
palm-38591 pal29273˙appC February 3, 2009 11:1

CA P P E N D I X

Introduction to MATLAB

APPENDIX OUTLINE

C.1 MATLAB Interactive Sessions 2

C.2 Computing with MATLAB 5

C.3 Working with Files 12

C.4 Logical Operators and Loops 16

C.5 The MATLAB Help System 24

References 26

Problems 26

T his appendix provides a “quick start” introduction to MATLAB. You should be
familiar with Sections C.1 and C.2 before attempting to cover the MATLAB ma-

terial in the main body of this text. Sections C.3 and C.4 are useful for more exten-
sive applications such as projects and some of the homework exercises. The extensive
MATLAB help system discussed in Section C.5 can be used to obtain more detailed
information and more examples. Other sources are [Palm, 2005] and [Palm, 2008].

Appendix A is a guide to the MATLAB commands and functions that are relevant
to the system dynamics methods used in this text. To obtain more information about
a specific command or function, in the Command window type help topic, where
topic is the name of the command or function. For more information on MATLAB
help, type help help.

MATLAB has a number of “add-on” software modules, called toolboxes, that
perform more specialized computations. These can be purchased separately, but all
require the “core” MATLAB program to be used. This text uses some features of the
core MATLAB program, the Control Systems toolbox, and Simulink, which requires
MATLAB to run. ■

1

palm-38591 pal29273˙appC February 3, 2009 11:1

2 APPENDIX C Introduction to MATLAB

C.1 MATLAB INTERACTIVE SESSIONS
You can use MATLAB in interactive mode to obtain an immediate response to each
command as it is typed, or you can run MATLAB programs stored in files. We discuss
the interactive mode in this section and program files in Section C.3.

TYPEFACE CONVENTIONS

We usetypewriter font to represent MATLAB commands, any text that you type
in the computer, and any MATLAB responses that appear on the screen; for example,
y = 6*x. Variables in normal mathematics text appear in italics; for example, y = 6x .
We use boldface type for three purposes: to represent vectors and matrices in normal
mathematics text (for example, Ax = b), to represent a key on the keyboard (for
example, Enter), and to represent the name of a screen menu or an item that appears in
such a menu (for example, File). It is assumed that you press the Enter key after you
type a command. We do not show this action with a separate symbol.

USER INTERFACE

To start MATLAB on a Windows system, double-click on the MATLAB icon. You will
then see the MATLAB Desktop. The Desktop manages the Command window and a
Help Browser, as well as other tools. The default appearance of the Desktop consists
of three windows. These are the Current Directory window, the Command History
window, and the Documents window. The Command History window displays your
previous commands for quick reference. The Current Directory window provides easy
access to program files and to the Array Editor. Underneath the Documents window is
the Workspace Browser, which enables you to examine your variables. Across the top
of the Desktop are a row of menu names and a row of icons called the “toolbar.”

You use the Command window to communicate with the MATLAB program,
by typing instructions of various types called commands, functions, and statements. To
simplify the discussion, we will just call the instructions by the generic name commands.
In the Windows operating system the professional version of MATLAB displays a
prompt (�) to indicate that it is ready to receive instructions. Other MATLAB versions,
such as the student version, might use a different prompt. You can quit MATLAB by
typing quit. On Windows systems you can also click on the File menu, and then click
on Exit Matlab.

The Workspace Browser can be accessed by clicking on its tab at the bottom of
the Current Directory window. You can use this window to determine the type, size,
and values of all the variables you create. The Command History window shows all the
previous keystrokes you entered in the Command window. You can alter the appearance
of the Desktop if you wish. To eliminate a window, click on its Close Window button
(×) in its upper right-hand corner.

ENTERING COMMANDS AND EXPRESSIONS

After you type a command, press Enter to execute it. For example, to divide 8 by 10,
type 8/10 and press Enter (the symbol / is the MATLAB symbol for division). Your
entry and the MATLAB response looks like the following on the screen (we call this
interaction between you and MATLAB an interactive session, or simply a session).

>>8/10
ans =

0.8000

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 3

MATLAB has assigned the answer to a variable called ans, which is an abbrevi-
ation for answer. You can use the variable ans for further calculations; for example,
using the MATLAB symbol for multiplication (*):

>>5*ans
ans =

4.0000

Note that the variable ans now has the value 4.
MATLAB uses high precision for its computations, but by default it usually displays

its results using four decimal places. This is called the short format. This default
can be changed by using the format command. MATLAB uses the notation e to
represent exponentiation to a power of ten; for example, MATLAB displays the number
5.316 × 102 as 5.316e+02.

