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SUMMARY — A stochastic approach based on the response spec-
trum superposition technique has been formulated to determine
the linear lateral-torsional response of torsionally coupled mul-
tistoried buildings subjected to the earthquake excitations. The
eccentricity between the centres of mass and stiffness is assumed
to cause the coupling between the lateral and torsional responses
of the building. The key features of this approach are: 1) it can

estimate the response peaks for all orders with the given level of

confidence, 2) it accounts for the cross-correlation between var-
ious modes of vibration in a simple and convenient way, and 3)
no assumption is made about the energy distribution in the in-
coming seismic waves. The proposed approach has been illus-
rrated through two example buildings and two narrow and wide-
band type earthquake excitations.
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1. Introduction

Buildings are seldom, if ever totally symmetric, due
to the unsymmetrical distribution of mass and/or stiff-
ness in the plan. Even in a structure whose geometry is
symmetric, asymmetry is introduced by the variation in
quality or method of construction, or by uncertainties
in the live and dead load distribution. This asymmetry
in the buildings causes the positions of centre of mass
and centre of stiffness to be different, and thus results
in significant coupling between the translational and the
torsional vibrations of the structure even when the
earthquake excitation is in the form of a uniform base
translation. As a result of the coupled lateral-torsional
response, the induced lateral and torsional forces acting
on the asymmetric buildings can, in combination, ex-
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ceed design values to an extent which would result in
wide-spread damage or failure of buildings. Chandler
(1986) found that during the Mexico Earthquake, 1985,
15 percent of the cases of severe damage or collapse of
buildings in Mexico City were caused by the pro-
nounced asymmetry in stiffness. Torsional response
results also from the non-uniform ground motion at
various points of the base of the building. However, as
shown by Gupta and Trifunac (1990b) in case of the
fixed-base, symmetric multistoried buildings, this may
be considered insignificant.

Several studies have been directed towards the linear
earthquake analysis of fixed-base. torsionally coupled
buildings. Dempsey and Tso (1982), Chandler and
Hutchinson (1986, 1987) have used the time-history
approach for the study of seismic torsional effects in
asymmetrical buildings. Tsicnias and Hutchinson (1981,
1982a), Kan and Chopra (1977a), Tso and Dempsey
(1980), Dempsey and Irvine (1979) have idealized the
spectral acceleration curves as flat, hyperbolic or flat-
hyperbolic. These idealizations are however unsuitable
for drawing general conclusions on coupling effects in
the asymmetric buildings, and may sometimes lead to
‘too approximate’ results (Hejal and Chopra (1989a)).
Kan and Chopra (1977b) and Tsicnias and Hutchinson
(1982b) applied the perturbation analysis for the determi-
nation of approximate natural frequencies and mode
shapes of the torsionally coupled buildings. Other inves-
tigators who also studied the torsional response of linear,
asymmetric buildings, include Penzien (1969), Gibson et
al. (1972), Douglas and Trabert (1973), Keintzel (1973),
Rutenberg et al. (1978), Lam and Scavuzzo (1981),
Hejal and Chopra (1989b), and Maheri et al. (1991).

In most of the studies, various simple response spec-
trum techniques have been used to obtain the determi-
nistic estimates of the structural response. To account for
the uncertainties involved in defining the earthquake
motions, a few studies have also considered the sto-
chastic models of ground motion. Kung and Pecknold
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(1984) assumed the ground motion to be a white noise
input. Rady and Hutchinson (1988) used a more realis-
tic ground acceleration power spectrum to study the
response of torsionally coupled structures. However,
due to the limitation of these studies to a single story
model, their results cannot be generalized to the multi-
storied buildings. Hutchinson et al. (1991) have used
the stochastic approach to study the effects of vertical
mass and stiffness distribution only for a special class
of multistoried buildings.

