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SUMMARY — This paper proposes a stochastic approacl 1o es-
timate the sectional ductility demand of @ member and the over-
all ductiliey demand in a structure when it is subjected 1o earth-
guake excitations with known statistical characteristics. For this,
the excitation and the strwetral response are assiimed 1o he
zevo mean, Gaussian processes. Thiy asswmption (s approxi-
mately true for a mildly non-linear system with a few inelastic
excursions. The proposed method takes into account the number
of excursions of the response into non-linear range as o pardam-
eter, besides considering the random nature of the excitation. It
has been shown how the concepts developed here can be applied
1o the single-degree-of-freedom nd multi-degree-of-freedom
SVSteNs.

1. Introduction

In case of the earthquake excited structures, both the
input and the response are random in nature. Hence,
any measure ol ductility defined as the ratio of maxi-
mum to yield level response inherently becomes a ran-
dom variable.

An carthquake excitation is different from a eyelic
loading as generally considered in the ductility studies.,
since it is broad-band in nature and consists of several
frequency components with highly random amplitudes
and phases, Thus any single realization of the excita-
tion process and the system response 1o it are, in effect.
combinations of different realizations of the amplitude
and phase variables for various frequencies. For these
reasons, the response to monotonic loading, cyclic
loading or even to the cyclic loading with varying
amplitude and a single frequency component, cannot in
reality simulate the complex nature of response. The
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response and hence the ductility ratio estimated in these
situations may thus involve appreciable errors. Further,
the option of having a reasonable statistical estimate of
ductility by considering a large number of compatible
accelerograms is computationally intensive and it can-
not be generalized to other cases of interest.

The first effort to provide a probabilistic basis to the
case of a yielding elastoplastic system was by Karnopp
and Scharton (1966) who obtained an estimate of aver-
age rate of energy dissipation when the system is sub-
jected to Gaussian white noise. Based on their ap-
proach, Vanmarcke (1969) and Vanmarcke and Vene-
ziano (1973) obtained the probability distributions and
statistical characteristics of plastic drift and ductility
factor. Assuming a point crossing process in time, with
accumulation of drift from each crossing, they obtained
the probability of maximum drift and then ductility
factor from the [irst passage problem in time. However.
their approach has not accounted for the statistical de-
pendence between the maximum level, yield level and
the number of non-linear crossings.

There have been further attempts to account for the
randommness and complex nature of the input as well as
that of the output of a structural system with reference
to ductility. Murakami and Penzien (1977) carried out
non-deterministic response analysis on five single-de-
gree-of-freedom  (SDOF) systems using stochastic
ground motion models. Ridell et al. (1989) studied the
reduction factors for the non-linear behaviour of a
SDOF system using a large number of recorded ground
motions. Miranda (1992) also reported a statistical
study based on several ground motions for different
soil conditions to obtain the ductility reduction factors.
Nakamura and Takewaki (1989) and Hwang and Jaw
(1990) assumed ductility as a random variable and tried
to obtain its statistical charactetistics. It can be ob-
served that growing emphasis has been laid by different
rescarchers on accounting for the randomness in the
response. However, their approaches have lacked gene-
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rality regarding the ground motion and response chara-
cteristics. Thus, there remains a need for evolving a
more rational and generalized probabilistic description
of ductility. and for relating it to the statistical charac-
teristics of the response, particularly in the case of the
multi-degree-of-freedom (MDOF) systems.

In this paper. we have used a conditional order sta-
tistics description of the response peaks to determine
the probability density functions for ductility ratio, for
a given number of non-linear excursions. Two separate
formulations have been proposed with the condition
respectively on the linear and maximum levels of re-
sponse. The density functions for ductility and the ex-
pected ductility estimates for a given number of non-
linear excursions have been calculated for both the
cases. A SDOF model and a MDOF system are used 1o
illustrate the application of the concepts developed in
the formulation.

