and 1=δ  (one-storey building) (solid line is for Equation (48), 
and dashed-line approximation for Equation (49)) (after Trifunac and Todorovska, 1997) 

2. Response Spectra for Differential, Out-of-plane Motion of Columns of a Building Structure 

 Figure 18 illustrates the model analyzed by Trifunac and Gicev (2006). In this case, the out-of-plane 
differential motion of columns, omitted in the analysis of the previous example, is analyzed. Such a 
motion can be caused by the passage of SH or Love waves among the columns of the structure. The 
analyzed two-degrees-of-freedom structural model is depicted in Figure 19. As for the in-plane motions, a 
reference point R is adopted. Its motion )(0 tu  (see Equation (46)) represents the ground motion averaged 
over the length of the structure L . In contrast to the previous example, this time the stiffness ik  works 
with the out-of-plane component of the motion (see Figure 19). The primary difference between the 
present and the previous example is the fact that this structural model has following two degrees of 
freedom: 
• transversal motion of the rigid floor with mass m, and  
• torsional motion of this floor about the vertical axis through R. 
 In the analysis presented by Trifunac and Gicev (2006), analogous assumptions are made, as in the 
paper of Trifunac and Todorovska (1997). In particular, an equivalent phase velocity eqc  is defined to 
represent both body and surface wave effects. Under conditions described by Trifunac and Gicev (2006), 
the two dynamic degrees of freedom are uncoupled, and the out-of-plane differential response spectra for 
the columns in the one-storey model of Figure 18 can be described by 

 21
2( , , , , ) max ( ) ( ) ( ) ( )T T r it

SDC T T u t t x v t a tξ ξ τ τ τ = + Θ −   (50) 

where )(tu r  and )(tΘ  are the displacement and torsion of the rigid mass, respectively (see Figure 19), 
while )(tν  and )(ta  are the velocity and acceleration of the reference point .R  The maxima of the above 
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four components of the SDC response spectrum occur generally at different time instants, which 
complicates the analysis. However, assuming that iix τν maxmax ≈Θ , neglecting the contribution of )(ta  

(i.e., the term of Equation (42) with the multiplier, 2τ ), and using, as previously, the “root-of-sum-of-
squares” approximation, further simplifications can be made and the SDC spectrum can be approximated 
as 

 ( )22
max max

1
2( , , , , ) 2T T rSDC T T u vξ ξ τ τ ≈ +   (51) 

 
Fig. 18 One-storey structure excited by Love and/or SH waves propagating along its long 

dimension (after Trifunac and Gicev, 2006) 

 
Fig. 19 Simplified 2-DOF model of the structure shown in Figure 18 (after Trifunac and Gicev, 

2006) 

 The out-of-plane SDC spectrum can be generalized further to include, as in the previous example, the 
effects of differential ground motions on the first-storey columns of a multi-storey building responding in 
the first vibration mode. In this case, the torsional mode can be approximated by a straight line, and the 
SDC spectrum for the ith column becomes 

 21
2( , , , , , ) max ( ) ( ) ( ) ( )T T r i i it

SDC T T u t t x v t a tξ ξ τ δ δ δ τ τ = + Θ + −   (52) 
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With further simplifications (Trifunac and Gicev, 2006), this response spectrum can be approximated by 

 ( ) ( )( )22 2
max

1
2( , , , , ) , 1T T iSDC T T SD T vξ ξ τ δ ξ δ τ ≈ + +   (53) 

 To plot any of the above response spectra, a particular ratio between the transversal natural period T 
and the torsional period TT  should be established (for a typical building, TTT /  can be, for example, 

equal to 3 1.73).≈  

 In Figure 20, the SDC spectrum calculated for a single-storey structural model )1( =δ  is illustrated 
for various values of τ  and compared with the ordinary displacement response spectrum. The solid lines 
in this figure represent the application of Equation (52), while the dashed lines denote the approximation 
as in Equation (53). On comparing the plots of Figure 20 with those of Figure 17 (longitudinal vibrations) 
it can be noted that they are quite similar but due to the additional contributions from torsional vibrations, 
the spectra in Figure 20 are larger than those in Figure 17. 

 
Fig. 20 Out-of-plane SDC response spectrum for the S16W component of the acceleration 

recorded at Station # 53 of the Los Angeles Strong Motion Network during the 
Northridge, CA, earthquake of 17 January 1994 (M = 6.7), at the epicentral distance of  
6 km with 05.0=ξ  and 1=δ  (one-storey building) (solid line is for Equation (52), and 
dashed-line approximation for Equation (53)) (after Trifunac and Gicev, 2006) 

SUMMARY AND CONCLUSIONS 

 Examples of different extensions of the response spectrum method to include the consequences of 
spatial variations and of propagation of seismic waves were briefly reviewed. Two approaches were 
described in some detail: random vibrations of a simple SDOF system with two-component seismic 
excitations, and a multi-component column response spectrum for the multi-storey buildings. 
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 While the random vibration approach is based on rational analyses of the seismic data from dense 
arrays of synchronized accelerometers (e.g., SMART-1), it actually does not allow in-depth analyses of 
the specific wave-passage effects due to temporal averaging included in the stochastic processing of the 
data. That is why the alternative approach using the waves propagating along the columns of a building 
sheds new light on the problem of spatial seismic effects on structures. It still requires approximations, 
but their validity can be carefully verified by analyzing a number of recent records of strong ground 
motion. In particular, it is interesting that such an intuitive, engineering notion as “apparent wave 
velocity” could also be derived from experimental wave-passage analyses as “equivalent phase velocity”. 
Both approaches indicate the importance of the spatial seismic effects for the short-period stiff structures 
(see Figures 5, 17, and 20), but the differences in the local site effects can also be important (as shown in 
Figures 12–14), thus contributing further to the complexity of the problem. 
 The need for future research in this area should be apparent. Detailed analyses of wave passages, the 
role of group velocities of strong motion waves, and of the rotational components of seismic ground 
motion, will lead to the development of more detailed models of spatial seismic effects on structures. 
Modern suspension bridges may have their supports as far as 2 km apart (e.g., Akashi bridge in Japan), 
with the existing designs approaching a 3.3-km span (Messina bridge in Italy). In such cases, the effects 
of nonstationarity of spatial seismic random fields cannot be neglected. This and further refinements 
involving soil-structure interaction effects among the multi-support foundations will be the challenging 
new areas of research for future investigations. 
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APPENDIX I: POWER SPECTRAL DENSITY OF SEISMIC GROUND MOTION  

 The popular engineering model of power spectral density of the seismic accelerations was proposed 
by Kanai (1957) and Tajimi (1960): 

 02222

24

)2()(

)2(
)( SS

ggg

ggg

ωωξωω

ωωξω
ω

+−

+
=  (A.1) 

 The advantageous feature of the Kanai-Tajimi ground motion model is its ability to model local site 
effects by the frequency gω  and damping ratio gξ , which can then be treated as the local soil parameters, 
while S0 denotes the seismic intensity factor. Typical ranges for these parameters are: 2π to 6π rad/s for 

gω , and 0.2 to 0.6 for gξ . The Kanai-Tajimi spectrum takes an unrealistic non-zero value for 0=ω . 
This undesirable effect has been corrected by introducing a high-pass filter, as proposed by Ruiz and 
Penzien (1969), leading to the following spectral density function: 
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in which hω  = 1.636 and hξ  = 0.619 are the constants proposed by Ruiz and Penzien (1969). 
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