Seismic Response of SDOF Systems by Wavelet Modeling of Nonstationary Processes

Biswajit Basu

Lect., Dept. of Civ. Engrg., Jadavpur Univ., Calcutta 700032, India.

Vinay K. Gupta

Assoc. Prof., Dept. of Civ. Engrg., Indian Inst. of Technol., Kanpur 208016, India.

 

A wavelet-based random vibration theory is presented in this paper to predict the stochastic seismic response of a single-degree-of-freedom system. Functions of wavelet coefficients are used to model ground motions as nonstationary processes in terms of both amplitude and frequency nonstationarity. An orthogonal basis function has been proposed for this purpose. An input-output relationship is developed and closed form solutions are obtained for the output instantaneous power spectral density function and its moments. These moments are used to predict the response statistics of interest. The largest peak amplitude is predicted based on the existing first passage formulation, whereas the higher order peak amplitudes are estimated by using the order statistics approach for an "equivalent" stationary process. The proposed formulation has been validated through statistical simulation in the cases of two example motions and several single-degree-of-freedom oscillators.

References

  1. Alkemade, J. A. H. (1993). "The finite wavelet transform with an application to seismic processing."Wavelets: An elementary treatment of theory and applications, T. H. Koornwinder, ed., World Scientific, New Jersey, 183–208.
  2. Barnoski, R. L., and Maurer, J. R. (1969). "Mean-square response of simple mechanical systems to nonstationary random excitation."J. Appl. Mech., ASME, 221–227.
  3. Basu, B., and Gupta, V. K.(1995). "A probabilistic assessment of seismic damage in ductile structures."Earthquake Engrg. Struct. Dynamics, 24, 1333–1342.
  4. Basu, B., and Gupta, V. K.(1997). "Non-stationary seismic response of MDOF systems by wavelet transform."Earthquake Engrg. Struct. Dynamics, 26, 1243–1258.
  5. Battle, G.(1987). "A block spin construction of ondelettes. Part I: Lemarié functions."Comm. Math. Phys., 110, 601–615.
  6. Borino, G., Di Paola, M., and Muscolino, G.(1988). "Non-stationary spectral moments of base excited MDOF systems."Earthquake Engrg. Struct. Dynamics, 16, 745–756.
  7. Buciarelli Jr., L. L., and Kuo, C.(1970). "Mean square response of a second order system to nonstationary random excitation."J. Appl. Mech., ASME, 37(3), 612–616.
  8. Cartwright, D. E., and Longuet-Higgins, M. S. (1956). "The statistical distribution of maxima of a random function."Proc., Royal Soc. London, A 237, 212–232.
  9. Caughey, T. K., and Stumpf, H. J.(1961). "Transient response of a dynamic system under random excitation."J. Appl. Mech., Trans., ASME, 28, 563–566.
  10. Chui, C. K. (1992). An introduction to wavelets. Academic Press, Inc., San Diego, Calif.
  11. Conte, J. P., and Peng, B. F.(1997). "Fully nonstationary analytical earthquake ground-motion model."J. Engrg. Mech., ASCE, 123(1), 15–24.
  12. Crandall, S. H., Chandiramani, K. L., and Cook, R. G.(1966). "Some first passage problems in random vibration."J. Appl. Mech., ASME, 33, 532.
  13. Daubechies, I. (1992). Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia, Pa.
  14. Ditlevesen, O. (1971). "Extremes and first passage time with applications in civil engineering," PhD thesis, Technical University of Denmark, Copenhagen, Denmark.
  15. Gasparini, D. A.(1979). "Response of MDOF systems to nonstationary random excitation."J. Engrg. Mech. Div., ASCE, 105(1), 13–27.
  16. Gasparini, D., and DebChaudhury, A.(1980). "Dynamic response to nonstationary non-white excitation."J. Engrg. Mech. Div., ASCE, 106(6), 1233–1248.
  17. Gaupillaud, P., Grossmann, A., and Morlet, J.(1984). "Cycle-octave and related transforms in seismic signal analysis."Geoexploration, 23, 85–102.
  18. Grigoriu, M., Ruiz, S. E., and Rosenblueth, E.(1988). "The Mexico earthquake of September 19, 1985—Nonstationary models of seismic ground acceleration."Earthquake Spectra, 4(3), 551–568.
