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A NOTE ON THE EFFECTS OF GROUND ROCKlNG ON
THE RESPONSE OF BUILDINGS DURING 1989
LOMA PRIETA EARTHQLUAKE

by
V. K. Gupta' and M. D. Trifunac®

ABSTRACT

In this paper we investigate haw muoch the response of various buildings may have been influenced by the
ground rocking during the 1989 Loma Prieta,Calilornia. Earthquake. Synthetic translational and rocking ac-
celerograms have been generated using the data on local geology and soil in the hay area.and the recorded mo-
tions at selected stations. The building response has been estimared using a stochastic approach and ignoring

the elfects of soil-structure interaction.
INTRODUCTION

The earthguake resistant design of structures invelves estimation of lateral seismic
[orces by assuming those to be excited at the base by the horizantal component of earthquake
ground motion. The rocking component of ground motion is considered to be small and there-
fore.its contributions to the overall structural response are neglected at present. However,as
shown by Gupta and Trifunac (1988) .especially for the buildings in Mexico City during the
1985 earthquake (Gupta and Trifunac. 1989) . there are certain combinations of structures.
sites and earthguake motions .where the additional inertial forces contributed by the rocking
component are significant in comparison to the translational contributions, There,neglecting
the rocking component will result in an underestimation of the design loree. Using synthetic
accelerograms (Lee and Trifunac 1985: 19873, Gupta and Trifunac (1988, 1989, and 1990}
demonstrated that the building on soflt-soil conditions may experience signilicant amplifi-
cation in the response due to the rocking component of ground motion. Similar results have
been obtained also by Ghalfory-Ashtiany and Singh(1986).

The October 17. 1989 Loma Pricta earthquake is known to have caused considerable
damage to the buildings with 2-4 stories in the San Francisco Marina district. This area is re-
claimed from the sea and thus.is characterized by solt-soil conditions. This investigation 1s
thus aimed to explore the possibility that the rocking components might have been important
contributors to the observed damage. To this end .selecred sites in the San Franciseo bay area
including one in the Marina disirict have been chosen. For all these sites dispersion curves
have been computed based on available information about their local site geology. Using the

computed dispersion curves and the recorded data on the translational motion.synthetic ac-
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celerograms have been generated for the translational and the rotational components of accel
eration. A statistical analysis has been carried out for the estimation of peak responses of
buildings with diflerent periods subjected to i) the translational component and i) the combi-
nation of translational and rocking components. From this.the magnificavion in the response
due to ground rocking has been estimated as a function ol the number of stories of the strue-
tuTes.

In this analysis we will not consider the effects of soil structure interaction and will as-
sume that the strucwure is forced to move as the surrounding ol its foundation would move in
the absense of any structure on it . This approach is meaningful lor excitation by seismic
waves which are much longer than the plan dimensions of the foundation and for structures
which are more ”flexible” than the soil beneath their foundavion(Tedorovska and Trifunac,
1960b ). When the strong ground motion contains waves of comparable length and shorter
than the characteristic dimensions ol the foundation. the interacrion of the incidenm waves
with the foundation must be considered. Then. the rocking part of the incident wave excita-
tion contributes in a considerably more complex way to the overall response (Todorovska and
Trifunac, 1990c). We leave the description of this problem and its implications for the ob-

served damage in the San Francisco Marina district {for a [uture paper.
SITES AND GENERATED STRONG MOTION DATA

Three sites have been chosen [or this investigation in different parts of the San Francisco
bay area. For convenience in identifying those areas the names corresponding to the strong
motion recording sites have been adopted ;1) Dumbarton Bridge near Coyote Hills i) Southern
Pacific Building.Marina District and 1) Winhielld Scott School . Marina District. Based on the
published data available about geology at these sites (Warrick (1974 ), Borcherde and Gibbs
(1976) . Borcherdt (19700 . Lee ev al. (19710, Joyner et al. (1976)) .three diflerent models have
been assumed to calculate the phase and group velocity curves at these sites (see Tables 1,2
and 3). Figs. 1,2,and 3, respecuively.show the resulting dispersion curves calculated from
these models for the first five modes of Rayleigh and Love waves. The epicentral distances
for these sites are 50 km for Dumbarton Bridge.and 95 km for Winlield Scott Schoaol and
Southern Pacific building. However. the program SYNACC (Lee and Trifunac, 1985, 1957 ¢
used to generate the artificial accelerograms assumes parallel layers and same soil stratum be
tween the site and the epicenter. This assumption s not realistic except when the sie s very
close to the epicenter. Therefore. based on the pattern of wave arrivals in the recorded ac
celerograms in the vicinity of these sites.the “hypocentral distances™ have been respectively
taken as 50 km for Dumbarton Bridge., 15 km for Winfield Scott School and 20 km lor
Southern Pacific Building. The synthetic accelerograms have been generated by using the ap-
tion of Fourier spectra of recorded motion given as input. Since there are no recordings avail-
able at the chosen sites.the published accelerograms for the USGS swation 11(Maley et al. .
19849 and CDMG-SMIP stations 264,222,131.133 and 151 (Shakal ev al. (19893 have been
used to abtain the inpur Fourier spectra of radial rransverse and vertical components of the
ground motion. Fourier spectra of the recorded motions at starions |1 and 261 (see Fig. 4)
have been used tncase of Dumbarien Bndpee owhile stanens 133 and 151 tsee Fig, 52,and

