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SUMMARY — Most approaches presently used for the seismic
analysis of linear structural systems dre response specteim-

based due o the inherent simplicity in the chavacterization of

design ground motions through response spectra and in the de-
seription of the peak structural response in terms of these ordi-
nates. For complex svstems where such a description iy not so
ebvious, one may have o use much more complicated nonsta-
tionary random vibration analyses employing appropriaie enve-
Tepe functions for the ground motions. The puspose of this paper

is 1o present an alternative stochastic approach which is simpler

than these nonstationary analvses, and is more genervalized than
the respomse spectrum based procedires. For this purpose. the
computation of peak factors using the theory of ovder statisticy
has been generalized 10 the nonstationary processes, and the
earthquake grownd motion has been modeled as i “equivalint
statfongry” excitation process. The design ground motion can
thus be characterized in termy of a probabilistic estimare of the
peck ground accelevation and the Fourier spectrion in the “tine
averaged” senye. The proposed approach has been illustrated in
case of simple SDOF and MDOF systemy through three example
excitations,

1. Introduction

The response spectrum based procedures are widely
used for the seismic analysis of civil engineering struc-
tures, e.g., multistoried buildings. nuclear power plants.
bridges etc. Many studies in the past have significantly
contributed to the development of these procedures.
These include those by Singh and Chu (1976). Der
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Kiureghian (1981). Wilson et al. (1981), Singh und
Mehta (1983). Amini and Trifunac (1985). Gupta and
Trifunac (1990b), Der Kiureghian and Nakamura
(1993), Gupta (1994b) for the fixed-base buildings.
those by Gupta and Trifunac (1990a), Gupta and Trifu-
nac (1991) for the flexible base buildings. and those by
Yamamura and Tanaka (1990). Berrah and Kausel
(1992). Der Kiureghian and Neuenhofer (1992), Here-
dia-Zavoni and Vanmarcke (1994) for the multi-support
systems. While some of these studies have utilized the
white noise or tiltered white noise models of excitation.
others required the use of either the Fourier spectra of
the response spectrum compatible power spectral den-
sity functions (PSDFs) to characterize the earthquake
ground motion. Essentially all of these studies have
attempted to model the peak seismic responses of a
multi-degree-of-freedom (MDOF) system in terms of
the peak seismic responses of several single-degree-of-
freedom (SDOF) systems. Though such an approach
may be convenient from the practising engineer’s point
of view, this may not be generalized to all practical
situations. For example, the response spectrum studies
accounting for the soil-structure interaction effects in-
variably ignore the Kkinematic interaction [e.g.. see
Gupta and Trifunac (1991)]. It has been shown by Betti
et al. (1993) that in case of structures with massive.
embedded foundations, e.g., suspension bridges, the
effects of kinematic interaction can be quite significant.
In fact, a mixed type of boundary value problem has to
be solved in frequency domain in such cases to com-
pute the actual foundation input motion which may be
quite different from the free field ground motion. Sim-
ilarly, response spectrum based techniques account for
the incoherence between the support motions of a mul-
li-support system only in an approximale way. Such
problems can be tackled more accurately by working in
the frequency domain and by directly accounting for
the nonstationarity in excitation and response, e.g.. as
in Shinozuka and Yang (1972), Deb Chaudhary and



Gasparini (1980), Madsen and Krenk (1983); Igusa
(1987), Bucher (1988), Hou (1990) etc. These non-re-
sponse spectrum based studies are however cumber-
some for practical applications and have also lacked
generality due o modeling of nonstationarity in the
ground motion through particular modualating functions.