2. Probabilistic ductility ratio

Duectility is defined as the ratio of maximum to yield
deformation. To have a probabilistic estimate of ductili-
ty, it is required to have the conditional distributions
ol maximum or yield deformations. In turn, these con-
ditional distributions respectively are the distributions
of the largest peak and a higher order peak in the re-
sponse process. Recalling the concepts of order statis-
tics, it may be noted that the ordered peaks are mutual-
ly dependent, even though the unordered peaks are con-
sidered to be independent. This is because they satisfy
the relationship. X | 2 X, 2 .. 2 X 2 X where,
n = number of peaks and X = r"‘ order peak variable;
i=1,2,3,.., n Thus, for nbmmmg the conditional dis-
tribution of the largest peak, with condition on the
yield level, it becomes necessary to find the joint dis-
tribution functions of the ordered variables correspond-
ing to the yield and maximum levels. By a transforma-
tion of variables, this further leads to the conditional
distribution for ductility. Similarly, the mutual depend-
ence of the maximum and the yield levels can be ac-

counted for to obtain the conditional distribution of

ductility with condition on the maximum level. Follow-
ing is the formulation for conditional density of ductil-
ity, with condition first on the yield level and then on
the maximum level.

i) condition on the yield level

Let X, i=1,2,... n be the n number of peaks occur-
ing in the response process, X(f). X(r) is assumed to be
Gaussian and it may, for example, denote the roof dis-
placement, rotation or curvature of a section in a struc-
ture. These response peaks are assumed to be identical-
ly and independently distributed random variables. On
being normalized by the root-mean-square (r.m.s.) value
of the process, they can be characterized by a proba-
bility density function (p.d.f.) given by Cartwright and
Longuet-Higgins (1956) lollowing Rice (1944, 1945),
and written as
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is a measure of the distribution of energy in mriuus
frequencies of the process. m_is, in general, the n"
moment of the energy spectrum, E(w), where @ is the
frequency. It is defined by

m, = '[:m“E(m)dw:u =0,1,2, .. (3)

For € = 0, p(n) corresponds to the Rayleigh distribu-
tion. and for € = 1, it becomes a normal distribution.
Let P(7) denote the cumulative distribution function of
the response peaks where

P(n)=J'i plnida. (4)

Let the ordered formation of the response peaks be
denoted by X, (or X ); k=1, 2,..., n, and the number
of excursions beyond a specified level be 7, in a sample
of n response peaks. Thus, to arrive at the p.d.f. of the
ductility ratio for a given number of non-linear excur-
sions, the p.d.f. of X (ie. the largest peak) condi-

tioned on X = b, the yield level, may be obtained as

f(xlll =da I Xll‘ll) = b) or jj\]l.l\l 1."»1‘-(-“ I h) =
(b, a)
_ t.‘-lul a (5)
.fu*lw(b)
where, f (b, @) is the joint p.d.f. of the (7 + 1)" and

I order peaks, and £ (b) is the marginal density
l’unctinn of the (i + 1)" order peak. To obtain the joint
density function, f (b, a)) let us consider the real
axis and partition 1t as shown in Fig. [, with one peak
cach placed at levels, a and b, and (i — 1) number of
peaks placed in between a and b. (n — - 1) peaks are
placed below b while there is no peak above a. Making
use of the multinomial combination to get the density
function for continuous, independent random variables,
the joint density function is obtained as (David {1980))

. n!
.fu»l-.-l-(h* H}:(;—;——[)‘(_—[P(h”" fn’(h"

[Pla)— P(b)Y " pla). (6)
For the univariate density function of the (i + )"
peak. one peak is placed at b, i peaks are above b and
the rest (n — i — 1) peaks are below b, as shown in Fig.
2. Thus, the density function for X can be written
as (David (1980))
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Fig. 2 - Arvangement of peaks for the density function of 17 + 17 peak.
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On using Eqgs. (5). (6) and (7), the conditional den-
sity can be written as

[P(ﬂ) PO pla)

h<a<ea (8)
[1=P(b)]

