

Wanas Das V. K. Jain P. S. Ghoshdastidar

Nanofinishing process using magnetorheological polishing medium

Rotational Magnetorheological Abrasive Flow Finishing (R-MRAFF) Process

Contents

PREFACE	VII
1. INTRODUCTION AND LITERATURE REVIEW	1
1.0 Introduction	1
1.1 Overview of traditional finishing processes	2
1.2 Literature review	2
1.2.1 Advanced abrasive finishing processes 1.2.1.1 Abrasive Flow Machining	1
1.2.1.1 Abrasive Flow Machining 1.2.2 Magnetic field assisted advanced finishing processes	5
(AFPs)	3
1.2.2.1 Magnetic Abrasive Finishing (MAF)	6
1.2.2.2 Magnetic Float Polishing (MFP)	6
1.2.2.3 Magnetorheological Finishing (MRF)	7
1.2.2.4 Magnetorheological Abrasive Flow Finishing	9
(MRAFF)	
1.2.3 Magnetorheological fluids	11
1.3 Development of Rotational-Magnetorheological Abrasive	13
Flow Finishing (R-MRAFF) process	
1.3.1 Limitations of AFM, MRF, MARFF processes	13
1.3.2 Rotational-Magnetorheological Abrasive Flow	14
Finishing (R-MRAFF) process	
1.3.3 Comparison of R-MRAFF with other processes	15
2. EXPERIMENTAL SETUP AND MR POLISHING FLUID	17
2.1 Experimental set up	17
2.1.1 MRP fluid cylinders and pistons	19
2.1.2 Electromagnet and permanent magnet	20
2.1.3 Workpiece fixture and magnet fixture	21
2.1.4 Hydraulic drives and controls	23
2.2 Magnetorheological Polishing Fluid	24
3. RHEOLOGICAL CHARACTERIZATION OF MR POLISHING FLUID	27
3.1 Introduction	28
3.1.1 Composition of MRP Fluid	28
3.2 Magnetic Characterization	30

Nanofinishing	process	using	magnetorheolo	gical	polishing	medium
---------------	---------	-------	---------------	-------	-----------	--------

3 3 Tost	equipment	22
	osity models of MRP fluid	33
	Bingham plastic model	34
	Herschel-Bulkley model	37
	Casson fluid model	37
	logical experimentation	38
	gn of experiments	39
	Response surface regression analysis	43
5.0.1	3.6.1.1 Yield stress	43
	3.6.1.2 Viscosity	43
37 Rocu	lts and discussion	46
	Effect of CIP concentration	49
	Effect of magnetic field	49
		51
	Effect of abrasive concentration	53
3 & Flow	Effect of Grease concentration curves of MRP fluid	55
3.9 Cone		57
J. J Com	lusions	59
4. FINISHING	OF FLAT SURFACES	61
4.1 Introd	duction	61
4.2 R-MF	RAFF force analysis	63
- 4.2.1	Calculation of helix angle and arc length of helical	65
path		
4.3 Comp	parison between different pole arrangements	67
4.4 Prelin	ninary experiments	69
4.5 Exper	rimentation for parametric analysis	74
	ts and discussion	75
4.6.1	Extrusion pressure	78
4.6.2	Number of finishing cycles	80
	Volume ratio of CIP/SiC	80
4.6.4	Rotational speed of the magnet	81
	arison of surface textures in grinding, MRAFF and	81
	AFF processes	
4.8 Concl	usions	86
5. FINISHING	OF INTERNAL SURFACES	87
5.1 Introd	uction	88
5.2 Prelin	ninary experiments	89
5.2.1	Effect of RPM of the magnet	90
	Effect of abrasive mesh size	95

Contents

5.2.3 Effect of finishing cycles	97
5.3 Experimentation for parametric analysis	99
5.4 Results and discussion	99
5.4.1 Modeling and optimization	99
5.4.2 Parametric analysis	106
5.4.2.1 Effect of extrusion pressure	106
5.4.2.2 Effect of number of finishing cycles	109
5.4.2.3 Effect of rotational speed of the magnet	110
5.4.2.4 Effect of abrasive mesh size	112
5.4.3 Parametric study for finishing rate	113
5.5 Conclusions	115
6. CFD SIMULATION OF MRAFF PROCESS	117
6.1 Introduction	118
6.2 CFD simulation of MRP fluid flow	121
6.2.1 Governing equations	121
6.2.2 Viscosity model	122
6.2.3 Boundary conditions and discretization	123
6.2.4 Numerical method	123
6.2.5 Grid independence test	124
6.2.6 Validation with the analytical solution	126
6.2.7 Velocity distribution of the polishing medium	127
6.3 Magnetic field analysis	130
6.3.1 Maxwell Simulation of MRP medium	131
6.3.2 CIPs chain structure and active abrasive particles	132
6.3.3 Modeling of material removal	135
6.4 Modelling of surface finish	136
6.5 Results and discussion	139
6.5.1 Flow field and magnetic field	140
6.5.1.1 Effect of CIP concentration	140
6.5.1.2 Effect of extrusion Pressure	144
6.5.1.3 Effect of finishing cycles	147
6.5.2 Surface roughness	147
6.5.2.1 Effect of CIP concentration	148
6.5.2.2 Effect of extrusion pressure	150
6.5.2.3 Effect of finishing cycles	152
6.6 Conclusions	154
REFERENCES	155