Because MATLAB retains your previous keystrokes in a “command file,” you can
use the up arrow key ↑ to scroll back through the commands. Press the key once to see
the previous entry, twice to see the entry before that, and so on. Use the down arrow key
↓ to scroll forward through the commands. When you find the line you want, you can
edit it using the left and right arrow keys ← and →, and the Back Space and Delete
keys. Press the Enter key to execute the command.

VARIABLES

A variable in MATLAB is a symbol used to contain a value. You can use variables to
write mathematical expressions and assign the result to a variable of your own choosing,
say r, as follows:

>>r=8/10
r =

0.8000

You can put spaces in the line to improve its readability; for example, you can put a
space before and after the = sign if you want. MATLAB ignores these spaces when
making its calculations.

A semicolon at the end of a line suppresses printing the results to the screen. Even
if you suppress the display with the semicolon, MATLAB still retains the variable’s
value. You can put several commands on the same line if you separate them with a
comma—if you want to see the results of the previous command—or semicolon if you
want to suppress the display. If you need to type a long line, you can use an ellipsis, by
typing three periods, to delay execution.

The term workspace refers to the names and values of any variables in use in the
current work session. Variable names must begin with a letter and must contain less than
32 characters; the rest of the name can contain letters, digits, and underscore characters.
MATLAB is case-sensitive. Thus the following names represent five different variables:
speed, Speed, SPEED, Speed 1, and Speed 2.

MATLAB retains the last value of a variable until you clear its value or quit
MATLAB. You can use the clear command to remove the values of all variables
from memory, or you can use the form clear var1 var2 to clear the variables
named var1 and var2. The effect of the clc command is different; it clears the
Command window of everything in the window display, but the variables retain their
values.

palm-38591 pal29273˙appC February 3, 2009 11:1

4 APPENDIX C Introduction to MATLAB

You can type the name of a variable and press Enter to see its current value. If the
variable does not have a value (i.e., if it does not exist), you will see an error message.
You can also use the exist command. Type exist('x') to see if the variable x is
in use. If a 1 is returned, the variable exists; a 0 indicates that it does not exist. The
who command lists the names of all the variables in memory, but does not give their
values. The form who var1 var2 restricts the display to the variables specified.
The wildcard character * can be used to display variables that match a pattern. For
instance, who A* finds all variables in the current workspace that start with A. The
whos command lists the variable names and their sizes, and indicates whether or not
they have nonzero imaginary parts.

SCALAR ARITHMETIC

A scalar is a single number and a scalar variable is a variable that is used to contain
a single number. MATLAB uses the symbols + - * / ^ for addition, subtraction,
multiplication, division, and exponentiation (power) of scalars. For example, typing
x = 8 + 3*5 returns the answer x = 23. Typing 2^3-10 returns the answer
ans = -2. The forward slash / represents right division, which is the normal di-
vision operator familiar to you. Typing 15/3 returns the result ans = 5. MATLAB
has another division operator, called left division, which is denoted by the backslash \.
The left division operator is useful for solving sets of linear algebraic equations.

The mathematical operations represented by the symbols + - * / \ and ^
follow a set of rules called precedence. Mathematical expressions are evaluated starting
from the left, with the exponentiation operation having the highest order of precedence,
followed by multiplication and division with equal precedence, followed by addition
and subtraction with equal precedence. Parentheses can be used to alter this order.
Evaluation begins with the innermost pair of parentheses, and proceeds outward. Note
the effect of precedence in the following session.

>>3*4^2 - 12 - 8/4*2 + 8 + 3*5
ans =

55
>>3*(4^2) - 12 - 8/(4*2) + (8 + 3)*5
ans =

90
>>3*(4^2) + 5 + 27^1/3 + 32^0.2
ans =

64
>>(3*4)^2 + 5 + 27^(1/3) + 32^(0.2)
ans =

154

To avoid mistakes, you should feel free to insert parentheses wherever you are unsure
of the effect precedence will have on the calculation.

THE ASSIGNMENT OPERATOR

The = sign in MATLAB is the called the assignment operator or replacement operator.
It works differently than the equals sign you are familiar with from mathematics. When
you type x = 3, you tell MATLAB to assign the value 3 to the variable x. This usage
is no different than in mathematics. However, in MATLAB we can also type something
like this: x = x + 2. This tells MATLAB to add 2 to the current value of x, and to

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 5

replace the current value ofxwith this new value. Ifx originally had the value 3, its new
value would be 5. This usage of the = operator is different than its use in mathematics.
For example, the mathematics equation x = x + 2 is invalid because it implies that
0 = 2 (subtract x from both sides of the equation to see this).

