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ABSTRACT 

 A problem of surface wave propagation in a micropolar liquid-saturated porous layer over a 
micropolar liquid-saturated porous half-space of different elastic properties has been investigated. The 
frequency equation for surface wave propagation in the layer has been derived, and the effects of 
poroelasticity and micropolarity on phase velocity of surface waves have been studied in detail. 
Dispersion curves are computed numerically for a specific model and presented graphically. Some special 
cases have also been deduced. 

KEYWORDS: Surface Wave Dispersion, Micropolarity, Poroelasticity, Frequency Equations 

INTRODUCTION 

 A unified theory of wave propagation through a fluid-saturated porous medium was developed long 
back by Biot (1956a). In a subsequent paper, Biot (1956b) derived the general solution of the equations of 
elasticity and consolidation for a porous material. Since then, a number of papers appeared in the open 
literature related to wave propagation in porous media. A few of them are cited here, e.g., Deresiewicz 
and Skalak (1963), Sharma et al. (1990), Wang and Zhang (1998), Lauriks et al. (1998), Barry and 
Mercer (1999), Fellah and Depollier (2000), Cederbaum (2000), and Schanz and Cheng (2000). 
 The theory of micropolar continua was initiated by Suhubi and Eringen (1964) as a special case of 
their work on micro-elastic solid, and was renamed couple stress theory. Later, Eringen (1966) 
recapitulated and renamed it as micropolar theory. A similar theory appeared to be developed 
independently by Palmov (1964) for the linear elastic solid. Physically speaking, the theory of micropolar 
elasticity is concerned with those materials whose constituents are dumbbell molecules. These elements 
are allowed to rotate independently without stretch. The basic difference between the theory of 
micropolar elasticity and that of classical elasticity is the introduction of an independent microrotation 
vector. In classical elasticity, all other quantities can be obtained from the knowledge of three components 
of the displacement vector. In micropolar elasticity, we must also have knowledge of the three 
components of microrotation vector. In micropolar elastic bodies, the force at a point of a surface element 
is completely characterized by a stress vector and a couple stress vector at that point, while in classical 
elastic theory, the effect of couple stress is neglected. 
 Physically, solids that are composed of dumbbell molecules may be adequately represented by the 
model of micropolar elasticity. Fibrous materials and some granular and porous bodies may also fall in 
the category of this theory (Eringen, 1966). It is believed that “porous granular” material can be best 
approximated to soil (Deresiewicz, 1958). Thus, a peculiar type of soil/rocks whose molecules are 
granular, e.g., polycrystalline material, aluminum-epoxy, concrete, may be examples of micropolar solids. 
 It is believed that some soils whose molecules are granular, are very close to micropolar elastic 
porous medium. Hence, the present model is the motivation of the situation, when a micropolar liquid--
saturated porous layer is resting on micropolar liquid-saturated porous elastic foundation. Since water, oil, 
chemicals, etc. are present inside the earth, the propagation of surface waves in such a layer may be 
relevant in the exploration of oils and other valuable liquids. The problem of surface wave propagation as 
a part of exploration seismology is also helpful in various economic activities, like tracing of 
hydrocarbons and other mineral ores. The present study, in fact, is a step to attempt a more realistic model 
of the earth's crust, and hence may be helpful in further investigation of exploration seismology, 



368 A Note on Surface Wave Dispersion of a 1-Layer Micropolar Liquid- 
Saturated Porous Half-Space 

 

 