The purpose of this study is to develop a simpler
and yet reasonably accurate approach to estimate the
stochastic response of linear structural systems subject-
ed to earthquake excitations. For this purpose. the ex-
citation has been modeled as a finite duration segment
ol a stationary random process such that this is equiv-
alent to the given nonstationary process in terms of the
lurgest peak value. te. the peak ground acceleration.
The nonstationarity in response due to [inite operating
time has been accounted for exactly by considering the
transient transfer function. and the peak lactors have
been obtained by generalizing the order statisties Tor-
mulation of Gupta and Trifunac (1988) 1o the nonsta-
tionary processes. The proposed approach has been il-
lustrated by computing the résponse spectra and the
seismic response of an example multistoried building
for a set of example earthquake ground motions,

2. Formulation of the Proposed Approach
(i) Brief Review

Let us first consider the response of a lincar dynam-
ical system to a suddenly applhied stationary excitation.
It has been shown by Corotis et al. (1972) that such a
response process is evolutionary in nature with the re-
sponse gradually building up with time in the begin-
ning. The evolutionary power spectral density, G (o, 1)
of the systems response, X(r) is then given by [Corotis
and Vanmarcke (1975)]

Glw. 1) = [H(w, Hi° G (w) (1

where, G(w) denotes the PSDF of the excitations, F(r),
and H(w. 1) represents the transient [requency response
function of the system. This relates the system response
to the input excitation at ume, . and is given by the
truncated Fourier transtorm of the unit impulse re-
sponse function of the system. As ¢ goes 1o nfinity,
Hw. 1)y approaches the steady-state frequency response
function. H(w). and the response. X(1) wends 1o become
a stationary process with spectral density, G (w). Peak
amplitudes in stationary processes can be estumated by
using the moments of the spectral density of the pro-
cess about the origin. There have been two popular ap-
proaches for estimating the largest peak in a stationary
process. One is based on the solution of first passage
problem as in Vanmarcke (1975). and the other s
based on the theory ol order statistics as in Gupta and
Trifunac (1988). The latter formulation is more gener-
alized since 1t can be used to compute not only the
largest peak in a process. but also the higher order
peaks. The salient point ol this approach are given in
the Appendix. Since this approach is formulated for the
stationary processes. this requires all the local maxima

in a random process to have an identical probability
distribution. This may work reasonably well also when
the processes are nonstationary for small fractions of
their total durations in the beginning and at the end,
e.g.. as in the case of the response of stiff structures to
the long duration excitations, In the case of flexible
and/or hghtly damped systems, the transient phase. in
which the response process gradually builds up, may be
appreciably long, thereby leading to a very small of
nonexistent phase of stationarity. In such processes, the
local maxima occurring at different instants of time
would correspond 1o different probability distributions,
and thus, it will not be possible to use the formulation
of Gupta and Trifunac (1988) even for the approximate
extimations.

(ii)  Peak Factors for Nonstationary Processes

[n the case of an evolutionary response process. X(7).
the instantaneous bandwidth parameter at time, 7. can
be defined i analogy with the stationary case as [Cart-
wright and Longuet-Higgins (1956)|

2 12
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where, nig(t). ma(0), and my(r) are the instantaneous
spectral moments given by

m,(1)= J‘“}:J’G‘(w. Hdw, =024 (3)

The corresponding probability density function of
the maxima of X{r) at time, 1, may be expressed as
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where, 7 is the normalized amphitude of maxima with
respect (o the root-mean-square (rom.s.) value. x, ()
(= \r"ur,,i/))_

For the purpose of design. however. the peak value
should be computed for the random process. IX(r)l in-
stead of X(1). Following the rationale of the formulation
by Gupta (1994a) for the stationary processes. the in-
stantancous probability density in the process. 1X(7)
may be given by
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rence of peaks in the process, IX(1)l may be defined as
[Cartwright and Longuet-Higgins  (1956). Gupta
(1994a)]

. __I_ my(t) .
N(r) 11+\jl—z-. (r))[m (”} . (6)

To estimate the largest peak in an evolutionary ran-
dom process, X(r), with time-dependent bandwidth pa-
rameter and mean rate of peak occurrence. let us con-
sider the temporal mean-square value of one of its re-
alizations as given by

= _ I T-? 1
_\,,,,t_*f_j“_\ (1)dr (7)

where, T is the total duration of the process.

