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SUMMARY - A probabilistic approach has been followed to
estimate the expected ductility demand in a mildly non-linear
system subjected to a stationary, zero-mean, Gaussian excitation.
The proposed approach considers the total number of response
peaks and number of non-linear excursions bevond the response
vield level as parameters in formulating the density function and
expected value of the ductility ratio. Since the peaks occuring in
a particular response are mutually dependent, simulated joint
density function of these peaks has been used in the formulation.
Numerical results on expected ductility demand indicate that the
usually made assumption of peak independence may be conserv-
ative for assessing the ductility demand in a structure.

1. Introduction

The earthquakes-resistant design philosophy requires
the structures to be sufficiently ductile to withstand
severe ground shaking with acceptable damage while
avoiding a collapse. Thus, assessment of ductility de-
mand in the structures becomes an essential require-
ment of the aseismic design. Uncertainties in the
ground motion however make the probabilistic predic-
tion of the response and hence of the ductility demand
a necessity. Several probabilistic studies on energy dis-
sipation, ductility factors, and force reduction factors in
elasto-plastik systems have been carried out and a dis-
cussion on these is available in Basu and Gupta
(1995a). However, some of these studies were based on
time-history analyses using a large number of recorded
ground motions to obtain the statistical estimates of
ductility and response reduction factors. Since a prelim-
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inary design assessment may not warrant these compu-
tation-intensive analyses, there remained a need for
developing a proper and rational probabilistic descrip-
tion of ductility and for relating it to the statistical re-
lationship between the maximum level, yield level, and
the number of non-linear crossing while those may
have important design implications with regard to the
damage of structures [see Basu and Gupta (1995b) for
details].

Recently, Basu and Gupta (1995a) have used the
order statistics approach to study the probabilistic duc-
tility ratio from a different perspective by considering
the effect of the number of the excursions on ductility
demand. Their formulation is based on the assumption
of statistical independence between the response peaks.
This paper generalizes their approach to formulate the
distribution of probabilistic ductility ratio while includ-
ing the effects of peak dependence in a responce pro-
cess. This dependence has been taken into account by
modeling the joint density function of these peaks
through digital asimulation as suggested by Basu et al.
(1996). Two formulations, one based on the condition
on the yield level and the other on the condition on the
maximum level, have been presented here. A paramet-
ric study has been carried out to study the dependence
of expected ductility demand on the governing param-
eters, and these results have been compared with those
by Basu and Gupta (1995a) to see how reasonable is
the assumption of peak dependence for estimating the
expected ductility demand in a structure.

2. Probabilistic Ductility Demand

Ductility is defined as the ratio of maximum to yield
response of a given system. The maximum and yield
levels in a response may, in turn, be considered to cor-
respond to the largest peak and a higher order peak
(with lesser amplitude) respectively. Thus, a study of



ductility demand would require the formulation of duc-
tility ratio with condition on either of these two levels.

Let us consider a zero mean, stationary, Gaussian
response process, X(#). Unless the system is highly non-
linear, an equivalent linear oscillator can be obtained
whose response, X(#) is close to the response of the
original non-linear oscillator in the meansquare sense
[see, for example, Atalik and Utku (1976), and Iwan
and Gates (1979)]. X(r) may denote response functions
like roof displacement, joint rotation, or curvature of a
section in a structure. Let X, i=1, 2, ..., n to be the n
number of peaks occuring in X(¢). On being normalized
by the root-mean-square (r.m.s.) value of the process,
those can be characterized by the probability density
function (p.d.f.) given by Cartwright and Longuet-Hig-
gins (1956) as
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Here, my, m, and m, respectively denote the zeroth,
second and fourth moments of the energy spectrum of
X(». Further, the expected number of peaks, n may be

estimated from (7/2) m,/m, where, T is the duration

of the process, X(¢).

Basu et al. (1996) have proposed a scheme to ap-
proximately evaluate the joint density function of these
statistically dependent peaks by simulation. They have
considered n + 1 independent random variables, Y, ¥,
..., Y, each exponentially distributed with parameter, .
By adding the first variable, Y, to the remaining n var-
iables, n dependent variables, X|, X,, ..., X,, are created.
The joint density of Y, and X, X,, ..., X,,, is obtained
by writing the joint density of X, X,, ..., X,, i.e.
p(xy, ..., X,), is obtained by integrating out the effect of
Y, in its possible range, R,, of variation. If X, X,, ...,
X, are ordered in decreasing order of amplitudes as X,
Xy - X(n) the joint density of the ordered peaks fol-
lows from this as [Basu et al. (1996)].
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It has been found through digital simulation that a
value of 8=10.55 given reasonably good approximation
of the joint density in the response peaks for most
structural systems [see Base et al. (1996) for details].