geophysics, earthquake engineering and soil dynamics, both theoretically and practically. We hope, this 
study will enhance the knowledge in better understanding the complexities of the earth medium. 
 Rao and Rao (1972) discussed the problem of a layered micropolar half-space. They obtained the 
frequency equation of surface wave propagation in a semi-infinite micropolar solid lying on another 
micropolar elastic solid. Ewing et al. (1957) studied the analogous problem in linear elasticity. Rao and 
Rao (1976) also discussed the problem of propagation of Rayleigh waves in a layer of micropolar elastic 
solid lying over a micropolar elastic half-space and under a uniform layer of inviscid liquid. Assaf and 
Jentsch (1992) worked on the elasticity theory of microporous solids. Rao and Reddy (1993) discussed 
Rayleigh type wave propagating on the surface of a micropolar elastic circular cylinder in an azimuthal 
direction. They have shown that due to the micropolar effect, there exists an extra wave, and the 
frequency of Rayleigh waves increases due to the micropolar effect. Kumar and Miglani (1996) studied 
the effect of pore alignment on surface wave propagation in a liquid-saturated porous layer lying on a 
liquid-saturated porous half-space with loosely bonded interface. Murad and Cushman (2000) studied 
thermomechanical theories for swelling porous media with microstructure. Deswal et al. (2000) discussed 
the effect of fluid viscosity on wave propagation in a cylindrical bore in micropolar elastic medium. 
Kumar and Deswal (2000) studied wave propagation in micropolar liquid-saturated porous solid. 
 The aim of the present study is to see the combined effect of micropolarity and porosity on surface 
wave dispersion for the wave propagating in a layer over half-space; both (layer and half-space) are taken 
as micropolar liquid-saturated porous solids of different elastic properties. The main contributions of the 
present paper are the following. (1) Dispersion equation is derived for Rayleigh type surface waves 
propagating in a micropolar liquid-saturated elastic layer lying over a similar half-space with different 
elastic properties. (2) Effect of micropolarity and porosity on surface wave dispersion is studied in two 
cases: (i) when the pores of the layer and the half-space are fully connected at their interface of 
separation, (ii) when there is no connection between the pores. (3) Dispersion curves are plotted for an 
elastic micropolar liquid-saturated porous layer over a micropolar liquid-saturated porous half-space and 
for three special cases: (a) an elastic micropolar layer over a micropolar half-space (porous effect is 
neglected), (b) an elastic porous layer over an elastic porous half-space (micropolar effect is neglected), 
and (c) an elastic layer over an elastic half-space (both micropolar and porous effects are neglected). 

NOTATIONS 

µλ  ,    = elastic constants 

,  ,  ,  Kα β γ   = micropolar constants  

ρ     = density 

J    = microinertia 

221211 ,, ρρρ   = dynamical coefficients 

R, Q            = material constants for solid-liquid aggregate  
tij            = force stress tensor 
mij    = couple stress tensor 
σ     = stress in the liquid 
ur    = displacement vector in the solid  

U
r

   = displacement vector in the liquid  

φ
r

   = microrotation vector in the solid  

χ    = coefficient of permeability 

*β   = porosity 

η    = viscosity of the liquid  

b   = dissipation coefficient  
k    = wave number 
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c   = phase velocity 
ω    = angular frequency 

i    = 1−  

ur    = (u, v, w) 

U
r

   = (U, V, W) 

ijδ    = Kronecker's delta 

ijkε   = permutation symbol 

, ,x y z   = space co-ordinates 

Φ
r

   = (φ 1, φ 2, φ 3)  

ε    = pore alignment parameter 
 

 
Fig. 1  Micropolar liquid-saturated porous layer over a micropolar liquid-saturated porous half- 

space 

FORMULATION AND SOLUTION OF THE PROBLEM 

 We consider a micropolar liquid-saturated porous layer (M1) of thickness ,H  lying over a micropolar 
liquid-saturated porous half-space (M2) and separated by a plane interface. The axisz −  is chosen in the 
direction of increasing depth, and z = H is taken as the plane interface between the layer and half-space. 
The rectangular Cartesian co-ordinates ( ), ,x y z  are used, and the complete geometry of the problem is 
shown in Figure 1. A two-dimensional problem of Rayleigh type surface wave propagation is considered, 
whose wave-front is parallel to ( )x z−  plane. With this consideration, the quantities would remain 
independent of y − coordinate. We identify the field variables and constants, in the layer with superscript 
primes and that in the half-space without primes. 
 Following Konczak (1986, 1987), the vector form of equations of elastodynamics for a micropolar 
liquid-saturated porous solid without body forces and body couples in the presence of dissipation are 
given by 
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2
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and the constitutive relations: 

 ( ) ( ) ( ), , , , ,ij r r r r ij i j j i i j ijr rt u QU u u K uλ δ µ ε φ= + + + + −   (4) 

         , , ,ij r r ij i j j im αφ δ βφ γφ= + +   (5) 

 Qe Rσ ξ= +  (6)   

where, e = . ,   .u Uξ∇ = ∇
rr

. Here, we employ rectangular co-ordinates ( )1,  2,  3kx k =  or 

( )1 2 3,  ,x x x y x z≡ ≡ ≡  and usual summation convention on repeated indices. Also, indices following a 
comma indicate partial differentiation, e.g., 

 ,
i

i j
j

uu
x
∂

=
∂

 

The dissipation coefficient b  is given by 

 
2*b ηβ χ=  

Since we are considering two-dimensional problem in x – z plane, we take 

 ( ),  0,  u u w=
r

 and ( ),  0,  U U W=
r

  (7)    