The variable on the left-hand side of the = operator is replaced by the value
generated by the right-hand side. Thus, one variable, and only one variable, must be on
the left-hand side of the= operator. Thus, in MATLAB you cannot type6 = x. Another
consequence of this restriction is that you cannot write in MATLAB expressions like
x + 2 = 20. The corresponding equation x + 2 = 20 is acceptable in algebra, and
has the solution x = 18, but MATLAB cannot solve such an equation without additional
commands that are available in the Symbolic Math toolbox.

Another restriction is that the right-hand side of the = operator must have a com-
putable value. For example, if the variable y has not been assigned a value, then typing
x = 5 + y will generate an error message in MATLAB.

C.2 COMPUTING WITH MATLAB
MATLAB has several predefined special constants. The symbol Inf stands for ∞,
which in practice means a number so large that MATLAB cannot represent it. For
example, typing 5/0 will generate the answer Inf. The symbol NaN stands for “Not
a Number.” It indicates an undefined numerical result such as that obtained by typing
0/0. The symbol eps is the smallest number which, when added to 1 by the computer,
creates a number greater than 1. It is used as an indicator of the accuracy of computations.
The symbol pi represents the number π = 3.14159 The symbols i and j denote
the imaginary unit, where i = j = √−1. They are used to create and represent complex
numbers, such as x = 5 + 8i.

COMPLEX NUMBER ALGEBRA

MATLAB handles complex number algebra automatically. It accepts both i and j to
designate the imaginary part, but it displays imaginary parts using i only. For example,
the number c1 = 1−2i is entered as follows: c1 = 1-2i. Note that an asterisk is not
needed between i or j and a number, although it is required with a variable, such as
c2 = 5 - i*c1. This can cause errors if you are not careful. For example, the
expressions y = 7/2*i and x = 7/2i give two different results: y = (7/2)i =
3.5i and x = 7/(2i) = −3.5i .

Addition, subtraction, multiplication, and division of complex numbers are easily
done. For example,

>>s = 3+7i;w = 5-9i;
>>w+s
ans =

8.0000 - 2.0000i
>>w*s
ans =

78.0000 + 8.0000i
>>w/s
ans =

-0.8276 - 1.0690i

palm-38591 pal29273˙appC February 3, 2009 11:1

6 APPENDIX C Introduction to MATLAB

BUILT-IN FUNCTIONS

MATLAB has hundreds of built-in functions. One of these is the square root function,
sqrt. A pair of parentheses is used after the function’s name to enclose the value—
called the function’s argument—that is operated on by the function. For example, to
compute the square root of 9, you type sqrt(9). To compute sin x , where x has a
value in radians, you type sin(x). To compute cos x , type cos(x). The exponential
function ex is computed from exp(x). The natural logarithm, ln x , is computed by
typinglog(x). You compute the base 10 logarithm by typinglog10(x). The inverse
sine, or arcsine, is obtained by typing asin(x). It returns an answer in radians, not
degrees. Appendix A lists the available elementary functions. Type help elfun to
obtain more information.

The difference between a function and a command or a statement is that functions
have their arguments enclosed in parentheses. For example, to compute sin 2 using
the sin function, you type sin(2). Commands, such as clear, need not have
arguments, but if they do, they are not enclosed in parentheses; for example, clear
x. Statements cannot have arguments; for example, clc and quit are statements.

ARRAYS

One of the strengths of MATLAB is its ability to handle collections of numbers, called
arrays, as if they were a single variable. A numerical array is an ordered collection of
numbers (a set of numbers arranged in a specific order). An example of an array is one
that contains the numbers 0, 1, 3, and 6 in that order. We can use square brackets to
define the variable x to contain this collection by typing x = [0, 1, 3, 6]. The
elements of the array must be separated by commas or spaces. Note that the variable y
defined as y = [6, 3, 1, 0] is not the same as x because the order is different.

We can add the two arrays x and y to produce another array z by typing the single
line z = x + y. To compute z, MATLAB adds all the corresponding numbers in x
and y to produce z. The resulting array z is [6, 4, 4, 6].

Array addition and subtraction require that both arrays have the same size. The
only exception to this in MATLAB occurs when we add or subtract a scalar to or
from an array. In this case, the scalar is added or subtracted from each element in
the array. For example, if x = [0, 1, 3, 6], typing v = x + 2 gives v =
[2, 3, 5, 8].

Arrays that display on the screen as a single row of numbers with more than one
column are called row arrays. You can create column arrays, which have more than
one row, by using a semicolon to separate the rows. So, for example, [3, 7, 2] is
not the same array as [3; 7; 2].