None of the above studies on the torsionally coupled
buildings have provided the amplitudes of the higher
order response peaks. This knowledge is useful for
better understanding of the progressing damage, as the
structure is subjected to the successive excursions be-
yond the design level during the excitation (Basu and
Gupta (1994)). Many studies (Amini and Trifunac
(1981, 1985), Gupta and Trifunac (1987b, 1988), Gupta
and Trifunac (1990a, ¢, 1991)) based on a torsionally
uncoupled model of the building have used the ideas of
order statistics to provide amplitudes of all the signifi-
cant peaks of the response with the desired level of
confidence. This paper proposes to extend their ap-
proach for estimating the response peaks of linear,
fixed-base, torsionally coupled multistoried buildings
subjected to the single component of the ground exci-
tation. A lumped mass model of the building, having
three degrees of freedom at each floor, has been con-
sidered for this purpose. This approach is quite general
as it is suitable for the earthquake excitations with vary-
ing characteristics, including the narrow band excita-
tions, and for the structures with closely spaced modes
of vibration. By taking the examples of two buildings
and two different seismic excitations, the proposed
approach has been illustrated.

2. Brief Review

The statistical distribution of peak amplitudes in a
stationary random process has been studied initially by
Rice (1944, 1945), and Cartwright and Longuet-Hig-
gins (1956). Gupta and Trifunac (1988) used their re-
sults to derive the general distribution functions for the
various orders of peaks by assuming that the unordered
peaks are statistically independent. It has been shown
recently by Basu et al. (1994) through modeling of the
joint density between the unordered peaks by numerical
simulation that this assumption of statistical independ-
ence gives quite reasonable estimates for the first few
orders of peaks. Using the formulation of Gupta and
Trifunac (1988), a response spectrum superposition
technique has been formulated for the stochastic re-
sponse of symmetric multistoried buildings subjected to
the earthquake excitations (Gupta and Trifunac (1987a,
b, 1988), Gupta and Trifunac (1990a, ¢, 1991)). For
these applications, a torsionally uncoupled, simple
lumped mass model has been considered. Some of the
key features of these are as follows.

Let the random function, fir), e.g., the response of a
structure to an earthquake excitation be represented by
the sum of an infinite number of sine waves as
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flny=Ycncos(w, t+d,). (2.1)
n
where @, are the circular frequencies, ¢, are the ran-
dom, uniformly distributed phases, and ¢, are the am-
plitudes such that

arddan
by %c‘f = E(w)dw. (2:2)

i, =

Here, E(w) is the energy spectrum of f{r). This may be
related to the Fourier spectrum, F(w) of the function
fir)y as (Udwadia and Trifunac (1974), Mohraz and
Elghadamsi (1989))

E(w)=%lF(m)l3, (2.3)

where, T is the total duration of the response.

Let all the N peaks of f{) be normalized with respect
to a,,,, the root-mean-square (r.m.s.) amplitude of f{r).
Then, the n” order peak (in decreasing order of magni-
tude) in these normalized peaks with n < N is distribut-
ed as (Gupta and Trifunac (1988)),

N
Pu.l(?ﬂ:mlp(n)] '
[1=P(m"" p(m). (2.4)

P(n) is the probability distribution function of the (nor-
malized) maxima of f{r), expressed as (Cartwright and
Longuet-Higgins (1956))

T .
N LT

a 3 b -2/ e
+(|_EZ)lI-e—n IJI

e =’f2¢x], (2.5)

and

dpP
pim= —ﬁ")- (2.6)

Here, € is a measure of the r.m.s. width of the energy
spectrum, E(w). The parameters, a,,, and € are defined
in terms of the moments, m,, n =0, 2, 4 of E(w) as

a,,, =+/my (2.7
and
2 112
E:[l_n::;lj ' 23)
with
m, =Eu"E(w)dw. (2.9)

The total number of peaks in f{¢) is
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112
N= T(nu) _ (2.10)

“ 2w om,

For a given confidence level, Eq. (2.4) may be iter-
atively used to find the peak factor. % which on being
multiplied with a,,,, gives the n” order peak amplitude.
For the «expected» peak amplitude. the peak factor,
171 = 7 may be computed as

ﬁ=f NPy (md . (2.11)

The integral in this equation may be obtained by an
approximate approach given by David and Johnson
(1954), and also used later by Gupta and Trifunac
{(1988). If the peaks of f(r) are normalized with respect
to their r.m.s. value, @ (in place of a,,), 7/ V2 de-
notes (in place of m) the peak factor since a can be
shown to be approximately equal to +2a,,  for the nar-
row band processes (Udwadia and Trifunac (1973)). It
is also possible to obtain more appropriate peak factors
(as regards the applications in earthquake engineering)
for the process, Ifinl by slightly modifying Eqs. (2.4),
(2.5) and (2.10) as in Gupta (1994).