Assuming this realization to be composed of finitely
many. say M, stationary segments of duration. AT, the
above expression can be written as

N
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Taking espectation of both the sides in the above
equation, we obrtain
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Inside the parentheses above, there are M integrals
of same magnitude involving the process, X(r). between
r=(m- DAT and r=mAT. We can alternatively con-
sider a fictitious stationary process, say X, (1), ol dura-
ton, 7, which is composed of M realizations of the
process, X(r), in this interval. Thus, Eq. (9) may be
expressed as

] M‘
[lrllil‘- J“(I] = I
:
LE[.rE,, (0))dr (10)

For very small AT, E|x2(1)] may be considered as
time-invariant over the interval of the integral. and may
be represented by X7 e
X, (n) at the mid-point of the interval, 1 = (m — AT to
r=mAT. Eq. (10} thus becomes

Lo
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the mean square value of

vilue of the nonstationary process, X(#), it can be relat-
ed to the larges peak value, v, in the process through
a peak factor, say 7. and thus,

"-l';:\‘.‘lk i El II’.';II‘-

I Zlm TS (12)

m=1

The mein squ;m, value, x2 . can also be related to
the largest peak. x,, p.. through the peak factor, 7,
where, 7, Is obtained by using the formulation of
Gupta and Trifunac (1988) for the stationary process,
X, (0. Eq. (12) thus becomes

E n:)‘l‘;r etk (I—%)

m=1T]
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It may be noted that the peak factors. 7, as well as
w are computed for the same process duration. T, and
that the total number of peaks for the M different (fic-
titious) stationary processes will change only slightly
from a higher value for X,(7) 1 a lower value for X,(1),
X0, ... as the system response slowly evolves from a
broad-band process 1o a narrow-band one. Since the

peak factor for a process depends little on its band-

width parameter. except when the process is highly
broad-banded. it may be expected that the ratio, n/n,,
will be close to unity for all the segments. It will be
smaller than unity for some segments, and larger than
unity for other. Thus, assuming the ratio uniformly
equal to unity for all m may lead to only small devia-
tions from the exact value, Thus, the peak value, x ...
of the process, X(1). may be estimated from
2
Z "m peak (14)

I”“L = [
m=1l

Letting AT — (. Eg. (14) becomes

| o 12
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where. X, (1) is the peak value of a fictitious stationary
process of duration, 7 and with the mean square value
same as the instantaneous mean square value of the
nonstationary process, X(r) at time, r. Similarly. by
considering the peak values of the absolute” fictitious
processes, desired peak amplitudes in the process. IX(1)l
may be estimatéd. Eq. (15) may be seen as a generali-
zation of the formulation by Gupta and Trifunac (1988)
and Gupta (1994a) in an approximate form. For station-
ary processes. .. (1) is invariant of time and thus, the
right hand side becomes identically equal to the left
hand side. Further, since the evolutionary spectrum of
the system response is a smooth function of time,
standard guadrature routines can be used to evaluate
the integral in Eq. (15).



(iii) Equivalent Stationary Excitation

The procedure described in the proceding sub-sec-
tions may be used for estimating the peak responses of
a linear system subjected o a suddenly applied station-
ary excitation. Seismic ground acceleration records,
however, are nonstationary as those exhibit a building-
up segment, a segment of sustained intense shaking.
and a decaying tail portion. Different earthquake
records exhibit widely different patterns of these three
segments, and thus, it is not possible to specily a
unique modulating function which would be represent-
ative of the nonstationary characteristies of all possible
or a majority of earthquake records. Employing a mod-
ulating function to describe nonstationarity as has been
done in several past studies, also makes the analysis
very complicated, and yet fails to account for the
changing frequency composition even in an approxi-
mate form. To propose a simple, approximate, yet more
generalized procedure which does not depend on the
form of nonstationarity in the excitation, it is sought to
replace the given nonstationary motion by an equiva-
lent stationary motion. It is proposed to have equiva-
lence in terms of the ‘average’ energy distribution,
strong motion duration, and intensity of shaking of the
given motion,

Let i (r) denote the ground acceleration process
with the strong motion duration, 7, defined as the 90%
duration of Trifunac and Brady (1975). An estimate of
the “average’ power spectrum of this acceleration pro-
cess may be obtained from

i EU ()]