Ty s antalb) =

The above expression gives the density function for
the largest peak, X . on the condition that X = b.
Therefore, the condnmnnl probability density function
for the variable, X /X | to have the value a/b, on the
condition that X = b, would be same as given by
Eq. (8). Since the yield level, X wttesponds o i
number of non-linear excursions, the ratio X /X, ..,
gives the ductility for i number of non-linear excur-
sinns. Let it be denoted by u. By a variable transfor-

mation, ¢ = wb, the conditional p.d.f. for g becomes

N — P =l
‘m:i[P(b,u) Fib)) ptbp,)b_‘

j,.,:\‘ i [1-P(b)]

w2l (9

Accordingly, the expected value of ductility, with §
non-linear excursions and yield level, b, is obtained as
E(u;) =L o= ()b

_J ;uf[P(b,u)—P(_b)]'*'p(b;.a)bd
(1= Pb)] i

(1

(1) condition on the maxiomum level

Similarly. as in the formulation for condition on the

yield level, we focus our attention on X, (largest) and
X, W+ )" Targest) ordered normalized peak varia-
bles and obtain the p.d.f. of the ductility ratio by con-
ditioning on the maximum level for a given number of
vield level excursions and total number of peaks.

The conditional p.d.f. of X | (i.e. the (i + 1)" larg-
est peak), given X | = a, the maximum level, is ex-
pressed as

X, =b1X, =a)or f-‘-.,...l\...—u(b la)=
l
:f. Iilll()‘]) lll)
fta)
where, f (b, a) is same as in Eq. (6). and [, (a) is

the marginal density function of the 1% order peak,
expressed as

n!
Ca)=————[Pla)]" pla). (12)
-flll ? ( ”![ ] ]

'k
Eq. (11) thus gives
(n—1)!
(=i =1 =1

[ PCOY" ' Pla)— P p(b)
[P(a)]"' )

.It\,““;\-_“.‘,,“) la)=

(13)

This expression is the conditional density function
for X | (ie. the (i + 1)" largest peak), given that the
largest peak, X = a. Now, by a similar approach as
followed in Case (i) above, we obtain the expression
for the p.d.f. of the ductility ratio, g, with the condi-
tional maximum level, X | = a and with the number of
non-linear excursions, 7 as

(n—1)! a

T = G D~

[Plalw)]" ' Pla)— Plal )] plal pm) (14)
[Pla)) l :

Also, the expected value of ductility, E(p) is ob-
tained as

= . {n—=1)! a
Eu)=| —————
( J-' (n—i=NHi-1)! u

{Plal )] '[Pla)— Plal w)]~" plal )
[Pla)]!

dp. (15)

The order statistics formulation for probabilistic duc-
tility ratio as above, takes into consideration the mutual
statistical dependence of the peaks corresponding to the
yield and maximum levels. The density functions,
therefore, take care of the statistical dependence on the
conditional level (yield or maximum), and depend on
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the number of non-linear excursions. Even intuitively
speaking, in assessing the ductility demand when the
vield limit is specified, the chances of occurence of the
maxima at a particular level are affected by the speci-
lied yield level and the number ol peaks occuring alter
it. The present order statistics approach quantifies this
dependence in form of the conditional distribution of
the ductility ratio.

The conditional density function for ductility as in
Eq. (9), with conditioning on the yield level, can be
shown to satisfy a Markov dependence. In fact, it could
be proved in general that the conditional distribution of
any order statistic satisfies a Markov dependence struc-
ture. This means that given a sequence of occurence,
the present occurence is affected only by the recent
past. For illustration, if Ky Ky vy X X5 K e X,

o X is the sequential occurence of random variables,
then mathematically one can write the Markov property
as

Prob(X | XX oo X, Xll = Proh(.\': [ X)) (16)

To prove the Markov dependence, let us first consider
the joint p.d.f. of the ordered normalized peak varia-
bles, X . X, .+ o X, |+ X . Using the approach
as followed earlier of partitioning the real axis, placing
the variables suitably and considering the multinomial
distribution, this may be expressed as (David (1980))

I

1
(X, b= %‘p(.\-,, ) pbY[L= P, (17)
I

Similarly, the joint p.d.f. of the ordered normalized

peak variables, X X = ... X .. X  .X becomes
f oa o FRU I 0 P P b a)=
!
= T ”'“‘ plx, . ptb)[Pla)— P(b)] ' pla). 18
i—