CREATING AND ACCESSING ARRAYS

To create an array having many entries, you need not type all the numbers if they are
regularly spaced. Instead, you type the first number, the spacing, and the last number,
separated by colons. For example, the numbers 0, 0.1, 0.2, . . . , 10 can be assigned
to the variable u by typing u = [0:0.1:10]; to create a row array having 101
elements. Use the transpose operator ' to convert a row array into a column array, and
vice versa.

You can see all the values in u by typing u after the prompt or, for example, you
can see the seventh value by typing u(7). The number 7 is called an array index,
because it points to a particular element in the array. For example, typing u(7) gives

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 7

ans = 0.6000. You can use the length function to determine how many values
are in an array. For example, typing m = length(u) gives m = 101.

One advantage of MATLAB is that it can operate on arrays with a single command.
For example, to compute w = 5 sin u for u = 0, 0.1, 0.2, . . . , 10, the session is

>>u = [0:0.1:10]; w = 5*sin(u);

or more compactly,

>>w = sin([0:0.1:10]);

This single line computes the formula w = 5 sin u 101 times, once for each value
in the array u, to produce an array w that has 101 values. To achieve this result with
conventional programming languages requires that a loop be written.

MATRICES

A matrix is a two-dimensional array; that is, one that has multiple rows and multiple
columns. One way to create a matrix is to type each row as a row array (with its elements
separated by a comma or a space) followed by a semicolon except for the last row. The
semicolon serves to separate the rows. For example, to create the matrix

A =
[

4 7
9 2

]

the session is

>>A = [4, 7; 9, 2];

To access the element of a matrix in row r and column c, type A(r,c). For
example, typing A(2,1) returns the value 9. Note that the row number comes first.

Matrix addition, subtraction, and multiplication by a scalar follow the same rules
as for row and column arrays.

ARRAY MULTIPLICATION

Multiplication of arrays by a scalar is easily understood. For example, to double each
element of the array r = [3, 5, 2], you type v = 2*r to obtain v = [6, 10,
4]. Similarly, multiplying a matrix A by a scalar w produces a matrix whose elements
are the elements of A multiplied by w . However, multiplication of two arrays is not so
straightforward. In fact, there are two definitions of multiplication used by MATLAB:
(1) array multiplication and (2) matrix multiplication.

To compute the matrix product AB you typeA*B. The resulting matrix is computed
using the standard rules of matrix multiplication. However, typing A.*B produces a
different matrix, in which each element is the product of the two corresponding elements
in A and B. This form is called array or element-by-element multiplication. Note that
.* is one symbol.

To illustrate the difference between the two types of multiplication, consider this
table, which gives the speed of an aircraft on each leg of a certain trip, and the time
spent on each leg.

Leg

1 2 3 4

Speed (mi /hr) 200 250 400 300
Time (hr) 2 5 3 4

palm-38591 pal29273˙appC February 3, 2009 11:1

8 APPENDIX C Introduction to MATLAB

We can define a row array s containing the speeds and a row array t containing
the times for each leg. Thus s = [200, 250, 400, 300] and t = [2, 5,
3, 4]. To find the miles traveled on each leg, we multiply the speed by the time. To
do this we use the multiplication s.*t to produce the row array whose elements are
the products of the corresponding elements in s and t. This process is illustrated as
follows.

s.*t = [200(2), 250(5), 400(3), 300(4)] = [400, 1250, 1200, 1200]

The resulting array contains the miles traveled by the aircraft on each leg of the trip.
To find only the total miles traveled, we can use matrix multiplication s*t', where

the ' denotes the transpose operation (note that the operator .* is not used here). The
transpose converts the row array t into a column array. This product gives the sum of
the individual element products; that is

s*t' = [200(2) + 250(5) + 400(3) + 300(4)] = 4050

The complete session to perform these calculations is

>>s = [200, 250, 400, 300];
>>t = [2, 5, 3, 4];
>>miles per leg = s.*t
miles per leg =

400 1250 1200 1200
>>total miles = s*t'
total miles =

4050

ARRAY DIVISION AND EXPONENTIATION

Array division, also called element-by-element division, is defined similarly to array
multiplication, except of course that the elements of one array are divided by the
elements of the other array. Both arrays must have the same size. The symbol for array
right division is ./. For example, if x = [8, 12, 15] and y = [-2, 6, 5]
then z = x./y gives z = [-4, 2, 3].

In MATLAB not only can we can raise arrays to powers, but we can also raise scalars
and arrays to array powers. To perform exponentiation on an element-by-element basis,
we must use the .^ symbol. For example, if x = [3, 5, 8], then typing x.^3
produces the array [33, 53, 83] = [27, 125, 512].

We can raise a scalar to an array power. For example, if p = [2, 4, 5], then
typing 3.^p produces the array [32, 34, 35] = [9, 81, 243]. This illustrates a common
situation where it helps to remember that .^ is a single symbol; the dot in 3.^p is
not a decimal point associated with the number 3. Thus 3.^p gives the same result as
3..^p or as (3).^p.