Since the r.m.s. value of response peaks is calculated
above assuming the response to be a stationary process,
Gupta and Trifunac (1987b) have suggested to modify
this for the nonstationarity by using the response spec-
trum amplitudes. It has been proposed that the r.m.s.
value of the peaks instead be taken as d where

"2
z:[zsf] : (2.12)

d, is the r.m.s. value such that on multiplication with
the peak factor computed for the expected value of the
first order peak, it gives the largest peak value in the j*
mode as obtained from the response spectrum.

The above procedure can be applied to estimate the
stochastic response of any response function in a linear
dynamic system from the knowledge of its energy
spectrum in addition to the response spectrum. This
however does not consider the effects of interaction
between various modes of vibration on the value of 4.
Gupta and Tritfunac (1990a, ¢) have shown that these
effects can however be included in a simple and ap-
proximate manner by scaling 4 in that ratio in which a
is modified on including the interaction terms in the
energy spectrum.

3. Equations of Motion

Let us consider an idealized n-story unsymmetric
building model as shown in Fig. 1. It consists of rigid
floor decks which are supported on massless, axially
inextensible columns and shear walls. Following as-
sumptions are made for the present formulation:

i) The inertia of the /" floor is lumped at that level
by a mass, m; and by a mass moment of inertia, I,
about the centre of mass of the floor;
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Fig. | - Multi-Degree-of-Freedom System for Torsionally Coupled
Buildings.

i) The linear rigidities of the i story are provided
by the massless columns and shear walls, and these are
characterized by the three constants, the lateral stiff-
nesses, Ky ; and K along the X and Y-axes, and the
torsional stiffness, K, about the vertical Z-axis, pass-
ing through the centre of mass. It is also assumed that
the principal axes of resistance for all the story levels
are parallel to the X and Y-axes.

iii) The centres of mass of the floors lie on one verti-
cal axis, which coincides with the Z-axis, but the centres
of stiffness of the stories lie on different vertical axes,
with static eccentricities, e, ; and e, ; respectively along
the X and Y-axes for the i* story as shown in Fig. 2.

The ground motion is assumed to be in X-direction
only. This system has three degrees of freedom for each
floor, e.g.. X-direction translation, Vy,, Y-direction trans-
lation, V,,, and rotation about the centre of mass, V,, at
the i floor level (see Fig. 2). The equations of motion
for the above building model can be expressed as

[MI{VI+[CHUVIHIKI{V}=-IM ()2,  (3.1)

in which, [M], [C] and [K] are the inertia, damping and
stiffness matrices respectively; {V} is the 3n-dimen-
sional relative displacement vector: Z, is the ground
acceleration in X-direction: and {vy} is the influence
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vector for various degrees of freedom. Eq. (3.1) can be
represented as (Kan and Chopra (1977b)):

(m] (V) p+IC1{ Vi h e+
[m]] | {V,} A
(K¢l (0] [Kyl {ml
[U.I [K:] [Kra] *{V}} = (3.2)
[K ol [Kru]T [K, 1] {{V,)
[m] {
. [m] {0} Zy.
[m]] {{0}
where,
m, i
s
[m]=
m,
L m, |
K.Nl "K\‘n
Ky (Kyi+Kys) -Ky .2
[Kyl= Ky (Ky . +Kg )
E : Ky
Ky Kyt Ky,
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r, being the radius of gyration of the i floor about its
centre of mass. Further, {Vy} (= {Vy, Ve oo Voo
Vi 1) and {Vy} (= (V) Vo oo V), oo V)7 are respec-
tively the relative displacement vectors for the transla-
tions along the X and Y-axes, and {V,} (= {(rVy rVa
w1V o1, V)" is the vector for translations corre-
sponding to the relative rotations about Z-axis.