Gy (@)= — == (16)

where, ('f’u(m) is the Fourier transform of i (7). We
can consider the equivalent stationary motion to have
duration, 7. and the same energy distribution as in
G, (a). To make it compatible with the nonstationary
pracess as regards the intensity of shaking, G, ()
may be uniformly scaled so as to lead to the peak
ground acceleration, a,,.. of desired level of confi-
dence on taking the spectral moments and multiplying
the r.m.s. value with the peak factor. Thus, if a,,, is
the largest peak of the stationary process with the
PSDF given by Eq. (16) and same level of confidence
as of a,,

axy

_qx — ltil'l'l.l‘( ( I 7)

('Illlﬂ\

represents the required scaling factor, and

Eln U ()]

G".- (w)= p

(18)

represents the PSDF of the equivalent excitation. It
may be emphasized that the energy distribution repre-
sented by this PSDF is only an “average” energy distri-
bution in the ground motion process. This may in fact

6

be inaccurate for those frequencies which are present
only in the small segments of the ground motion. The
resulting inaccurracies in the response calculations may
be substantial, depending on the system frequencies, for
a ground motion with short stationary phase. A more
accurgte approach would involve taking the Fourier
transform of the truncated ground motion as proposed
by Udwadia and Trifunac (1974) or considering fre-
quency-dependent duration of the ground motion
(Gupta (1994)]. However, for simplicity in the present
study, it is assumed that the ‘average’ distribution is
adequate to deseribe the “equivalent stationary” mation,
A similar procedure based on the equivalence of mean
square energy has also been suggested by Lin and Tyan
(1986) for the equivalent stationary excitations and this
has been found to be adequate for the response of most
linear systems,

3. Application to Response Spectra Calculations

Let us consider a SDOF oscillator subjected to
ground acceleration, Ji (7). The equation of motion for
the relative displacement response of the oscillutor can
be written as

X(1) + 24,00, X(0) + w; x(1) = —ii (1) (19

where, @, and £, are the natural frequency and critical
damping ratio of the oscillator, x(r) represents the rel-
ative displacement of the oscillator mass. and an over-
dot denotes the differentiation with respect to time.
Now, with reference to Eq. (1), the transient response
function relating the response. x(7) to the input acceler-
ation, i, (r) may be expressed as [Vanmarcke (1977)]

I
Hlw.1) = (w; — @)+ 20, (1w,

(20)
with £, (1) =¢,/[1 = e '] being the fictitious time-
dependent damping ratio of the oscillator. This form of
the frequency response function is an approximate form
similar to that of the steady-state transfer function with
the fictitious damping replacing the actual oscillator
damping. The peak oscillator response can now be
computed by using this frequency response function
and the PSDF of equivalent stationary motion [as in
Eq. (18)] in Eq. (1) to obtain the evolutionary PSDF of
the response and then by considering the peak values
for fictitious stationary process through Eq. (15).

To tllustrate the proposed procedure, response spec-
trum ordinates for Pseudo Spectral Acceleration (PSA)
response have been computed for a set of three accel-
erograms: (i) recorded SOOE component of Imperial
Valley earthquake of May 18, 1940 at El Centro, hav-
ing the total duration of 53.74 sec and the strong mo-
tion duration of 24,42 sec, (i) synthetic accelerogram
tor the horizontal component of Michoacan earthquake.
1985 at Mexico City, having the total duration of 80.96
sec and the strong motion duration of 46.44 sec [as in
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Gupta and Trifunac (1989)], and (iii) recorded N21E
component of Kern County earthquake of July 21, 1952
at Lincoln Taft School tunnel, having total duration of
54.36 sec and the strong motion duration of 30.54 sec.
The strong motions corresponding to the Imperial Val-
ley and Kern County earthquakes are broad-banded
whereas the motion corresponding to the Michoacan
earthquake is a narrow-banded motion. For the results
in this study, it is assumed that the Fourier spectra
based on the single records represent the ensemble be-
havior and that the observed peak ground accelerations
in these records are the expected values of the largest
peaks in the considered ground acceleration processes.
Further, the oscillator damping has been assumed to be
2% of the critical damping in each case. The ordinates
of the probabilistic spectra have been computed for the
5% and 95% confidence levels in addition to the ex-
pected values. These spectra have been compared with
those obtained from the time-history analyses as shown
in Figures 1-3. 1t is seen that the “expected’ spectra
computed by the proposed procedure are in good agree-
ment with the spectra obtained from the time-history
analyses. The time history results are also well bounded
by the 5% and 95% estimates on both sides. except for
a few narrow bands of natural periods in the case of
Imperial Valley and Kern County earthquakes. These
deviations may be due to the “time averaging' of the
energy distributions in obtaining the ‘equivalent station-
ary” motions. In the case of Michoacan earthquake, this
approximation works better, perhaps due to the fact that
the input motion is narrow banded and therefore. there
is little variation in the frequency-dependent duration
over the entire band of significant energy.