’
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Table 1 Soil Meadel for the Site at Dumbartaon Bridge

Luver & Depth Powave Velocity S-wave Velociny Density.
er

! {km) (e Fsexd Ckrn feee) Cgm/ee)

1 0,011 1- 36 0. 09 1.7

2 0. 029 1.74 (26 2.0

3 0. 144 1. 84 0. 38 2.0

4 4. K26 3. 70 22 26

5 5.0 4. 20 208 2.6

5 o 504 3.0 2.6

Table 2 Soil Model for the Site ar Winfield Scott School
. Diepth P-wave Velocity S-wave Velocity Dansity
Layer #

ckm) Chm/sec) (km/sec) (gmive]

1 L0152 1. 365 U L0 1.7

2 0.0128 1. 740 0, 342 2.0

3 0. 052 1. 8l i 450 2.3

4 4926 . 3. 00 1. 80 2.6

5 5.0 4. 20 2.50 2.6

I3 (oe 3. 00 3.0 2.6

Table 3 Soi] Madel lor the Site at Southern Pacilic Building

Laver Dieprh P-wave Velooiy S-wave Veloony Density
+{yer (km) {km /sec) (km/sec) {gm/ec)

P 6. 0381 1- 62 0. 207 %

2 [UMRY A 1. 50 h 335 2.0

3 o (Y183 2- 01 0.574 2.3

4 4.91 3. 70 2.200 2.8

K] 5.0 4. 20 2. 500 2. 6

[ ) 5. 04 3. 000 2.4

stations 222 and 131 (see Fig. 6 Yhave been considered, respectivelv, for the Southern Pacific
building and for Winfield Scott School. For each site,the Fourier amplitudes [rom the parent
stations have been averaged out separately for the radial ,the transverse and the vertical com-
ponents. However,since the rocking amplitudes can be directly related to the vertical motion
amplitudes (Trifunac 1982; Lee and Trifunac, 19877 .to obtain also a larger estimate of the
rocking elfects.as a second case.input vertical amplitudes have been taken {rom that station
which has shown larger vertical amplitudes. Figs. 7,8 and 9 thus show the input Fourier am
plitudes (to SYNACC program) for both cases,the {irst called “Averaged” and the second
called “Conservative”. Five dilferent random numbers (Lee and Trifunac, 1985, 19870 have
- been used to obtain five different synthetic records (corresponding to the same earthquake
and site characteristics ) at each site,for the “Averaged” as well as lor the “Conservative"
cases. Figs. 10 through 15 show examples of three translational (radial ,transverse and veru-
cal) and two rotational (rocking and torsional ) accelerograms as obtained from the SYNACC

program.
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BUILDING MODELS AND DYNAMIC ANALYSIS

For the purpoese ol this analysis the buildings have been assumed fixed at the base and
idealized by the simple lumped mass models with »n degrees of freedom,deforming in shear
only. This model can be analyzed for the base translation and rocking by using the step-by-
step numerical integration technique in the time domain. However chere we seek to use a more
elficient method which can also give estimates with the desired level of confidence. One such
method . based on the extension ol the response spectrum superposition technigue, has been
proposed by Gupta and Trifunac (1988,1990). It is based on the results of Cartwright and
Longuet-Higgins (19523, who describe distribution of the maxima of a stationary random
function, and on the subsequent application to the building response analysis by Gupta and
Trifunac (1987,1988). This method allows the assumption that the earthquake ground mo-
tion is stationary in nature,and then it calculates the building response from the energy spec-
trum ol the appropriate response [unction. Appropriate corrections are then applied to ac-
count for the transient nature ol the problem.by using response spectra of the input excita-
tion. This method (see Gupta and Trifunac (19903 for the details) can account also for the
modal interaction withour making any specific assumption about the nature of the ground
motion. -

Our intention in this paper is only to car-

ry out a comparative study of the magnifica-
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The durations of the excitations for the statistical parameters have been taken such that
they correspond to the stationary parts ol the excitations. To compute these,the definitions
given by Trifunac and Brady (1975) and Trilunac and Westermo (1977, 1982) have been
used. Results have been obtained for the “expected” values of the largest peak displacements
at all floor levels. corresponding to excitation cases of i) translational component acting
alone,and 1) translational component acting together with the rocking component. For a
building ,by taking the ratio of the results lor the two cases at each floor level and then ave-
raging them out over all the {loor levels the rocking magnifications factor T has been caleu-
lated. For example .T'=1. 05 corresponds to 5%increase in the building response due to the
inclusion of rocking component in the input excitation. Variation of this lactor with number
of stories,n has been plotted for each earthquake excitation case and site. For Dumbarton
site,Fig. 16 shows the plots of T" with » [or the “Average”and "Conservative” cases. In each
case.the five different curves correspond to the five dilferent earthquake records generated
from different random numbers. Similarly . Fig. 17 and 18 show the effect of rocking respec-
tively at the Scuthern Pacific Building and a1t Winlicld Scott School sites.