Using the expression in Eq. (3), it is possible to de-
rive the conditional order statistics, with condition first

on the yield level and then on the maximum level. Let
the number of excursions of a specified response level
be i out of a sample of n peaks. Now, to arrive at the
p.d.f. of the ductility, we first obtain the joint density
function of the 1% and the (i + 1)™ order peaks using
Eq. (3) as
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On successive integration, this becomes
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Similarly, from Eq. (3), the univariate density func-
tion of the (i + 1)™ order peak can be obtained as [see
Base et al. (1996)],
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Using Eq. (5) and (6), we get the conditional order
statistics of the largest peak, on the condition that the
(i + )™ peak is known, as
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Thus, the expected value of ductility, u(= Xy/X;;. )
with i number of non-linear excursions of the yield
level, b is given by taking x;,,,=b in Eq. (7) as
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For the second case with the condition on the max-
imum level, say a, we first obtain the density function
of the largest peak by taking i =0 in Eq. (6). Then the
conditional density function of the (i + 1) order peak
is obtained by using Eq. (5) as
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Thus, the expected ductility, u for i excursions of
the yield level, on the condition that the maximum lev-
el is a, is given by

E(/.l. __° )= J‘a a P( Xy = Xy | Xy = @)dx,yy. (10)
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3. Numerical Results

For the numerical results on parametric variation, the
expected values of ductility ratio with conditioning re-
spectively on the yield and maximum levels have
been calculated using Eq. (8) and (10). The curves
have been plotted for the different combinations of pa-
rameters such as the yield level, b, maximum level, q,
total number of peaks, n, and the number of non-linear
excursions, i, by taking £=0.4. These results have been
compared with the parallel results obtained by Basu
and Gupta (1995a) for the statistically independent
peaks.

Figure 1 shows the variation in the expected ductility
ratio, E(u), with the total number of peaks, n, for the
number of non-linear excursions, i =2 and 8. The con-
ditional maximum level, a is taken as 5.0. It is seen
that the expected ductility demand decreases with the
increase in the total number of peaks for a given
number of non-linear excursions as in the case of the
indipendence assumption. Ductility demand also in-
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Fig. 1 — Variation in Expected Ductility with n for a = 5.0.
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Fig. 2 — Variation in Expected Ductility with a for n = 60.
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Fig. 3 — Variation in Expected Ductility with b.

creases with the increase in the number of excursions
in the same way for a given total number of peaks.
However, the results from the proposed formulation are
slightly lower than the ‘independence’ results. The var-
iation in expected ductility demand with the maximum
level, a has been shown in Fig. 2 for n =60, and i = 2,
8. Though the trends here are alike in the curves for
both the cases of dependence and indipendence, the
linear increase in ductility demand with the maximum



level for the ‘dependence’ case has a much flatter
slope. Around a = 5.0, the results from the two formu-
lations match but beyond this, the ‘dependence” results
fall far blow the ‘indipendence” results on ductility
demand.

In Figure 3, the parameters, i and b have been varied
to study the effects on ductility demand when the con-
ditioning is on the yield level, b. Here also, the as-
sumption of independence appears to make no differ-
ence so far as the trends of the curves are concerned.
The variation in the expected ductility demand may be
approximated by the expression, E(u) = 1 + k/b where,
k is a constant depending on the number of excursions.
Thus, the difference in the maximum and yield levels
for any given number of excursions is likely to be in-
dependent of the yield level. The optimal region for the
yield design level is also observed to be 0.5 —- 1.0 times
the r.m.s. value for both the approaches. However, in
Figure 3, the ‘dependence’ results are lower in value
than the ‘indipendence’ results. These differences are
more prominent for the lower values of yield level
(say, for b <0.5), which is consistent with the greater
discrepancies observed at the higher values of the max-
imum level in Figure 2. Thus, it is seen that whether
we have the higher values of maximum level or the
lower values of yield level, the two approaches give
very different estimates of expected ductility demand.
Further, accounting for the dependence corresponds to
the lowering in the expected ductility demand esti-
mates, and thus the maximum and yield levels cannot
be too distant from each other even at the high maxi-
mum or low yield levels with the considered depend-
ence between the unordered peaks.

The above numerical results can be applied to the
design of SDOF and multi-degree-of-freedom (MDOF)
systems as explained by Basu and Gupta (1995a).

4. Conclusions

The numerical results of the proposed formulation
have shown that the dependence of peaks leads to the
reduced ductility demand estimates, particularly at the
higher values of maximum response level and at the
lower values of yield response level. This reduction is
significant for the case with the conditioning on the
maximum level. No effect of this dependence is how-
ever observed in the trends of expected ductility ratio
variation for a wide range of parameters. Thus, 0.5 -

1.0 times the r.m.s. value may again be a suitable
range for deciding on the optimal response yield level
from ductility ratio considerations as reported by Basu
and Gupta (1995a) for the independent peaks.
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