Further, the conditional p.d.f. of X ,
X, ,=x . ..X

([t 1) H—1

aiven )('H =X

= il G

.1, = b can be expressed as

£ ! (X, 5 X, ey Dy )
flalx, o b)= k";.""'W"hm““'“ I ’
Y

(19)

; (£, 9 X, yyusay D)

Mt Xy

Using Eqgs. (17), (18) and (19). and by a variable
transformation, a = ph, as done earlier, the conditional
density for ductility ratio, @ is written as

; ib P(bp) = P(D)]~' pl ) ,
(plx yonyB)= : (20)
Hul, (1= P

This expression for f (uly . ....b) is seen to tally ex-
actly with Eq. (9) for f ,(u). Thus, Markov property
is seen (o be satisfied as we can write

flply b)Y = f(ulb). (21
EURQPEAN
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In the case of conditioning on the maximum level,
this property is seen trivially since no peak occurs
above the largest maxima, and hence, the dependence
has to be on the maximum level only.

The Markov dependence structure as above is con-
sistent with the fact that in the formulation, the inter-
dependence between the yield and the maximum levels
has been captured while ignoring the pre-yielding infor-
mation. This is also in agreement with the physical
situation. For ductility, we are only interested to know
the range ol nonlinear zone, once the yield level is
specified. Thus, it is only the probability behaviour of
the yield level and the posteriori probability structure
of peaks above the yield level that leads to the
characterization of the maximum level and thus that of
the ductility.

3. Determination of RMS value

The response peaks as considered in the above for-
mulation are normalized with respect to the r.m.s. value
of the process. To determine this, let a stationary re-
sponse process, f(r), be represented by

fly=Y% A, costw,t+d),) (22)

i

where, @ are the circular frequencies, ¢ are the ran-
dom phases with uniform distribution in the interval,
[0,27], and A are the random amplitudes. A are related
to the energy spectrum, E(w) of the function, f(1) by the
following relation

wrrdo I R
3, SA = E(w)dw. (23)

The r.m.s. value of the function, fir) is then given by
Fone =my (24)

where m is defined according to Eq. (3).

The input process in the present work is assumed to
be Gaussian. Therefore, the output would also be Gaus-
sian for the linear systems. Even for most structural
systems with mild non-linearities e.g., those with a few
inelastic excursions, the response could be assumed to
be Gaussian without significant errors. In case of a lin-
ear SDOF oscillator with natural frequency, w and
damping ratio, {, and subjected to an input ground
motion assumed stationary and with (one-sided) power
spectral density function (PSDF), § (w), the r.m.s. value
for the relative displacement response, x(r) can be ob-
tained as (Newland (1984)),

r 142
g S, _
Ko = J. 3 S :{w) - dw 3 (23}
" w; —w ) +(2{w,w)

The corrections may be applied in this to account for



the nonstationarity in response ¢.g.. by using the re-
sponse spectrum approach suggested by Gupta and
Trifunac (1987), and Gupta and Trifunac ( 1990, 1991),
Also, by a simple adjustment in the damping and natu-
ral frequency. we can estimate the r.m.s. value of the
response of a non-linear system (Iwan and Gates
(1979)).

The above SDOF idealization may be suitable, for
example, for the single story buildings and for studying
the overall structure ductility of the MDOF systems. In
those cases, however, where this idealization is not
appropriate, one may use the mode shape vectors to
obtain the r.m.s. value for the desired response func-
tion. To illustrate this for the case of sectional curva-
ture ductility demand, let a N degree-of-freedom
framed building subjected to ground motion, 7 () at
its base, be considered as an equivalent linear system
by using the stochastic linearization techniques (Atalik
and Utku (1976)). The equations of motion for this sys-
tem may be written as

[ {x}+[cl{a +TA = {Phi (1) (26)

where, {x} is the response vector of floor displace-
ments and joint rotations, [m] is the structure mass
matrix, [k] is the structure stiffness matrix, [¢] is the
structure damping matrix, and {P} is the influence vec-
tor for the various degrees of freedom. Let the ground
motion, i (ry be characterized by the (one-sided)