 Assuming the time-harmonic variations, i te ω , writing the Helmholtz representation of displacement 
vectors in scalar and vector potentials as 

 ,   . 0u q H H= ∇ +∇× ∇ =
r rr

 

 ,   . 0U G Gψ= ∇ +∇× ∇ =
r rr

  (8) 

in Equations (1) to (3), then eliminating 2
2,  ,  ψ ψ φ∇  and 2

2φ∇  from the resulting equations, we obtain 
the following equations 

 ( )4 2 2 4   0A B C qω ω∇ + ∇ + =   (9) 

 ( ) ( )2 2 2 0
11 12 0A R Q i b R Q q Bω ρ ρ ω ω ψ ∇ + − + + − =          (10) 

 ( )4 2 2 4 * 0D E Hω ω∇ + ∇ + =  (11)   

 ( ) ( )2 2 2 * 2
2 2 0 1 2 0E pr H p r rω ω φ∇ ∇ + + − − + =        (12) 

where 

 ( )*

y
H H= −

r
 ( )2 y
φ φ= −

r
, 2A PR Q= −  

 2 ,P Kλ µ= + +  
Kp

Kµ
=

+
 

 22 11 12  2ib ib ibB P R Qρ ρ ρ
ω ω ω

     = + + + − +     
     
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ibE ib
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ρ ω ρ ρ
ρ ρ

ρ ω ρ ω
 − + +

= + + + + 
        (13) 

The solutions of Equations (9) to (12) in the layer M1 are given by  

 ( )1 1 2 2
1 1 2 2

i t kxz z z zq A e B e A e B e e ωζ ζ ζ ζ −′ ′ ′ ′− −′ ′ ′ = + + +   

 ( ) ( ) ( )1 1 2 2
1 1 1 2 2 2  i t kxz z z zA e B e A e B e e ωζ ζ ζ ζψ µ µ −′ ′ ′ ′− − ′ ′ ′ ′ ′= + + +   

 ( )3 3 4 4
3 3 4 4 i t kxz z z zH A e B e A e B e e ωζ ζ ζ ζ −′ ′ ′ ′− −′  ′ ′ = + + +   

 ( ) ( ) ( )3 3 4 4
2 3 3 3 4 4 4  i t kxz z z zA e B e A e B e e ωζ ζ ζ ζφ µ µ −′ ′ ′ ′− − ′ ′ ′ ′ ′= + + +          (14) 

and in the half-space M2 are given by 

 ( )1 2
1 2

i t kxz zq A e A e e ωζ ζ −− − = +   

 ( )1 2
1 1 2 2

i t kxz zA e A e e ωζ ζψ µ µ −− − = +   

 ( )3 4
3 4

i t kxz zH A e A e e ωζ ζ −− − = +   

 ( )3 4
2 3 3 4 4

i t kxz zA e A e e ωζ ζφ µ µ −− − = +          (15) 

where, ,   j jA A′ and  jB  ( j = 1, 2, 3, 4) are arbitrary constants and 

 ( )1/ 22 21 ,j jk cζ λ= −   j = 1, 2, 3, 4 
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1
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2
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A
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2
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2
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A
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4
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2
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1
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ibA R Q R Q
B

µ λ ρ ρ
ω
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,  i  = 1, 2 

 
( )2 2 2 2 2
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2
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j
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p r r

ω λ ω λ ω
µ

ω

− −
=

 − + 
,  j = 3, 4     (17) 

The corresponding quantities with primes will define the medium M1.  

BOUNDARY CONDITIONS 

 Following are the boundary conditions. (i) Vanishing of stresses at the free surface, i.e., 
 0zz zx zyt t m σ′ ′ ′ ′= = = =          (18) 

and at the interface,  z = H, 
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(ii) Continuity of normal stress, i.e., 
 zz zzt tσ σ′ ′+ = +  (19) 

(iii) Continuity of shear stress, i.e., 
 zx zxt t′=  (20) 

(iv) Continuity of couple stress, i.e., 
 zy zym m′=  (21) 

(v) Continuity of tangential displacement component, i.e., 
 u u′=  (22) 
(vi) Continuity of normal displacement component, i.e., 
 w w′=   (23) 
(vii) Conservation of mass of the liquid, i.e., 

 
'* *W w W w

t t t t
β β

′ ′∂ ∂ ∂ ∂   − = −   ∂ ∂ ∂ ∂   
 (24) 

(viii) Continuity of microrotational displacement components, i.e.,   
 2 2φ φ′=  (25) 