DISCUSSION AND CONCLUSIONS

It is noted from Figs. 16,17 and 18 that the effect of rocking is not substantial, Howev-

er.several comments are in order
1)The Winfield Scott School site is associated with slightly greater eflect of rocking a-
mong the three example sites. Buildings with 3 —4 stories and 15— 17 stories show

somewhat larger rocking contribution. “Conscrvative” case gives slightly larger rock-
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ing contributions as compared to the “Average” case. Fig. 9 shows that the vertical
amplitudes in the former case are approximately 1. 6 times those in the latter case (es-
pecially in the periods associated with the maximum energy) and this results in (see
Fig. 18)approximately 2.5 points rise in the percentage eflect of rocking. This sug-
gests that the amplification of vertical amplitudes by a lactor of sav 4 or 5 may be as-
sociated with noticeable contributions from rocking. It is noted that none of the sta-
tions (131 and 222) are located right in the middle of an area with in-filled soil .while
the school site is. The physical phenomena of wave interference and diffraction in a
valley of soft soil are likely to result in Turther amplification of amplitudes of waves
entering the valley by lactors as large as 5 or larger. This makes it possible that the
vertical amplitudes at the school site might have been larger than those recorded at
stations 131 and 222.and thus.rocking contributions might have not been as insignili-
cant as they appear from Fig. 18.

231t is observed that the minimum shear wave velocity at the Dumbarton Bridge site is
smaller than that in the Winflield School site.but that does not lead to higher overall
maximum rocking contributions. This can be understood from the comparison of
Figs. 7 and 9. In case of Dumbarton Bridge.the vertical motions are smaller than the
radial motions , whereas in the case of Winficld Scott School site, they are larger or
comparable with the radial motions. Further,it should be recalled that the rocking
motions can be directly related to the vertical component of ground motion (Lee and
Trifunac (1987)). Using the same reasoning and considering the fact that the mini-
mum shear wave veloeity at the Southern Pacific building site is 207 m/sec (as op-
posed to 90 m/see in the case of Dumbarton Bridge and 140 m/sec in the case of Win-
field Scott School ), it is casy to understand the minimum effects of the rocking compo-
nent in the case of Southern Pacific Building site.

In case of Loma Pricta earthquake.and in terms ol lacal soil and geology modeled by
parallel layers only.long period waves did not "dominate” in the motion reaching the bay area
and alsosthe soil there is not as “soft” as it is in Mexico City. Thus,the rocking motions of
the incident waves alone did not contribute significantly ta the building response as it appears
to have been in the case of Mexico earthquake,in 1985,at Mexico City sites.

The three-dimensional nature of the soil mass in the Marina district may have resulted in
focusing and interference patterns of wave amplification which would have been associated
with proportionally larger rocking and torsional excitations. Until more information becomes
available on the geologic strata and their geometry surrounding the Marina area it is neither
possible nor practical 1o consider two and three-dimensional extensions ol the present study.

Considering the soft surface soil in the Marina area (100 — 200m /sec) and [irst narural
irequencies of typical buildings there (say 2 to 5 Hz), one should not ignore the ellects asso-
ciated with dilferential excitation of building foundations (Todorovska and Trifunac 1989,
1990a.b; Koiid and Trifunac 1991a,b: Trifunac.1990) and with the wave passage effects
also contributing additional rotations via interaction of waves with embeded [oundations,

Short visible waves are sometimes reported in solt sediments and in water saturated soils
during large carthquakes (Matuzawa, 1925; Lomnitz, 1970; Richter. 1958). Their wave
lengths are short (several tens of meters) and they propagate with specd of water. Matuzawa
(1925) and Limnitz (1970, 1990) have suggested that their nature could be mterpreted in

terms of gravity waves (slow surface waves with very short wave lengthi. In solt soil these
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waves would have large amplitudes, prograde particle motion and their amplitudes would
rapidly diminish with depth. Surface rotation associated with these waves would be larger.

We conclude that the rocking excitation during Loma Prieta earthquake of 1989, result-
ing [rom the linear part of strong ground motion m the layered hall space model was not a
significant contributing factor to the observed damage in San Francisco. However, including
two-and three-dimensional amplification and wave interference in solt sediments of the Mari-
na district, dillerential excitation of foundations by short waves and the possiblity that non-
linear gravity waves in solt soils may have been excited ;would change this conclusion signifi-
cantly. We will report on these phenomena in [uture papers.
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