Let {£} be the normal coordinates such that the dis-
placements, {V} can be defined by the transformation

{(V} = [P1{&} (3.3)

where, [d] is the modal matrix whose columns are the
mode shape vectors, and thus [®] = [{&'}{d'} ..
{7 }]. With this transformation and on assuming that
the system is classically damped, the system response
in the j* mode of vibration may be described by
E+2L0 ¢ toi=—a;Z1j=1,2,3 .. 3n (34)

VA ey )

where, a, is the modal participation factor expressed as

_ )My}

G I @) et

and {;, w, respectively are the damping ratio and natural
frequency in the j” mode.
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Fig, 4 — Synthetic Accelerogram for Mexico Earthquake, 1985 at Mexico City Site

4. Energy Spectra for the System Response

Using Eq. (3.3) together with Eq. (3.4), the transfer
function, H(w) relating the displacement response for
the i degree-of-freedom, V,(¢) to the ground accelera-
tion, Z, can be written as

H(w)= Y.y, H (), (.1)
J=1

where, ¢, is the /" element of the j* mode shape vec-
tor, {¢'}. and

(4.2)

1
H(w)=———=——%= A
@) (w;—w-+2:g‘,;~miw)
Thus, in frequency domain, the displacement re-
sponse corresponding to the i degreeof-freedom be-
comes

Viw) =Hw)Z(w)

3n

=[Z¢Q,0¢,H,(m))2(m), (4.3)
=l

where Z(w) is the Fourier transform of Z, (7). Now, on
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using this in Eq. (2.3), the energy spectrum of the dis-
placement response becomes

ED, (o) =%| Vi) [

~ 3n 3n
Y Ydad o H (w)H ()., (4.4)
i=lk=1 7 '

=%I Z(w)

On expanding, this may be written as (as in Gupta
and Trifunac (1990a))

ED/(w) = ;—T| Z(w) [ ‘z'll HJ.(w)r[d),f B

iy

+ X ‘t&j‘f‘,xajat{q: +[1—‘§]DMH. (4.5)

k=1 kej f

where, C; and D), are the coefficients given in terms of
& G and 1 (= w/w) as

1 2
Cye =180, +Lr) ((1—r?)?
B,

*4"(;; ‘gkr)(gk _"_:j".)}] (4.6)
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1 . ‘
D, :B—’A12(l—r-) {4r(f; -4
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with

B, =8r7[(; +{H(=r7) -

~AG -G -GrN+A-rDY (48)

J

In Eq. (4.5), the double summation term can be seen
to represent the effects of interaction of the j” mode
with the other 1 — 1 modes of vibration.

Similarly, the energy spectrum for the torque, 7,(1),
about the centre of mass at the i floor may be ob-
tained as

1 2 3n A ] ) 3
ET;(U))ZﬁI Z(w) | ZJH,(‘”) | |:( E’"f’i‘hlmh,] “fm': +
j= = .

3n i i
z (znlfn-rflmf]))[me':'(hlrrﬂ‘l;)
k=l k2 \ =1 1=l

“jal“'f'“’f{c'jk +[l—$; ]Dﬂ(} : (4.9)

]
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Energy spectra for some more response functions
have been given by Agarwal and Gupta (1993).