POLYNOMIAL ROOTS

We can describe a polynomial in MATLAB with an array whose elements are the poly-
nomial’s coefficients, starting with the coefficient of the highest power. For example,
the polynomial 4x3 − 8x2 + 7x − 5 would be represented by the array [4, -8, 7,
-5]. Polynomial roots can be found with the roots(a) function, where a is the poly-
nomial’s coefficient array. The result is a column array that contains the polynomial’s

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 9

roots. For example, to find the roots of x3 − 7x2 + 40x − 34 = 0, the session is

>>roots([1,-7,40,-34])
ans =

3.0000 + 5.000i
3.0000 - 5.000i
1.0000

The roots are x = 3 ± 5i and x = 1.
The poly(r) function computes the coefficients of the polynomial whose roots

are specified by the array r. The result is a row array that contains the polynomial’s
coefficients. To find the polynomial whose roots are 1 and 3 ± 5i , the session is

>>poly([1,3+5i,3-5i])
ans =

1.0000 -7.0000 40.0000 -34.0000

Thus, the polynomial is x3 − 7x2 + 40x − 34.

POLYNOMIAL ALGEBRA

You can do polynomial algebra with MATLAB. To add two polynomials, add the
arrays that describe their coefficients. If the polynomials are of different degrees, add
zeroes to the coefficient array of the lower-degree polynomial. For example, consider
f (x) = 9x3 − 5x2 + 3x + 7, whose coefficient array is f = [9, -5, 3, 7], and
g(x) = 6x2 − x + 2, whose coefficient array is g = [6, -1, 2]. The degree
of g(x) is one less that of f (x). Therefore, to add f (x) and g(x), we append one
0 to g to “fool” MATLAB into thinking g(x) is a third-degree polynomial. That is,
we type g = [0 g] to obtain [0, 6, -1, 2] for g. This represents g(x) =
0x3 + 6x2 − x + 2. To add the polynomials, type h = f + g. The result is h = [9,
1, 2, 9], which corresponds to h(x) = 9x3 + x2 + 2x + 9. Subtraction is done in
a similar way.

To multiply a polynomial by a scalar, simply multiply the coefficient array by that
scalar. For example, 5h(x) is obtained from 5*h, where h = [45, 5, 10, 45].

Multiplication of polynomials by hand can be tedious, and polynomial division
is even more so, but these operations are easily done with MATLAB. Use the conv
command to multiply polynomials (it stands for “convolve”), and use the deconv
command to perform synthetic division (deconv stands for “deconvolve”).

Consider the product

f (x)g(x) = (9x3 −5x2 +3x +7)(6x2 −x +2) = 54x5 −39x4 +41x3 +29x2 −x +14

Dividing f (x) by g(x) using synthetic division gives a quotient of

f (x)

g(x)
= 9x3 − 5x2 + 3x + 7

6x2 − x + 2
= 1.5x − 0.5833

with a remainder of −0.5833x + 8.1667. The MATLAB session to perform these
operations is

>>f = [9, -5, 3, 7]; g = [6, -1, 2];
>>product = conv(f,g)
product =

54 -39 41 29 -1 14

palm-38591 pal29273˙appC February 3, 2009 11:1

10 APPENDIX C Introduction to MATLAB

>>[quotient, remainder] = deconv(f,g)
quotient =

1.5 -0.5833
remainder =

0 0 -0.5833 8.1667

The conv and deconv commands do not require that the polynomials have the same
degree.

The polyval function is useful for plotting polynomials, and is discussed later.
Roots of functions other than polynomials can be obtained with the fzero function.
Type help fzero for more information.

PLOTTING WITH MATLAB

MATLAB contains many powerful functions and commands for easily creating plots
of several different types, such as rectilinear, logarithmic, surface, and contour plots,
for example. To plot the function y = sin 2x for 0 ≤ x ≤ 10, we choose an increment
of 0.01 to generate a large number of x values in order to produce a smooth curve. The
function plot(x,y) generates a plot with the x values on the horizontal axis (the
abscissa) and the y values on the vertical axis (the ordinate). The session is

>>x = [0:0.01:10]; y = sin(2*x);
>>plot(x,y),xlabel('x'),ylabel('sin(2x)')

The xlabel function places the text in single quotes as a label on the horizontal axis.
Theylabel function performs a similar function for the vertical axis. The plot appears
on the screen in a graphics window. If a hard copy of the plot is desired, the plot can
be printed by selecting Print from the File menu on the graphics window. The window
can be closed by selecting Close on the File menu in the graphics window. You will
then be returned to the prompt in the Command window.

