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SYNOPSIS: A new formulation is presented for estimating the largest and higher order
peak responses of a single-degree-of-freedom oscillator subjected to a stationary excitation
of finite duration. This formulation explicitly accounts for the non-stationarity in response
arising due to the finite operating time of excitation. For this purpose, the order statistics
formulation for stationary peak factors has been extended to apply in case of ‘evolutionary’
response processes. Numerical simulations have been carried out to check the validity of
this formulation on the ‘non-stationary’ peak factors in such processes. The proposed
formulation may be particularly useful for the computation of more realistic response
spectrum-compatible power spectral density functions as required in the aseismic design
of structures.

INTRODUCTION

The earthquake ground motion processes are inherently non-stationary in nature. Fur-
ther, those are of short durations, and thus, cause further non-stationarity in the responses
of dynamical systems initially at rest. A rigorous probabilistic assessment of seismic re-
sponse of a dynamical system would thus require an appropriate modelling of the ground
motion and consideration of additional non-stationarity due to the excitation not acting
long enough. The transient nature of the system response to a finite duration stationary
excitation had been first considered by Caughey and Stumpf (1961), and since then various
analytical formulations have been proposed within the framework of random vibrations for
estimating the seismic response. The ground motion process has been modelled in these
formulations through suitable deterministic modulating functions, and thus these formu-
lations have lacked generality in application, besides being mathematically cumbersome.
In another class of simpler methods, response process of a dynamical system is assumed to
be a stationary process, thus assuming the earthquake ground motion to be a stationary
process and ignoring the effects of finite duration operation of excitation. Resulting er-
rors in the estimation of peak responses are corrected with the help of response spectrum
characterization of the ground motions. Despite simplicity, these methods permit the es-
timation of higher orders of response peaks gee, for example, Gupta and Trifunac (1987,
1990, 1991) and Gupta (1994a)] which may be useful in the damage-based probabilistic
design of structures [Basu and Gupta (1995a,b, 1996a,b)]. These methods are however
suitable for application when the ground motion lasts long enough to permit many cycles
of system response.

This study aims to consider an alternative random vibration approach for es-
timating the seismic response of single-degree-of-freedom (SDOF) systems wherein the
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ground motion is idealized as an ‘equivalent stationary process’ and the non-stationarity
in the structural response due to the finite duration of the excitation is accurately ac-
counted for. Thus, it is aimed to combine the simplicity of the response spectrum-based
techniques with the rigour of the non-stationary formulations. A new formulation based
on this approach has recently been suggested by Shrikhande and Gupta (1996a). This
considers i) explicit consideration of the response non-stationarity by the use of time-
dependent transfer function, and ii) extension of the peak factor formulation of Gupta
and Trifunac (1988) and Gupta (1994b) for stationary processes to determine the ordered
peak amplitudes in a non-stationary SDOF system response. A brief review of this formu-
lation has been presented in this paper and it has been shown through a numerical study
that the ‘expected’ peak factors for the SDOF system response process as computed by
this formulation are in good agreement with those directly obtained from time-history
simulations. ‘

REVIEW OF THE NEW FORMULATION

Let us consider a SDOF oscillator which is subjected to a stationary base excitation,
u(t), for a finite duration, T'. The (evolutionary) power spectral density function (PSDF),
G(w, ), of the displacement response process, z(t), of the oscillator may be expressed as
[Corotis and Vanmarcke (1975)]

Ge(w,t) = |H(w, 1)’ Ga(w) (1)

where, Gy(w) is the PSDF of the input excitation, and H(w,t) denotes the transient
frequency response function of the relative displacement response. For an oscillator with
damping, { and natural frequency, w,, H(w,t) is given by

1

He) = G- e

(2)

with {(t) = ¢/[1—e 7] being the fictitious time-dependent damping [Vanmarcke (1976)).

The amplitudes of the ordered peaks in a stationary random process for a given
level of confidence may be estimated in terms of the moments of the process PSDF
about origin and by using the theory of order statistics [Gupta and Trifunac (1988),
Gupta (1994b)]. Extending this for application in case of evolutionary displacement re-
sponse process, the instantaneous probability density function of peaks may be written
as [Shrikhande and Gupta (1996a)|
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3)
where,
(1) = [mo(um«z) -mi()]"* @
mo(t)my(t)
is the instantaneous band-width parameter, and
m;(t) = / wW'Gy(w, t)dw; i=0,2,4 (5)
0

represents the ith instantaneous spectral moment (about origin) of the displacement pro-
cess. Further, 7 is the normalized amplitude of maxima with respect to the instantaneous

root-mean-square (r.m.s.) value, Zms(t) (= /mo(t)). Let us now consider a fictitious
stationary process with the same duration, T as the duration of the excitation process,
and the ensemble statistics same as the instantaneous statistics of the process, z(t), at

a time instant, t. Let 7)‘0.) represent the peak factor for the jth largest peak amplitude

corresponding to a specified probability of confidence in this fictitious process. This may
be determined by the knowledge of the probability density function, pzj)(n), of the jth

largest peak as

Py (m) = '(NJ‘.") (P, 7 [1 = P(n, )]V O p(n, 1) 6)

where, P(n,t) (= fnmp(u, t)du) is the distribution function of peaks corresponding to
p(n,t), and