5. Nonstationarity in the System Response

The above expressions for the energy spectra may be
used in Egs. (2.7) through (2.10) to compute the a,,,, €
and N values for the desired response function, and
then to obtain the amplitude of the desired order of
response peak for the given level of confidence by
computing the peak factor as in Eq. (2.4) or (2.11). As
stated earlier also, the r.m.s. value of the peaks (or of
the response function) has to be modified because an
earthquake excitation is not a stationary process as it
builds up over a small period of time and then decays
after remaining stationary for some part of its duration.
Some additional nonstationarity is further introduced in
the response by virtue of the fact that the dynamical
system has a finite operating time. It has been shown
by Caughey and Stumpf (1961) that the variance of the
response of a singledegree-of-freedom oscillator to a
stationary excitation attains the stationary variance val-
ue only after a few cycles depending on the frequency
and damping of the system. Using Eq. (2.12) for mod-
ifying the r.m.s. value may be too simplistic as the
value of @ so computed ignores the correlation between
the various modes of vibration. In the present case,
these modes may be very close leading to significant
degree of correlation. This correlation may be account-
ed for in a simple but approximate way by scaling @ as
mentioned in Section 2 but in this scheme, it is implic-
itly assumed that the extent to which nonstationarity
affects the response in any mode is not influenced by
the extent to which other modes correlate with this
mode, and that this extent is same for all the modes.
The latter part of this assumption does not appear ra-
tional since the degree of nonstationarity may be signif-
icantly different in various modal responses due to the
different modal frequencies and damping ratios unless
the excitation process is very long. In case of the same
damping ratio in all the modes, for example, a higher
mode may be associated with lesser effect of nonsta-
tionarity on the r.m.s. value of the peaks. In view of
this, an alternative scheme is proposed here to account
for the nonstationarity in a more rational manner.

According to Eq. (4.5), the r.m.s. value of the "
displacement response peaks in the j* mode may be
expressed as

N T 2 2 2
Ej=|:1—rrfd),_;a;'[] | rf(&))l |H_,-(w)‘ dw} . (5.0

in the absence of non-stationarity in the response. Due
to the effect of nonstationarity, this is modified to 4,
which on multiplication with the peak factor, say 7,
gives the largest peak value in the /* mode i.e. &,aSD,
SD, is the spectral displacement corresponding to the
modal frequency, w, and damping ratio, {. Thus, the
degree of nonstationarity in the / mode is represented

by the ratio ¢y SD /%,a,, and the r.m.s. value in the
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/" mode should be multiplied with this ratio to correct
for the nonstationarity. Further, when the modal inter-
action terms are also included due to the simultaneous
vibration in the other modes, the r.m.s. value of the re-
sponse peaks in the /" mode as in Eq. (5.1) may be
considered as modified by the ratio, I', where,

=t k2j

P 12
1~’=[1+[ Y, C, ]/dx,f-cx,} . (5.2)

Here, the interaction terms involving D, have been
ignored as the function |H (w)I* can be approximated by
a delta function at @ = w,. Thus, for considering the
modal correlation also, the r.m.s, value of the pcaks in
the /" mode may be taken as ¢, a " SD, /7], or in other
words, the ]argt.\l peak mlue in th _j"" mode may be
taken as ¢, SD;. Based on this logic, it is proposed
that the scheme suggested by Gupta and Trifunac
(1987b) may be adopted here. However, for computing
the modified r.m.s. value of peaks as in Eq. (2.12), the
largest peak value in the " mode may be taken, for
example. as

|

N3

g 3n
D, '_'SDi[(b#J:“f"‘ % (‘ba_id‘ha,rakc‘jk] s (3.3)

k=l ke s

and

3n i
7 [X”“J [d{ ”+“J) (Y ﬂ).‘ + Z (z"ifrf(hzni.'lr]

k=1, k=)

il

[z’"r’id{hrﬂ'll]ﬂ‘]ﬂkw}wfc,'k] ' (5'4)
=1 '

respectively for the responses, V,(f) and T(1) at the i
floor.

6. Hlustration of the Proposed Model

Two fixed-base multistoried buildings have been
considered here for the illustration of the approach for-
mulated above. The first example building is a 7-story
building having non-uniform floor dimensions, 26 % 33
m for the bottom three stories and 20 X 25 m for the
remaining four stories at the top. Each story is of 3.75
m height. The second building is a 15-story building
with the uniform floor dimensions of 25 X 100 m at