The probabilistic estimates in Figures |-3 have been
obtained by assuming “equivalent stationary” motions to
be of the 90% energy durations as suggested by Trifu-
nac and Brady (1975). However. it is seen that these
estimates undergo little changes. only at large periods.
if different durations are considered. Thus, it may be
sufficient to have just an approximate estimation of the
stationary duration in using the proposed approach.
Further, it may be observed that the application of the
proposed approach in obtaining the response spectrum
ordinates is, in essence. similar to the method proposed
by Udwadia and Trifunac (1974). The proposed formu-
lation however considers the effects of response nonsta-
tionarity more accurately, and is based on more rational
estimation of the peak fuctors.

4. Application to MDOF Systems

Let us now consider a n-degree-of-freedom. classi-
cally damped system subjected to ground acceleration.
ii (1), at its base. Using the normal mode approach.
any response quantity of interest. say z(1), in this sys-
tem can be expressed as [Clough and Penzien (1993)]

()= S0 21)
-
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where, 7)(1) is the system response in the J" mode giv-
en by the response of a SDOF oscillator with natural
frequency. w;. and critical damping ratio. {; to the base
acceleration, i, (¢} [as in Eq. (19)]. Further. «; is the
effective mode participation factor in the /™ mode for
the desired response quantity. For example, «, = ¢"'T,
represents the effective modal participation factor for
the displacement response at the " degree of freedom
where ' is the " element of the /" orthonormal
mode shape vector. {&|Y. and 1 (= (Y IM ) is
the participation factor for the /™ mode. with {r} repre-
senting the vector of rigid body influence coefficients.

The transient frequency response function for the
response. 2(¢) can be easily obtained by linearly com-
bining the transient response functions for the modal
responses. 7,01, 7.0, ... n,(0, as in Eq. (21). Using
this in Eq. (1), the time-dependent PSDF of the re-
sponse process, z(f) may thus be given by [Vanmarcke
(19773

G.(w, 1) = G (w) liin,i Hjw 0] +

2=l
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where. G, (w) is the PSDF of the equivalent stationary

ground motion as defined in Eq. (18). and Hw. 1) is
the transient frequency response [unction for (1) de-
fined as

|

] N+ Lo
(] =)+ 2if (Nww,

H (w, 1) = (23)

In Eq. (23), {(n={/l-e 2ot | represents  the
time-dependent damping in the j/® mode. Using the
spectral density as in Eq. (22) now, the peak ampli-
tudes in z(r) response can be computed for any level of
confidence by considering the peaks in fictitious sta-
tionary processes through Eq. (15), It may be noted
that the computational effort in these calculations can
be substantially reduced by carrying out the summation
in Eq. (22) over a reduced number of modes.