Other useful plotting functions are title and gtext. These functions place text
on the plot. Both accept text within parentheses and single quotes, as with the xlabel
function. The title function places the text at the top of the plot; the gtext function
places the text at the point on the plot where the cursor is located when you click the
left mouse button.

Sometimes it is useful or necessary to obtain the coordinates of a point on a plotted
curve. The function ginput can be used for this purpose. Place it at the end of all
the plot and plot formatting statements, so that the plot will be in its final form. The
command [x,y] = ginput(n) gets n points and returns the x and y coordinates
in the vectors x and y, which have a length n. Position the cursor using a mouse, and
press the mouse button. The returned coordinates have the same scale as the coordinates
on the plot.

In cases where you are plotting data, as opposed to functions, you should use
data markers to plot each data point (unless there are very many data points). To
mark each point with a plus sign +, the required syntax for the plot function is
plot(x,y,'+'). You can connect the data points with lines if you wish. In that case,
you must plot the data twice, once with a data marker, and once without a marker. For
example, suppose the data for the independent variable is x = [15:2:23] and the
dependent variable values are y = [20, 50, 60, 90, 70]. To plot the y data
with plus signs connected by straight lines, type plot(x,y,'+',x,y). Other data
markers are available. Type help plot for information about other markers.

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 11

MULTIPLE PLOTS

You can create multiple plots—called overlay plots—by including another set or sets
of values in the plot function. For example, to plot the functions y = 2

√
x and

z = 4 sin 3x for 0 ≤ x ≤ 5 on the same plot, the session is

>>x = [0:0.01:5]; y = 2*sqrt(x); z = 4*sin(3*x);
>>plot(x,y,x,z),xlabel('x'),gtext('y'),gtext('z')

After the plot appears on the screen, the program waits for you to position the cursor
and click the mouse button, once for each gtext function used. Although MATLAB
displays different colors for each curve, if you are going to print the plot on a black-
and-white printer, you should label each curve so that you know which curve represents
y and which curve represents z. One way of doing this is to use the gtext function
to place the labels y and z next to the appropriate curves, as shown in the preceding
session. Another way is to use the legend function. The plotting functions xlabel,
ylabel, title, and gtext must be placed after the plot function and separated
by commas.

You can also distinguish curves from one another by using different line types
for each curve. For example, to plot the z curve using a dashed line, replace the
plot(x,y,x,z) function in the preceding session with plot(x,y,x,z,'--').
Other line types can be used. Type help plot for information about these line types.

You can use the subplot function to create multiple but separate plots in the
same figure window (and on the same printed page). The subplot function creates
a rectangular tiling having r rows and c columns of “panes,” each containing a plot.
The syntax is subplot(r,c,n), where n denotes the pane number currently being
plotted. For example, to plot y and z created in the previous session as two separate
plots, with the plot of y above the plot of z, the session is

>>subplot(2,1,1),plot(x,y),xlabel('x'),ylabel('y')
>>subplot(2,1,2),plot(x,z),xlabel('x'),ylabel('z')

PLOTTING POLYNOMIALS

The polyval(a,x) function evaluates a polynomial at specified values of its inde-
pendent variable x. The polynomial’s coefficient array is a. The result is the same size
as x. The polyval function is very useful for plotting polynomials. To do this you
should define an array that contains many values of the independent variable x in order
to obtain a smooth plot. For example, to plot the polynomial f (x) = 9x3 −5x2 +3x +7
for −2 ≤ x ≤ 5, the session is

>>a = [9,-5,3,7]; x = [-2:0.01:5];
>>f = polyval(a,x);
>>plot(x,f),xlabel('x'),ylabel('f(x)'),grid

The grid command puts grid lines on the plot.

THE PLOT EDITOR

The aforementioned plot formatting commands are useful when you want to generate
plots automatically with a program file. This is most convenient when you need to
make many plots of similar type. If you need a small number of plots, you can use the
Plot Editor to place text, lines, and arrows on the plot. Once the plot is displayed, click
on the northwest-facing arrow to start the Plot Editor mode. This mode enables you to

palm-38591 pal29273˙appC February 3, 2009 11:1

12 APPENDIX C Introduction to MATLAB

edit the plot elements by double-clicking on an element, such as an axis or a plotted
curve. To insert an axis label or to change the limits or scale, double-click on any axis,
then select the tab of the desired axis, enter its label, and change its scale and limits, if
desired.

Click on the Data Cursor button to use the mouse to extract coordinates from a plot-
ted curve. Click on the Show Plot Tools button to display the Figure Palette. This palette
enables you to add elements such as arrows, text, rectangles, and ellipses to the plot.