(ix)  When two liquid-saturated porous solids are in contact with each other through a plane boundary, 
then it may be possible that either the pores of two media are fully connected (open pore condition) 
or there is no connection between the interstices of the two media (sealed pore condition), and in the 
intermediate situations, the pores of the two media are partially connected. Following Deresiewicz 
and Skalak (1963), nonalignment of a portion of pores can produce an interfacial flow area which is 
smaller than when the pores are aligned. The effect of non-alignment of the portion of pores can be 
accomplished physically by inserting a porous membrane between the two poroelastic media with 
fully aligned pores. Flow through such an interface would result in a pressure drop across the 
interface. Therefore, with the assumed consistency between the pressure drop and normal component 
of filteration velocity, we can write the continuity requirement, regarding pressure drop, as 

 *1 W wp p
t t

ε
β

ε
′ ′ ′− ∂ ∂ ′− = − ∂ ∂ 

  (26) 

where, ε  is defined as the pore-alignment parameter and 0 ≤ ε  ≤ 1. ε  = 1 implies that the pores of the 
two media are completely connected, and ε  = 0 corresponds to the case when there is no connection 
between the interstices of the two media. The intermediate values of ε  (0 < ε  < 1) will correspond to the 
case when there is a partial alignment of pores at the interface of the two media. Making use of Equations 
(4) to (8), (15) and (16) in the above boundary conditions, i.e., in Equations (18) to (26), a system of 
twelve homogeneous equations in twelve unknowns, namely, jjj BAA  , , ′  ( j = 1, 2, 3, 4) is obtained. The 

non-trivial solution of this system of equations requires that the determinant of coefficients of these 
unknowns must vanish, i.e. 

 0ija =  (27) 

where, the non-zero entries of the twelfth order determinant are as given in Appendix I. 
 Now, if we consider the open and closed pore conditions, we have the following results. 
(i) For ε  = 0, i.e., when there is no connection between pores (closed pore condition), the elements are 

 ' '
12, 5 12, 6 1 12, 7 12, 8 2,    a a X a a X= = − = = −  

 12,9 12,10 12,11 12,12a a a a X= = = =  

(ii) For ε  = 1, i.e., when pores are completely connected (open pore condition), the elements are 

 ( )( )2 2
12,i i ia Q R kµ ζ= + −  
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 ' '
12, 5 12, 6 1 12, 7 12, 8 2,    a a V a a V= = − = = −  

where 

 ( ) ( ) ( )2 2 2  + 2i i i iS k Q Kζ λ µ µ ζ′ ′ ′ ′ ′ ′ ′ ′= − + +  

 ( )2i iR k Kζ µ′ ′ ′ ′= + , ( )2j jQ k Kζ µ′ ′ ′ ′= + , ( ) ( )2 2  i i iV Q R kµ ζ′ ′ ′ ′ ′= + −  

 ( ) 2 2
j j jT K k Kµ ζ µ µ′ ′ ′ ′ ′ ′ ′= + + − ,  j j jU µ ζ′ ′ ′=  

 ( ) ( ) ( )2 2 2 2i i i i iW k Q Q R Kζ λ µ µ µ ζ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − + + + + +  

 ( )* 1i i iX β ζ µ′′ ′ ′= − , ( )*
0 1X kβ α′ ′= − , 12

0
22

ib
ib

ρ ω
α

ρ ω
 −

= − + 
 (28)  

  (i = 1, 2  and  j = 3, 4) 
 Equation (27) is the required frequency equation, relating the phase velocity c to the wavelength 
2 / kπ . The wave length is a multi-valued function of phase velocity (each value corresponding to the 
different mode of propagation), and hence indicates the dispersive nature of surface wave. Equation (27) 
is complex because of the dissipation of the system. The dispersion curves from these equations can be 
determined. However, the analytical solution of Equation (27) is impossible, and the numerical solution is 
also difficult. Thus, to solve Equation (27) numerically, we take the liquid-saturated porous media to be 
non-dissipative. 

Special Cases 

(i) Neglecting the micropolar effect, i.e., when K = α = β = γ = 0, Equation (27) reduces to 

 0ijb =   (29) 

where, the non-zero entries of the determinant ijb  are as given in Appendix II. 