The proposed approach has been illustrated by ana-
lyzing a symmetric. S-storied, shear building for the
same set of accelerograms as used in illustrating the
response spectra calculations. The floor masses in this
building are varying linearly from 3000 tonnes for the
first floor o 1000 tonnes for the top floor. The story
stiffnesses are respectively 3.795 X 10% 3.105 % 109,
2,415 = 108 1.725 % 10%, and 1.380 x 10" kN/m for
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the bottom, second, third, fourth and top stories. The
natural frequencies are found to be 12.29, 28.61, 44.30.
55.96. 62.96 rad/sec. The damping ratio s assumed to
be 2% uniformly for all the modes of the example
building. Expected envelopes of floor displacement and
story shear responses have been obtained by using the
proposed approach, and compared with the time-history
results respectively in Figures 4-6 and 7-9. To illustrate
the 90% confidence interval for these envelopes, the
5% and 95% confidence level estimates have also been
obtained by using the proposed approach, and shown in
these figures. In each figure, all the response values
have been normalized with respect to the overall max-
imum value. It is seen that there is a good agreement
of the expected values with the time-history results, and
that the time-history results are well bounded by the
5% and 95% confidence estimates on both sides,

5. Conclusions

A new stochastic approach has been formulited in
frequency domain for the scismic analysis of linear

structural systems. This is based on the decoupling of

the nonstationarity in response arising due 1o sudden
application of excitation from the inherent nonstation-
arity in the excitation process. Th order statistics ap-
proach has been extended to the nonstationary pro-
cessed for the approximate peak factor computations.
Thus. this approach can also be used 10 estimate the
higher ovder peak amplitudes, not just the largest peak
amplitudes. The proposed approach is simple yet more
generalized than the existing approaches, Simplicity in
the approach has been introduced by modeling the in-
put excitation as an “equivalent stationary” process, and
by characterizing it in terms of /) the peak ground ac-
celeration with certain level of confidence, and i) the
Fourier spectrum representing “average' energy distri-
bution. Though this approach has been illustrated in

case of simple SDOF and MDOF systems only. this

can be eusily extended o more complicated systems
involving soil-structure interaction and spatial correla-
tion in support motions.

The proposed approach has been shown o work well
in the example cases as considered in this study. How-
ever, it can be tmproved further by considering more
realistic energy distributions of the “equivalent station-
ary’ ground motion {(as against the ‘time-averaged’
energy distribution). To this end. it may be useful to
consider the recorded motions in segments rather than
for the entire durations. Further, due to the imdependent
treatment of the nonstationarity in the response process.,
the PSDF of the equivalent excitation may also be gen-
erated iteratively so as to be compatible with the re-
sponse spectra for different damping levels. Separate
studies are required. however, 1o explore these possibil-
ites in detail.

Appendix

Let us consider a stationary, zero mean and Gaussian
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process. X(r) with the (one-sided) PSDF denoted by
G (). Extending th work ol Rice (1944, 1945), Curt-
wright and Longuet-Higgins (1956) derived the proba-
bility density function (p.d.f.) for the distribution of
maxima of X(). in terms of the rom.s. value of x(1),
and a parameter € which is a measure of th spread
of the PSDF. G (). These parameters are defined in
terms of the moments of the PSDF as follows

X = mi? (ALl
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where. in general, the /™ moment. m, of the PSDF is
defined by

nm, = J:;;;:‘G‘((rfldw (=10, 1.2, ) (AL3)

The probability density function of the maxima of
X(1) as normalized with respect (o x,,.. Is given as
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For £= 0, this becomes a Rayleigh distribution, and
for £=1, it become a Gaussian distribution.

Let the random process. X(7) under our consideration
have a total number of NV peaks or maxima i its entire

duration, These peaks are distributed as per Eq. (Ad),

and may be assumed to be statistically independent for
the first tew orders [Basu and Gupta ( [994) ], For that
case, Gupta and Trifunac (1988) have obtained the
probubility density function of the i order peak as

M!
=— P VT = P Y ). (ALS)
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where. the total number of maxima, N in process dura-
tinn, 7 is given in terms of the moments of G (@) as
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and P(x) is the cumulative probability given by

Pin)= Jm.ﬂ(ff)dfl :
n

For a given confidence level, Eg. (A.5) can be iter-
atively used 1o find the peak factor, n which. on being
multiplied with x,,,.. gives the i"™ order peak amplitude.
For the ‘expected’ peak amplitude. the peak factor,
n=7 may be computed as
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7 = [ up,, (u)d. (AT)

The ntegral in this equation may be obtained by an
approximate approach given by David and Johnson
(19541, and also wsed later by Gupta and Trifunac
(1988).
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