C.3 WORKING WITH FILES
MATLAB uses several types of files that enable you to save programs, data, and user-
defined functions. MATLAB program files and function files are saved with the exten-
sion ‘.m’, and thus are called M-files. Files are stored in directories, which are called
folders on some computer systems. Directories can have subdirectories below them.
The path tells us and MATLAB how to find a particular file.

THE SEARCH PATH

Suppose you have saved the program file problem6.m in the directory \homework
on a disk that you insert in drive a:. The path for this file is a:\homework. As
MATLAB is normally installed, when you type problem6 in the Command window,

1. MATLAB first checks to see if problem6 is a variable and if so, displays its
value.

2. If not, MATLAB then checks to see if problem6 is one of its own built-in
commands, and executes it if it is.

3. If not, MATLAB then looks in the current directory for a program file named
problem6.m and executes problem6 if it finds it.

4. If not, MATLAB then searches the directories in its search path, in order, for
problem6.m and then executes it if found.

You can display the MATLAB search path by typing path. If problem6.m is on
the disk only and if directory a:\homework is not in the search path, MATLAB will
not find the file and will generate an error message, unless you tell it where to look.
You can do this by typing cd a:\homework, which stands for “change directory
to a:\homework.” This will change the current directory to a:\homework and force
MATLAB to look in that directory to find your file. The general syntax of this command
is cd dirname, where dirname is the full path to the directory. The main directory
on the disk is a:, so if your file is in the main directory, be sure to include the colon,
and type cd a:.

You can determine the current directory (the one where MATLAB looks for your
file) by typing pwd. To see a list of all the files in the current directory, type dir. To see
the files in the directorydirname, typedir dirname. Thewhat command displays
a list of the MATLAB-specific files in the current directory. The what dirname
command does the same for the directory dirname.

SCRIPT FILES AND THE EDITOR/DEBUGGER

In addition to using the interactive mode, in which all commands are entered directly
in the Command window, you can also perform operations by running a MATLAB

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 13

program stored in script file. This type of file has MATLAB commands in it, so that
when you run such a file it is equivalent to typing all the commands—one at a time—at
the Command window prompt. You can run the file by typing its name at the Command
window prompt. When the problem requires many commands, or has arrays with many
elements, or you need to repeat a set of commands several times, it is more convenient
to use a script file. If you need to access the same set of data frequently, you can store
the data in an array within a script file.

You write and save MATLAB programs in M-files, which have the extension ‘.m’;
for example, program1.m. You execute a script file at the Command window prompt
by typing its name without the extension ‘.m’. Another type of M-file is a function file,
which is useful when you need to repeat the operation of a set of commands. You can
create your own function files; at the end of this section we discuss how to do this.

The symbol % designates a comment, which is not executed by MATLAB. Com-
ments are put in script files for the purpose of documenting the file. The comment
symbol may be put anywhere in the line. MATLAB ignores everything to the right of
the % symbol. A very simple example of a script file is shown next. It computes the sine
of the square root of several numbers and displays the results on the screen.

% Program example1.m
% This program computes the sine of the square root,
% and displays the result.
x = sqrt([3:2:11]);
y = sin(x)

To create this new M-file in the MS Windows environment, in the Command
window select New from the File menu, then select M-file. You will then see a new
edit window. This is the Editor/Debugger window. Type in the file as just shown. You
can use the keyboard and the Edit menu in the Editor/Debugger as you would in most
word processors to create and edit the file. When finished, select Save from the File
menu in the Editor/Debugger. In the dialog box that appears, replace the default name
provided (usually named Untitled) with the name example1, and click on Save.
The Editor/Debugger will automatically provide the extension ‘.m’ and save the file
in the MATLAB current directory, which for now we will assume to be on the hard
drive.

Once the file has been saved, in the MATLAB Command window type the script
file’s name example1 to execute the program. You should see displayed in the Com-
mand window the computed values of the array y = 0.9870 0.7867 0.4758
0.1411 -0.1741.

Keep in mind the following when using script files:

1. The name of a script file must follow the MATLAB convention for naming
variables; that is, the name must begin with a letter, and may include digits and
the underscore character, up to 31 characters.

2. Recall that typing a variable’s name at the Command window prompt causes
MATLAB to display the value of that variable. Thus, do not give a script file the
same name as a variable it computes, because MATLAB will not be able to
execute that script file more than once, unless you clear the variable.

3. Do not give a script file the same name as a MATLAB command or function.
You can check to see if a command, function, or file name already exists by
using the exist command.

palm-38591 pal29273˙appC February 3, 2009 11:1

14 APPENDIX C Introduction to MATLAB

4. You can use the type command to view an M-file without opening it with a text
editor. For example, to view the file example1, the command is type
example1.