(a) when ε  = 0, we have 
 94 95 5b b X ′= = − , 96 97 6b b X ′= = − , 98 99b b X= =  

(b) when ε  = 1, we have 

 ( ) ( )2 2
91 5 5  b Q R kµ ζ= + − ,  ( ) ( )2 2

92 6 6  b Q R kµ ζ= + −  

 94 95 5b b V ′= = − , 96 97 6b b V ′= = −  

where 

 ( ) ( )2 2 2    2i i i iS k Qζ λ µ µ ζ′ ′ ′ ′ ′ ′ ′= − + +  

 2j jR kµ ζ′ ′ ′= , ( )2 2
7 7Q kµ ζ′ ′ ′= + , ( ) ( )2 2  i i iV Q R kµ ζ′ ′ ′ ′ ′= + −  

 ( ) ( )2 2 2  2i i i i iW Q Q R kλ µ µ ζ µζ= + + + − +  

 ( ) ( )2 2 2  2i i i i iW Q Q R kλ µ µ ζ µ ζ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + − +  

 ( )*' 1i i iX β ζ µ′ ′ ′= − , ( )1/ 22 21j jk cζ λ= −  

 ( )2 1/ 2
2 * * *
5 *

1 4
2

B B A C
A

λ  = − −  
 

 ( )2 1/ 2
2 * * *
6 *

1 4
2

B B A C
A

λ  = + −  
, 2

7

22

c
ib

λ
µ ρ

ω

=
 +  
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 ( ) ( )* 2
5 5 11 120

1 ibA R Q R Q
B

µ λ ρ ρ
ω

 = − + − + +  
 

 ( ) ( )* 2
6 6 11 120

1 ibA R Q R Q
B

µ λ ρ ρ
ω

 = − + − + +  
,  5, 6 and 5, 6, 7i j= =         (30) 

 Equation (29) is the frequency equation for surface wave propagation in a liquid-saturated porous 
layer lying over a liquid-saturated porous half-space. 
(ii) Neglecting the porous effect, Equation (27) reduces to 

 0ijc =  (31) 

where, the non-zero entries are as given in Appendix III. 
 Thus, Equation (27) reduces to Equation (31) which corresponds to surface wave propagation in a 
micropolar elastic layer over a micropolar elastic half-space. 
(iii)  Neglecting both the micropolar and porous effects, we obtain the frequency equation in an elastic 

layer over an elastic half-space as 

 0ijd =   (32) 

where the non-zero entries are as given in Appendix IV. 
 The frequency equation, Equation (32), is same as obtained by Ewing et al. (1957), with slight change 
in notations. The difference of sign in some terms is due to the consideration of ( )*

y
H H= −

r
. 

NUMERICAL RESULTS AND DISCUSSION 

 In order to study the effect of micropolarity, porosity and pore alignment parameter on the dispersion 
curves, we solve the dispersion equation (Equation (27)) numerically for a specific model. The specific 
model assumed is based on the situation existing in reality, for example, that in the geological oil 
reservoirs. Since kerosene oil is lighter than water, we have considered the presence of kerosene oil in the 
layer and that of water in the half-space to satisfy the physically acceptable situation. Nevertheless, the 
analysis holds for other types of liquids existing in nature. Thus, the specific model for the purpose of 
numerical calculations consists of a microporous kerosene-saturated layer over a microporous water-
saturated half-space. The non-dissipative assumption of the microporous media shall facilitate us to obtain 
the real wave velocity numerically. 
 Following the experimental results given by Yew and Jogi (1976) and earlier data given by Fatt 
(1959), the following values of relevant parameters are taken. 
(i) For kerosene-saturated sandstone (medium 1M ) 

10 20.4436 10 N/mλ = × ,    10 20.2765 10 N/mµ = ×  

   10 20.07635 10 N/mQ = × ,    10 20.0326 10 N/mR = ×  

   3 3
11 1.926137 10 kg/mρ = × ,    3 3

12 0.002137 10 kg/mρ = − ×  

   3 3
22 0.215337 10 kg/mρ = ×  

 
(ii) For water-saturated sandstone (medium 2M ) 

10 20.306 10 N/mλ = × ,   10 20.922 10 N/mµ = ×  
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10 20.013 10 N/mQ = × ,  10 20.0637 10 N/mR = ×  
3 3

11 1.9032 10 kg/mρ = × ,         12 0ρ =  
3 3

22 0.268 10 kg/mρ = ×  

and the porosity for the media 1M  and 2M  are taken to be * 0.26β =  and * 0.268β =  respectively. 

 Following Gauthier (1982), we take the following values of the relevant micropolar constants as 
3 32.19 10 kg/mρ = × ,   32.63 10 Nγ = ×   

   2 20.00196 10 mJ −= × ,  10 20.00149 10 N/mK = ×  

Equation (27) is solved by using the above values of parameters in the media 1M  and 2M . It is found 
that there exist infinite number of modes of propagation of surface waves for various values of wave 
numbers; the variations of only fundamental modes are presented graphically for different theories. For 
the purpose of numerical calculations, we have calculated the normalized phase velocity 1/ cc  against the 
values of normalized wave number kH. Because of the limitations of computer machine available with us, 
the values of phase velocity could not be calculated for 0 < kH < 0.01. 
 