PSDF, S (w). Considering the linear expansion of

various degrees of freedom in the terms of the normal
coordinates, these equations of motion can be decou-
pled and solved to give the transfer functions for any
displacement component with ground acceleration as
the input. For example, transfer function for the ¢ and
d" displacement components, say X and X, can be
wrilten as

\ CF
H o)y =7% - - - . (27)
] —w )+ 2w w
¥ DF
Hw)=Y

S w] = )+ 20w w

A i B
e L o
| B bt |

Fig. 3 = Schematie dingram of the heam AF i the structure,
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where, C and D respectively are the modal eigenvector
coefficients for the j* mode corresponding to the ¢”
and o™ displacement components respectively, F s the
modal participation factor in the j" mode, and @ and
respectively are the frequency and damping ratio in the
/" mode. Thus, the cross-spectral density of X and X
is given by

LR
Sy (o= 3 ;C,_])\F,F,

foarl &

S“lm)

_ _ — . . . (28)
[(w' —w")+2il o wl|[(w —w )+2il no

Here, S, (w) is the two-sided spectral density func-
tion defined from —se to e=. Thus, one can obtain the
covariance function, Cov(X , X ) as

A
CoviX,X)= X CDFF
=l

daw,

_[- S (w)[(w! —w Y w =)+ 4 { www ]
U@ =)+ (2L w,w) (! —w ) + (2w w)]
(29)

and the variance for any displacement, say X | as
£
oy= X CCEF
=l
[(w’ =w Nw —w' )+4 {wo o] (w)

[(lw' =) +(2{ w o) (o —w') +(2{ w v) ]
(3

e

j‘i

With the knowledge of r.m.s. values of the joint rota-
tions, in particular, it becomes possible to find the
r.m.s. values of the section curvatures in an approxi-
mate manner as shown below. This can in turn be used
in the computation of the section ductility.

Let the r.m.s. values of joint rotation be #, — and
@, . and their covariance, Cov(fl , #) (as computed
from Eqs. (29) and (30)), for the ends A and B of the
member AB of the structure as shown in Fig. 3. Applying
the slope-deflection equations, the end moments at A and
B in the absence of the member loads are obtained as

2EI

M, :—?—12&\. +40,1. (31)
5

M,= -"rﬂ[zﬂ” +,]. {32)

The moment, M_at any intermediate section of AB is
then given by
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Thus, the curvature, rb‘ at this section becomes

-

6, = U+ )0, +(2 - 2, (34)

Since ¢ is a zero mean process, its r.m.s. value,
¢, becomes

o Aran

5
‘f’u...czl%“"+.\'):ﬁ" F(2 =0+

+2(1+x)(21 = x)Cov(8,.6,)]'"-. (35)

4. Application to structural systems
(Y Numerical Results

The expected values and the p.d.f. of the ductility
ratio with conditions respectively on the lincar and
maximum levels have been computed using the equa-
tions derived in the formulation (i.e. Eqs. (9). (10), (14)
and (15)). Different combinations of the governing
parameters i.e. the conditioning yield level, b or the
conditioning maximum level. ¢. number of non-lincar
excursions, i, number of peaks. n in the process, and
parameter, € (see Eq. (2)) have been considered,

Figs. 4 and 5 show the variation of expected ductili-
ty. E(u). with e, for different number, i, of nonlinear
excursions, the former for the conditioning on the
maximum level. @ = 3, and the latter for the condition-
ing on the yield level, b = 0.75. The total number of
peaks is taken as n = 40 in the first case, It is seen that
except for the range € > 0.7, the expected ductility re-
mains almost invariant of e. Same behavior is also
observed in the case of the p.d.f. of the ductility ratio.
This suggests that the distribution of energy in the re-
sponse with the usual range. € < 0.4, is likely 10 have
negligible effect on any probabilistic measure of
ductility. for a given number of nonlinear excursions,
(normalized) maximum or yield level and the total
number of peaks.