each floor level, and with the constant story height of

5.0 m. The translational stiffnesses in the X-direction
for both the buildings are different from those in the Y-
direction, and these also vary from story to story. Fur-
ther, the static eccentricities in either direction are dif-
ferent from floor to floor, and thus, the centres of stiff-
ness at various floors are not lying on a vertical
straight line. In case of the second building, eccentric-
ities in the X and Y-directions at all the floor levels
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have been taken to be same. Various properties of these
example buildings are shown in Tables | and 2. The
torsional stiffnesses of various stories have been com-
puted 1n these tables by neglecting the contributions of
the torsional stiffnesses of the various supporting struc-
tural elements about their own longitudinal axes. The
natural frequencies of these buildings are shown in
Tables 3 and 4. It may be observed that modes in both
the example buildings are quite closely spaced with the
frequency ratio being about 1.15 in the lower, and as
low as 1.03 in the higher adjacent modes. The critical
damping ratio has been assumed same as 0.05 in all the
modes of vibration for both the buildings.

Two earthquake excitations with the following char-
acteristics have been considered here for the purpose of
illustration:

1. Recorded motion, SODOE component, at EI Centro
site during the Imperial Valley Earthquake, 1940.

2. Synthetically generated motion for the Mexico
Earthquake, 1985 at Mexico City Site (as in Gupta and
Trifunac (1990c¢)).

The accelerograms for these motions and the corre-
sponding Fourier spectra (as normalized with respect to
their maximum amplitudes) have been shown in Figs. 3
to 6. It may be observed that the first example excita-
tion is of broad band nature with the distribution of
energy in the broad range of 0.2-5 sec. Significant fre-
quencies of both the buildings lie in this range. How-
ever, the second excitation is of narrow band nature
with the concentration of energy at the periods close to
2.5 sec. The example buildings (particularly the first
one) are quite stiff compared to this, and therefore, this
excitation should cause significant degrees of input-de-
pendent modal correlation in the building responses
(Singh and Mehta (1983), Gupta (1990)). Further, since
the time duration, T should correspond to the stationary
part of the excitation, not to the actual record length,
T, it has been assumed to be that time interval durmg
which 909% of the total energy arrives after the initial
arrival of 5% (see Trifunac and Brady (1975)). There-
fore, the value of T for these example excitations has
been taken as 24.44 sec and 46.44 sec respectively (in-
stead of T = 53.72 and 80.96 sec).