 
Fig. 2 Variation of phase velocity with wave number (MEP theory) 

 The variations of 1/ cc  for different values of kH are shown in Figure 2 for micropolar elastic with 
porous (MEP) theory. The dispersion curve with solid line corresponds to the case when there is no 
connection between the pores of the media 1M  and 2M  at the interface, while the dashed curve 
corresponds to the case when there is total alignment in between the pores of the two media. It can be 
concluded from Figure 2 that phase velocity 1/ cc  depends on the wave number kH, indicating that 
surface waves are dispersive. For the initial values of kH, the dispersion curves for ε  = 0 and ε = 1 are 
seen to be different in nature. However, for larger values of kH, the dispersion curves have almost similar 
behaviour in two cases, i.e., ε  = 0 and ε  = 1. When the micropolarity is removed and media 1M  and 

2M  are elastic porous (EP), the dispersion curves for ε  = 0 and ε  = 1 overlap in the range  
0.01< kH < 2.5. However, for kH ≥ 2.5, the values of phase velocity for ε  = 0 are more in comparison to 
ε  = 1, and the behaviour of dispersion curves for the two cases is similar, as shown in Figure 3. 
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Fig. 3 Variation of phase velocity with wave number (EP theory) 

 

 
Fig. 4 Variation of phase velocity with wave number (ME theory) 

 Further, it can be noticed from Figure 4 that there is a smooth increase in the values of phase velocity 
with the increase in wave number for 0.1 < kH < 1.85, and then those become almost constant with the 
increase in wave number, when the pores of the media are neglected (ME). The values of phase velocity 
for ME theory are more in comparison to MEP and EP theories due to porosity effect. The comparison of  
Figures 2 and 3 shows that the behaviour of dispersion curves is slightly different in the two figures due 
to effect of micropolarity, although the range of variation of phase velocity is almost similar for the two 
theories. 
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Fig. 5 Variation of phase velocity with wave number (Elastic theory) 

 Figure 5 contains the dispersion curve for the case when the media are free from micropolarity and 
porosity, and it is worth noticing that the values of phase velocity remain almost constant in the range,  
0.4 < kH < 4.0, thereafter decrease very smoothly with the increase in wave number in the range,  
4.0 ≤ kH ≤ 9.6, and then become constant for the further range of  kH. Thus, the present study reveals that 
there is a significant effect of micropolarity as well as of porosity of the media on the surface wave 
propagation.  
 A mathematical study has been presented here to determine the effect of micropolarity, porosity, and 
pore alignment parameter on the dispersion curves. Numerical computations have been performed to 
solve the frequency equations (MEP, EP and ME theories), and the following inferences are made: 
i.   it is seen that the phase velocity of wave propagation depends on the wave number, showing that the 

frequency equation is dispersive, 
ii.  the effect of porosity is more significant than that of micropolarity. 
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APPENDIX I 

    1
15 1   Ha S eζ ′′= ,     1

16 1   Ha S e ζ ′−= ,   2
17 2   Ha S eζ ′′=  

    2
18 2   Ha S e ζ ′−′= , 3

19 3   Ha Q eζ ′′= ,  3
1,10 3   Ha Q e ζ ′−′=  

    4
1,11 4   Ha Q eζ ′′= , 4

1,12 4   Ha Q e ζ ′−′=  

    1
25 1   Ha R eζ ′′= − , 1

26 1   Ha R e ζ ′−′= ,  2
27 2   Ha R eζ ′′= −  

    2
28 2   Ha R e ζ ′−′= , 3

29 3   Ha T eζ ′′= ,  3
2,10 3   Ha T e ζ ′−′=  

    4
2,11 4   Ha T eζ ′′= , 4

2, 12 4   Ha T e ζ ′−′=  

    3
39 3   Ha U eζ ′′= −  

    3
3,10 3   Ha U e ζ ′−′= , 4

3,11 4   Ha U eζ ′′= − , 4
3, 12 4   Ha U e ζ ′−′=  
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    1
45 1   Ha V eζ ′′= ,  1