Fig. 6 shows the variation of expected ductility, E(w)
with the total number of peaks. n for different values of
non-linear excursions. with € held constant at 0.4 and
tnormalized) maximum level at 5.0. It is seen that the
expected ductility decreases with the increase in
number of peaks for all the four curves (corresponding
i =2.4.6, 8). This is so because an increase in the
number of peaks is associated with more close packing
of the peaks and thus with the yield level coming closer
to the specified maximum level for the number of
excursions remaining unchanged. Further, for any given
number of peaks, the expected ductility is. as expected.
found to increase with the increase in number of excur-
sions. Variation of E(g) with the maximum level, a for
different values of nonlinear excursions has been
shown in Fig. 7, with € = 0.4 and 2 = 60. It is seen that
the expected ductility increases almost linearly with the
increase in the maximum level, a, the rate of increase
being higher Tor the greater number of excursions. This
is again as expected because for the fixed value of .
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Fig 5 - Vaviation in expected ductility with € for b = 0,75,

increase in maximum level. a is associated with in-
creased spacing between the peak amplitudes, and this
leads to greater difference between the maximum level
and yield level for a given number of excursions, and
also to greater effect of number of excursions at any
maximum level, «.

Figs. 8. 9 and 10 show the probability density func-
tions of the ductility ratio, for illustrating the effects of
total number of peaks, (normalized) maximum level
and the number of non-lincar excursions respectively.
For the effect of total number of peaks. ¢ and i have
been respectively taken as 3 and 2. For the effect of
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maximum level, n = 40 and i = 4, and for the effect of
nonlinear excursions, @ = 5 and 7 = 60 have been taken.
e has been taken as 0.4 for all the three figures. The
curves in Fig. 8 indicate that there is lesser dispersion
in the case of greater number of total peaks, and then,
the expected value is a good indicator of the ductility
ratio with different levels ol confidence. Similar obser-
vations are also obtained from Fig. 9. Here, the density
function becomes more sharp peaked with the decrease

in the maximum level. The effect of the number of

nonlinear excursions (see Fig. 10) is however different
as the greater number of excursions is not associated
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with the increased or decreased dispersion here. Actu-
ally, with ¢ and n remaining fixed, the peak spacing
becomes independent of the number of excursions
while when « is varied with # remaining fixed or n is
varied with a remaining fixed. this spacing also gets
changed leading to the different levels of dispersion.
For the case of conditioning on the yield level, the
parameter of (otal number of peaks, n is absent as seen
from the formulation. The effects of the other parame-
ters, h and i, on E(p) have been shown in Fig 11
where four curves corresponding to the different
number of nonlinear excursions describe the depend-
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ence of E(u) on the yield level, b. It is seen that for
any given number of excursions, expected ductility
decreases with the increase in the yield level. For the
yield level below 0.5, this change in expected ductility
is very sharp while for the yield levels above 1.0, the
expected ductility converges asymptotically to the value
of one irrespective of the number of excursions. Such a
variation can be well approximated by the expression,
E(w) = 1 + /b where, & is a constant depending on the
number of excursions. It increases with the number of
excursions, Physically, this expression may be ex-
plained by the fact that the difference in the maximum
and yield levels for any given number of excursions is
likely to be independent of the yield level. [t follows
from Fig. 11 that the sections can be most efficient if
they are designed for the linear response between (0.5
and 1.0 times the r.m.s. value. In that case, the ductility
demand would be around 2 1o 4.

Figs. 12 and 13 show the plots for the density func-
tion of ductility, with conditioning on the yield level,
respectively for different number of nonlinear excur-
sions and for different yield levels. As observed also in
the case of condittoning on the maximum level, the
higher yield levels are associated with lesser degree of
uncertainty with the expected value while there is con-
siderably larger dispersion in the values of ductility at
lower vield levels. On the other hand, the curves for
different number ol excursions show almost similar
dispersion characteristics.