A deterministic time domain analysis based on the
step-by-step numerical integration has been carried out
here for both example buildings under the ground ac-
celerations as in Figs. 3 and 4. Its results have been
compared with the results of the proposed stochastic
approach by plotting the envelopes of the largest peak
displacements as shown in Figs. 7 to 10. The results of
the stochastic approach consist of the expected values
and the values corresponding to the 5% and 95% pro-
babilities of exceedance. In each figure, the response
values have been normalized with respect to the respec-
tive overall maximum response values. It is seen from
these figures that irrespective of the relative stiffnesses
of the buildings to the excitations, the “expected” sys-
tem responses based on the stochastic approach are in
good agreement with the time domain analysis results.
Further, the time analysis estimates are also bounded
on either side by the 5% or 95% confidence level esti-
mates. Similar results are also obtained in case of the
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Floor Mass Radius of Stiffnesses Eccentricities
Level, i my Gyration, 7, K. Ky K, Exi it
1 0.80m r 2212k 1.392k  1.680kr*  0.20r 0.26r
2 0.80m 2 2,696k 2179  2.311kr*  0.20r  0.26r
3 0.80m r 3.100k 2.60Tk  2.837kr?  0.20r 0.26r
4 0.80m T 3.424k 3112k 3.25Tk»*  0.24r 0.26r
5 1.15m 1.3r 4.998k  4.792k  11.094kr*  0.34r 0.50r
6 1.15m 1.3r 5.240k 5.083k 11.718kr* 0.34r 0.50r
7 1.15m 1.3r 5.361k 5.229k 12.878kr® 0.34r  0.50r
m=1x10kg, k= 1x 10" N/m, » = 9.242 m.
Table | - Propérties of First Example Building
Floor Mass Radius of Stiffnesses Eccentricities
Level, 1 m; Gyration, r; K. Ky Kg; Esi eyi
1 0.60m v 0.600k 0.793k 1.014kr® 0.060r 0.060r
2 0.63m r 0.623k 0.824k 1.053kr? 0.063r 0.063r
3 0.66m r 0.652k 0.863k 1.102kr* 0.066r 0.066r
4 0.69m r 0.681k 0901k 1151kr* 0.069r 0.069r
5 0.72m r 0.710k 0939k 1.200kr* 0.072r 0.072r
6 0.74m r 0.739k 0978k 1.249kr* 0.075¢ 0.075r
7 0.7Tm r 0.768%k 1.016k 1.208kr* 0.077+ 0.077r
8 0.80m r 0.797k  1.054k 1.347hkr* 0.080r 0.080r
9 0.83m T (0.826k 1.093k 1.396kr* 0.083r 0.083r
10 0.86m T 0.855k 1.131k 1.445kr°  0.086r  0.086r
11 0.89m r 0.884k 1.170k 1.494kr® 0.089r 0.089r
12 0.91m r 0.913k 1.208k 1.543kr* 0.092r 0.092r
13 0.94m r 0.942k 1.246k 1.582kr®  0.095r  0.095¢
14 0.9Tm r 0971k 1.213k 1.641kr* 0.097r 0.097r
15 1.00m r 1.000k 1.323k 1.690k#* 0.100r 0.100r
m = 0.792 x 10° kg, k = 1.971 x 10° N/m, r = 29.76 m.
Table 2 - Properties of Second Example Building
Mode # Wy Mode # Wy
(rad/sec) (rad/sec)
1 12.49 12 77.27
2 14.63 13 88.52
3 18.87 14 91.23
4 29.21 15 96.62
5 34.99 16 100.39
6 42.74 17 108.54
7 45.81 18 113.41
8 55.81 19 122.41
9 63.11 20 129.43
10 67.53 21 156.98
11 75.27
Table 3 - Natural Frequencies of First Example Building
Mode # Wy Mode # wy Mode # Wy
(rad/sec) (rad/sec) (rad/sec)
1 5.55 16 54.35 31 93.24
2 6.34 17 56.35 32 95.54
3 7.35 18 57.30 33 96.01
4 15.00 19 64.92 34 96.78
] 17.16 20 65.06 35 97.70
6 19.81 21 65.63 36 102.28
T 24.32 22 72.23 37 104.21
8 27.82 23 74.40 38 106.64
9 32.08 24 75.68 39 109.80
10 33.06 25 78.90 40 111.74
11 37.80 26 82.72 41 111.78
12 41.20 27 84.62 42 118.12
13 43.58 28 85.95 43 123.15
14 47.15 29 89.43 44 126.79
15 49.25 30 90.23 45 129.13

Table 4 - Natural Frequencies of Second Example Building
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shear force, overturning moment and torsional moment
responses. For example, Figs. 11 and 12 show the com-
parison of the envelopes of these responses for the first
example building under the Imperial Valley excitation.
These and some more results as in Agarwal and Gupta
(1993) confirm the ability of the proposed formulation
to account for the effects of modal correlation. whether
those are due to the closeness of modes or due to the
nature of the input excitation. in a reasonably accurate
manner.

7. Conclusions

A response spectrum based stochastic approach has

been formulated for the linear seismic response of

fixed-base. torsionally coupled multistoried buildings.
This approach uses the information available from the
Fourier synthesis of the ground motion, and from this.
the estimates of response peaks for all orders can be
obtained with the desired level of confidence. It is pos-
sible to obtain the expected peak values of any re-
sponse function by using this approach, and thus to get
an idea about the ‘average’ values which the response
function may assume during the life time of the build-
ing. Further, depending on the importance of the struc-
ture and its intended life, suitable design values can be
obtained by choosing an appropriate probability of ex-
ceedance.

The presented formulation accounts for the cross-
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correlation between the various modes of vibration in a
simple way, by including the effects of interaction
terms in the peak modal responses. As shown by the
results for the considered example buildings and
ground motions, this approach is applicable to the fre-
quently encountered cases of closely spaced modes in
the torsionally coupled buildings, even under the exci-
tation by the narrow-band, long period motions. This
can be easily extended to the case of the multi-compo-
nent excitation also with the knowledge of the correla-
tions between the different components.
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