46 1   Ha V e ζ ′−′= ,  2
47 2   Ha V eζ ′′=  

    2
48 2   Ha V e ζ ′−′=  

    ( ){ } ( ) ( )2 2 2
5   2i i i ia Q R Q k Kλ µ ζ µ ζ= + + + − + +  

    ( )5 2j ja k Kζ µ= + ,  55 56 1a a W ′= = , 57 58 2a a W ′= =  

    59 3a Q′= − ,  5, 10 3a Q′= ,  5, 11 4a Q′= −  

    5, 12 4a Q′=  

    ( )6 2i ia k Kζ µ= + , ( ) 2 2
6 j j ja K k Kµ ζ µ µ = − + + −   

    65 1a R′= − ,  66 1a R′= ,  67 2a R′= −  

    68 2a R′=  

    69 6, 10 3a a T ′= = , 6, 11 6, 12 4a a T ′= =  

    7 j j ja γµ ζ= ,  79 3a Uγ ′ ′= − ,  7, 10 3a Uγ ′ ′=  

    7, 11 4a Uγ ′ ′= − ,  7, 12 4a Uγ ′ ′=  

    8i ia ζ= ,  8 ja k= − ,  85 1a ζ ′= −  

    86 1a ζ ′= ,  87 2a ζ ′= − ,  88 2a ζ ′=  

    89 8, 10 8, 11 8, 12a a a a k= = = =  

    91 92a a k= = − ,  9 j ja ζ= ,  95 96 97 98a a a a k= = = =  

    99 3a ζ ′= − ,  9,  10 3a ζ ′= ,  9,  11 4a ζ ′= −  

    9,  12 4a ζ ′=  

    ( )*
10, 1i i ia β µ ζ= − , ( )*

10, 01ja kβ α= −  

    10, 5 1a X= ,  10, 6 1a X= − ,  10, 7 2a X=  

    10, 8 2a X= − ,  10, 9 10, 10 10, 11 10, 12a a a a X= = = =  

    11, j ja µ= ,  11, 9 11, 10 3a a µ′= = , 11, 11 11, 12 4a a µ′= =  

APPENDIX II  

    5
14 5   Hb S eζ ′′= ,  5

15 5   Hb S e ζ ′−′= ,  6
16 6   Hb S eζ ′′=  

    6
17 6   Hb S e ζ ′−′= ,  7

18 7   Hb R eζ ′′= − , 7
19 7   Hb R e ζ ′−′=  

    5
24 5   Hb R eζ ′′= − , 5

25 5   Hb R e ζ ′−′= , 6
26 6   Hb R eζ ′′= −  

    6
27 6   Hb R e ζ ′−′= , 7

28 7   Hb Q eζ ′′= − , 7
29 7   Hb Q e ζ ′−′=  

    5
34 5   Hb V eζ ′′= ,  5

35 5   Hb V e ζ ′−′= ,  6
36 6   Hb V eζ ′′=  

    6
37 6   Hb V e ζ ′−′= ,  41 5b W= − ,  42 6b W= −  

    43 72  b kµ ζ= ,  44 45 5b b W ′= = ,  46 47 6b b W ′= =  
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   48 7b R′= − ,  49 7b R′=    