N = 214 VI [”‘4_(‘)]”2 :
= 301+ VI=2m) | 20 ™

is the instantaneous mean rate of occurrence of peaks. It has been shown by Shrikhande
and Gupta (1996a) heuristically that the jth largest peak in the evolutionary displacement
process may be expressed as
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_ T 1/2
o = [% /0 (nz,-)ﬁrno(t)dz] (8)

Similarly, the r.m.s. value of the displacement process may be written as

1/2

T .
Ty = [%/; mo(t)d!] (9)

Since the transient frequency response functicn of the oscillator is a smooth function of
time, the integrals in Eqs. 8 and 9 may be evaluated efficiently by means of the stan-

dard quadrature routines. It may be noted that the ratio, xg;)l‘k /Zms represents the
‘non-stationary’ peak factor, n;), for the jth order peak which when multiplied with
the (temporal) r.m.s. value of the response process, gives the jth largest peak estimate.

ILLUSTRATION OF ‘NON-STATIONARY’ PEAK FACTORS

For a numerical study on illustrating the ‘non-stationary’ peak factors, input ground
motion process has been assumed to be characterized by the modified Kanai-Tajimi filtered
white-noise spectrum [Clough and Penzien (1982)]. This is expressed as

4 2,42, ,2 4
wg + 4§qwgw w

(wg —w?)2 4 4(3«)3&)2 (u)} —w?)? + 4(}w}w2

Ga(w) = Go (10)

where, G represents the intensity of the excitation, and w,, wy, (y, and (; are the site
dependent frequency and damping parameters. Let these parameters be taken as 1.5 rad/s,
15.0 rad/s, 0.6, and 0.6 respectively as in case of the the rocky sites. An ensemble of 30
stationary time-histories corresponding to the assumed PSDF and of 20 sec duration has
been generated for the simulation results. A set of SDOF oscillators with natural periods
varying from 0.01 sec to 3.0 sec and with damping ratios of 2%, 5%, and 10% have
been subjected to these excitation time-histories and the (relative displacement) response
time-histories have been computed by the numerical evaluation of Duhamel’s integral.
The temporal r.m.s. value and the amplitudes of the first, third and sixth order peaks
have been determined for each response time-history and then averaged over the ensemble.
The ‘non-stationary’ peak factors, 7;)s, for j = 1, 3 and 6 have been then computed by
taking the ratio of ‘averaged’ peak amplitudes to the ‘averaged’ r.m.s. value.

The ‘expected’ peak factors corresponding to the first, third and sixth order
peaks have also been computed by using the formulation of the previous section and
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compared with those obtained from the simulations as shown in Figs. 1-3. It may be
seen that the two sets of peak factors are in excellent agreement for the largest as well
as higher orders of peaks. Further, this agreement is improved with an increase in either
the damping ratio or the natural frequency of the SDOF oscillators. This is as expected
because the response process approaches a stationary process with the increase in these
two parameters [Caughey and Stumpf (1961)]. In such a situation, the ‘non-stationary’

eak factors approach the ‘stationary’ peak factors as proposed by Gupta and Trifunac
1988) and Gupta (1994b).

CONCLUSIONS

A new formulation has been presented for the non-stationary seismic analysis of a SDOF
system subjected to stationary base excitation. This is simple and explicitly accounts
for the effect of response non-stationarity on the response peak amplitudes. Through
numerical simulation, it has been shown that the peak factors of the non-stationary re-
sponse process are predicted with good accuracy by this forrulation for a large variety
of SDOF oscillators. This formulation can be easily extended to the multi-degree-of-
freedom systems as shown by Shrikhande and Gupta (1996a). This may also be suitable
for more realistic computation of PSDF from a given design spectrum [see Shrikhande
and Gupta (1996b) for details].
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Fig. 1 Comparison of ‘probabilistic’ and ‘simulation’

peak factors for 2% damping oscillators
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Fig. 3 Comparison of ‘probabilistic’ and ‘simulation’

peak factors for 10% damping oscillators
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