  19. Grossmann, A., and Morlet, J.(1984). "Decomposition of Hardy functions into square integrable wavelets of constant shape."SIAM J. Math. Anal., 15, 723–736.
  20. Gupta, I. D., and Trifunac, M. D.(1988). "Order statistics of peaks in earthquake response."J. Engrg. Mech., ASCE, 114(10), 1605–1627.
  21. Gupta, V. K. (1994). "Stochastic approach to seismic floor spectra in nuclear power plants."Rep. 94-02, Dept. of Civ. Engrg., I.I.T. Kanpur, Kanpur, India.
  22. Gupta, V. K., and Trifunac, M. D.(1993). "A note on the effects of ground rocking on the response of buildings during 1989 Loma Prieta earthquake."Earthquake Engrg. Engrg. Vibration, 13(2), 12–28.
  23. Heil, C., and Walnut, D.(1989). "Continuous and discrete wavelet transforms."SIAM Rev., 31, 628–666.
  24. Iwan, W. D., and Hou, Z. K.(1989). "Explicit solutions for the response of simple systems subjected to nonstationary random excitation."Struct. Safety, 6, 77–86.
  25. Kubo, T., and Penzien, J.(1979). "Simulation of three-dimensional strong ground motions along principal axes, San Fernando earthquake."Earthquake Engrg. Struct. Dynamics, 7, 279–294.
  26. Lee, V. W., and Trifunac, M. D.(1985). "Torsional accelerograms."Soil Dynamics Earthquake Engrg., 4(3), 132–139.
  27. Lee, V. W., and Trifunac, M. D.(1987). "Rocking strong earthquake accelerograms."Soil Dynamics Earthquake Engrg., 6(2), 75–89.
  28. Lee, V. W., and Trifunac, M. D. (1989). "A note on filtering strong motion accelerograms to produce response spectra of specified shape and amplitude."Eur. Earthquake Engrg., III(2), 38–45.
  29. Lemarié, P. G.(1988). "Une nouvelle base d'ondelettes de L2 (Rn)."J. de Math. Pures et Appl., 67, 227–236.
  30. Lin, Y. K., and Yong, Y.(1987). "Evolutionary Kanai-Tajimi earthquake models."J. Engrg. Mech., ASCE, 113(8), 1119–1137.
  31. Mallat, S.(1989). "Multiresolution approximation and wavelets."Trans. Am. Math. Soc., 315, 69–88.
  32. Meyer, Y. (1992). Wavelets and operators. Cambridge Univ. Press., New York.
  33. Muscolino, G.(1988). "Nonstationary envelope in random vibration theory."J. Engrg. Mech., ASCE, 114(8), 1396–1413.
  34. Newland, D. E. (1993). An introduction to random vibrations, spectral and wavelet analysis. Longman, London, U.K.
  35. Newland, D. E.(1994a). "Wavelet analysis of vibration, Part 1: Theory."J. Vibration and Acoustics, Trans., ASME, 116, 409–416.
  36. Newland, D. E.(1994b). "Wavelet analysis of vibration, Part 2: Wavelet maps."J. Vibration and Acoustics, Trans., ASME, 116, 417–425.
  37. Quek, S.-T., Teo, Y.-P., and Balendra, T.(1990). "Non-stationary structural response with evolutionary spectra using seismological input model."Earthquake Engrg. Struct. Dynamics, 19, 275–288.
  38. Saragoni, G. R., and Hart, G. C. (1972). "Nonstationary analysis and simulation of earthquake ground motions."Rep. No. UCLA-ENG-7238, Earthquake Engrg. and Struct. Lab., University of California, Los Angeles, Calif.
  39. Senthilnathan, A., and Lutes, L. D.(1991). "Nonstationary maximum response statistics for linear structures."J. Engrg. Mech., ASCE, 117(2), 294–311.
  40. Stromberg, J. O. (1982). "A modified Franklin system and higher order spline-systems on [sans-serif R]n as unconditional bascs for Hardy spaccs."Conf. in Honor of A. Zygmund, Vol. II, W. Beckner et al., eds., Wadsworth Math. Series, 475–493.
  41. Todorovska, M. I., Gupta, I. D., Gupta, V. K., Lee, V. W., and Trifunac, M. D. (1995). "Selected topics in probabilistic seismic hazard analysis."Rep. CE 95-08, Dept. of Civ. Engrg., University of Southern California, Los Angeles, Calif.
  42. Trifunac, M. D.(1990). "Curvograms of strong ground motions."J. Engrg. Mech., ASCE, 116(6), 1426–1432.
  43. Vanmarcke, E. H.(1975). "On the distribution of the first-passage time for normal stationary random processes."J. Appl. Mech., Trans., ASME, 42, 215–220.
  44. Wong, H. L., and Trifunac, M. D. (1979). "Generation of artificial strong motion accelerograms."Earthquake Engrg. Struct. Dynamics, 7, 509– 527.