   51 52b kµ ζ= ,  52 62b kµ ζ= ,  ( )2 2
53 7b kµ ζ= − +  

   54 5b R′= − ,  55 5b R′= ,  56 6b R′= −  

   57 6b R′= ,  58 59 7b b Q′= = ,  61 5b ζ=  

   62 6b ζ= ,  63b k= − ,  64 5b ζ ′= −  

   65 5b ζ ′= ,  66 6b ζ ′= − ,  67 6b ζ ′=  

   68 69b b k= = ,  71 72b b k= = − ,  73 7b ζ=  

   74 75 76 77b b b b k= = = = ,   78 7b ζ ′= −  

   79 7b ζ ′= ,  ( )*
81 5 51b β µ ζ= − , ( )*

82 6 61b β µ ζ= −  

   ( )*
83 01b kβ α= − , 84 5b X ′= ,  85 5b X ′= −  

   86 6b X ′= − ,  87 6b X ′= ,  88 89b b X= =  

APPENDIX III 

   8
14 8   Hc S eζ ′′= ,  8

15 8   Hc S e ζ ′−′= ,  9
16 9   Hc R eζ ′′= −  

   9
17 9   Hc R e ζ ′−′= , 10

18 10   Hc R eζ ′′= − , 10
19 10   Hc R e ζ ′−′=  

   8
24 8   Hc R eζ ′′= − , 8

25 8   Hc R e ζ ′−′= , 9'
26 9   Hc T eζ ′=  

   9
27 9   Hc T e ζ ′−′= ,  10

28 10   Hc T eζ ′′= ,  10
29 10   Hc T e ζ ′−′=  

   9
36 9   Hc U eζ ′′= − , 9

37 9   Hc U e ζ ′−′= , 10
38 10

Hc U eζ ′′= − ,      10
39 10   Hc U e ζ ′−′=  

   41 8c S= ,  ( )42 9 2c k Kζ µ= + , ( )43 10 2c k Kζ µ= +  

   44 45 8c c S ′= = ,  46 9c R′= − ,  47 9c R′=  

   48 10c R′= − ,  49 10c R′= ,  ( )51 8 2c k Kζ µ= +  

   52 9c T= − ,  53 10c T= − ,  54 8c R′= −  

   55 8c R′= ,  56 57 9c c T ′= = ,  58 59 10c c T ′= =   

   62 9 9c γµ ζ= ,  63 10 10c γµ ζ= ,  66 9c Uγ ′ ′= −  

   67 9c Uγ ′ ′= ,  68 10c Uγ ′ ′= − ,  69 10c Uγ ′ ′=  

   71 8c ζ= ,  72 73c c k= = − ,  74 8c ζ ′= −  

   75 8c ζ ′= ,  76 77 78 79c c c c k= = = =  

   81c k= − ,  82 9c ζ= ,  83 10c ζ=  

   84 85c c k= = ,  86 9c ζ ′= − ,  87 9c ζ ′=  

   88 10c ζ ′= − ,  89 10c ζ ′= ,  92 9c µ= −  

   93 10c µ= − ,  96 97 9c c µ′= = ,  98 99 10c c µ′= =  
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where 

   ( ) ( )2 2 2
8 8 8+ 2S k Kλ ζ µ ζ′ ′ ′ ′ ′ ′= − + ,  ( ) ( )2 2 2

8 8 82S k Kλ ζ µ ζ= − + +  

    ( )2j jR k Kζ µ′ ′ ′ ′= + ,  ( ) 2 2
i i iT K k Kµ ζ µ µ′ ′ ′ ′ ′ ′ ′= + + −  

     i i iU µ ζ′ ′ ′= ,   ( ) 2 2
i i iT K k Kµ ζ µ µ= + + −  

    ( )1/ 22 21j jk cζ λ= −   2
8 2

1

1 ,
c

λ =  2
1

2 Kc λ µ
ρ

+ +
=  

    ( )2 1/ 2
2 * * *
9

1 4
2

D D Eλ  = − −  
, ( )2 1/ 2

2 * * *
10

1 4
2

D D Eλ  = + −  
 

    
( )2 0* *

2 1 2

pr r
D E r

ω
−

= + + ,  * * 0
2 1 2

rE E r
ω

 = − 
 

 

    *
2E

K
ρ

µ
=

+
,   

( )2 2 2 2 2 *
9 9 2 2

9 2
0 1

E pr

p r r

ω λ ω λ ω
µ

ω

− −
=

 − + 
 

    
( )2 2 2 2 2 *

10 10 2 2
10 2

0 1

E pr

p r r

ω λ ω λ ω
µ

ω

− −
=

 − + 
       (i =9, 10 and  j = 8, 9, 10) 
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    11
11 12  Hd T eζµ ′′ ′= , 11

12 12  Hd T e ζµ ′−′ ′= , 12
13 12  Hd T eζ ′′= −  

    12
14 12  Hd T e ζ ′−′= , 11

21 11  Hd T eζ ′′= − , 11
22 11  Hd T e ζ ′−′=  

    12
23 12  Hd T eζ ′′= ,  12

24 12  Hd T e ζ ′−′= , 31 32 12d d Tµ′ ′= =  

    33 12d S ′= − ,  34 12d S ′= ,  ( )2 2
35 122d k kαµ= − −  

    36 122d kµζ= ,  41 11d S ′= − ,  42 11d δ ′=   

    43 44 12d d Tµ′ ′= = , 45 112d kµζ= ,  46 35d d=  

    51 52d d k= = ,  53 12d ζ ′= − ,  54 12d ζ ′=  

    55d k= − ,  56 12d ζ= ,  61 11d ζ ′= −  

    62 11d ζ ′= ,  63 64d d k= = ,  65 11d ζ=  

    66d k= −  

where 

    ( )2 2
12 122T k kα′ ′= − , 2i iS kµ ζ′ ′ ′= ,  2 2 2

12 12kα ω λ=  

    ( )1/ 22 21i ik cζ λ= − , 2
11 2

ρ
λ

λ µ
=

+
,  2

12
ρ

λ
µ

= , i = 11, 12 
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