(i) Applications

Let us Tirst consider a SDOF system, Let  and X
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Ductility Ratio, w
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respectively be the maximum allowable and r.m.s. values
of the displacement of the mass of this system. There-
fore, the normalized maximum displacement is given
by

X, = . {36)

If # number of non-linear excursions are allowed,
then from the curves of expected ductility with condi-
tioning on the maximum level (see Fig. 7). the expect-
ed ductility ratio can be obtained (say, E(p) = ).
Thus. we have linear maximum displacement

d, = (37)

T | =~

and maximum elastic design force in the structure as

. kel

l‘f' _—”f. (38'
R(HQ)

Here, k is the lateral stiffness of the supporting sys-
tem. Ri(z) is the ductility reduction factor estimated
from m based on equivalent displacement or energy
considerations, and ) is the overstrength available in
the structure. (1 depends on the degree of redundancy
in the structure and on the inherent safety cushion pro-
vided in the design methodology.

These concepts can also be applied to the MDOF
and continuous systems without any loss of generality.
For example. in a multstoried structure, maximunm roof
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Fig, 11 - Variation in expected ductility with b for e = 0.4,
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displacement and maximum interstory drift considera-
tions can lead to the maximum allowable roof displace-
ment and maximum displacements at the other floor
levels. The r.m.s. values of the floor displacements may
now be estimated from the ground motion characteris-
tics and transfer functions, and the normalized maxi-
mum floor displacements be computed. Further, with
the knowledge of the number of peaks and desired ex-
cursions at each level, the expected ductility demand
for the structure and the story ductility demand can be
obtained, e.g., from the curves in Fig. 7 with condition
on the maximum level and with the displacement and
drift conditions being critically satisfied. Once, the
structure is designed for the elastic design forces, the
yield curvatures at the critical sections can be estimated
by carrying out a static analysis. Now, with the knowl-
cdge of the r.mus. values of section curvatures from the
input characteristics and transfer functions (see Eq.
(35)). and by using, for example, Fig. 11 for the ex-
pected ductility ratio with conditioning on the linear
level. the curvature ductility demand can be estimated,
for a given number of non-linear excursions. To calcu-
late the expected ductility demand corresponding to a
number of nonlinear excursions a designed system has
to resist, we must use the curves with the conditioning
on the vield level.

It is to be noted that the curves for expected ductility
are obtained for specific values of the bandwidth pa-
rameter, e, the total number of peaks, n in the process,
and the number of nonlinear excursions, 7. The first
two parameters can be determined as functions of the
moments of the energy spectrum. E(w) of the process
(see Gupta and Trifunac (1988), for example). The es-
timation of number of non-linear excursions is crucial.
It is physically associated with the damage to be al-
lowed in a structure. A single non-linear excursion may
be sufficient for the architectural damage whereas the
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structural damage in beams and girders may depend on
how ductile they are to sustain greater number of ex-
cursions. The columns form the most critical part in a
structure and therefore they should have greater insur-
ance against damage. Stiffer columns may be provided
for this purpose, thus raising the linear design level and
decreasing the number of excursions. But, a rational
estimation of allowable excursions under different cases
must be obtained from experimentation and then by
correlating the damage with the number of excursions.
Computational simulation by introducing suitable dam-
age model may be an alternative. In that case, the esti-
mation of the number of nonlinear excursions is done
by the knowledge of the damage to be allowed. and
with the help of a damage analysis along with the duc-
tility study which is beyond the scope of this paper.
Moreover, it is clear that the provision of ductility is
not enough to ensure safety as the damage which
strongly depends on the number of nonlinear excur-
sions has also to be kept within an acceptable limit.

5. Conclusions

A probabilistic approach has been proposed for ob-
taining the ductility ratio with condition on the yield or
maximum level using the order statistics formulation.
The expressions for the density functions and the ex-
pected values have been derived for both the cases. and
numerical results have been obtained for various values
of the different parameters. It has been shown how
these results can be applied to the SDOF and MDOF
systems,

It has been found that the density functions and the
expected values of ductility ratio do not depend on €
(which is a measure of the band-width of the response
process) for the practical range of its values. Response
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characteristics would nevertheless affect the ductility
estimates via the response r.m.s. value.

It has been noticed that 0.5-1.0 times the r.m.s. value
of response is the optimal range for deciding on the
design yield levels from the ductility considerations.

The results obtained from this study may be very
useful in the design of ductile structures where the
number of inelastic excursions play a significant role
making it essential to account for the statistical depen-
dence between the maximum and the yield levels.
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