INPUT AND OUTPUT FOR SCRIPT FILES

You can use thedisp function to display the value of a variable from within a script file.
For example, type disp(x) to display the value of x. You can also display messages
with the disp function. Type disp('text') to display the message enclosed within
single quotes. The input function displays a prompt and assigns an entered value to a
variable. The syntax is x = input('Enter a value for x:'). The function
displays the message within the single quotes and assigns the value typed at the keyboard
to the variable x. Of course, any variable name and any text message can be used.

DEBUGGING PROGRAMS

Debugging a program is the process of finding and removing the “bugs,” or errors, in a
program. Such errors usually fall into one of two categories: (1) Syntax errors such as
omitting a parenthesis or comma, or spelling a command name incorrectly. MATLAB
usually detects the more obvious errors and displays a message describing the error and
its location. (2) Errors due to an incorrect mathematical procedure. These are called
runtime errors. They do not necessarily occur every time the program is executed; their
occurrence often depends on the particular input data. A common example is division
by zero.

The MATLAB error messages usually enable you to find syntax errors. However,
runtime errors are more difficult to locate. To locate such an error, try the following:
(1) Test your program with a simple version of the problem, whose answers can be
checked by hand calculations. (2) Display any intermediate calculations by removing
semicolons at the end of statements. (3) Use the debugging features of the Editor/
Debugger. However, one of advantages of MATLAB is that it requires relatively simple
programs to accomplish many types of tasks. Thus, you probably will not need to use
the Debugger for most of the problems encountered in this text.

USER-DEFINED FUNCTIONS

Another type of M-file is a function file. Unlike a script file, all the variables in a function
file are local, which means their values are available only within the function. Function
files are useful when you need to repeat a set of commands several times. The first line
in a function file must begin with a function definition line that has a list of inputs and
outputs. This line distinguishes a function M-file from a script M-file. Its syntax is as
follows:

function [output variables]=function name(input variables)

Note that the output variables are enclosed in square brackets while the input variables
must be enclosed with parentheses. The function name must be the same as the
filename in which it is saved (with the .m extension). That is, if we name a function
drop, it must be saved in the file drop.m. The function is “called” by typing its name
(e.g., drop) at the command line. The word function in the function definition line
must be lower case.

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 15

The following examples show permissible variations in the format of the function
line. The differences depend on whether there is no output, a single output, or multiple
outputs.

Function definition line File name

1. function [area square] = square(side); square.m
2. function area square = square(side); square.m
3. function [volume box] = box(height,width,length); box.m
4. function [area circle,circumf] = circle(radius); circle.m
5. function sqplot(side); sqplot.m

Example 1 is a function with one input and one output. The square brackets are
optional when there is only one output (see Example 2). Example 3 has one output
and three inputs. Example 4 has two outputs and one input. Example 5 has no output
variable (an example of this would be a function that generates a plot). In such cases,
the equals sign should be omitted.

Comment lines starting with the % sign may be put anywhere. However, it is
important to note that all comment lines immediately following the function definition
line are displayed by MATLAB ifhelp is used to obtain information about the function.
The first comment line can be accessed by the lookfor command, which is discussed
in Section C.5.

Both built-in and user-defined functions can be called either with the output vari-
ables explicitly specified, as with the previous Examples 1 through 4, or without
any output variables specified. For example, we can call the function square as
follows: square(side) if we are not interested in accessing its output variable
area square (the function might perform some other operation that we want to oc-
cur, such as displaying a result). Note that if the semicolon is omitted at the end of the
function call statement, the first variable in the output variable list will be displayed
using the default variable name ans.

For example, the following function, called drop, computes a falling object’s
velocity and distance dropped. The input variables are the acceleration g, the initial
velocity v0, and the elapsed time t . Note that we must use the element-by-element
operations for any operations involving function inputs that are arrays. Here we antic-
ipate that t will be an array, so we use the element-by-element operator (.^).

function [dist,vel] = drop(g,vO,t);
% Computes velocity and distance of a dropped object.
% The distance and velocity are computed as functions
% of g, the initial velocity vO, and the time t.
vel = g*t + vO;
dist = 0.5*g*t.^2 + vO*t;

The following examples show various ways the function drop can be called.

1. The variable names used in the function definition may, but need not, be used
when the function is called. For example, consider the session:

>>a = 32.2;
>>initial speed = 10;
>>time = 5;
>>[feet dropped,speed] = drop(a,initial speed,time)

palm-38591 pal29273˙appC February 3, 2009 11:1

16 APPENDIX C Introduction to MATLAB

2. The input variables need not be assigned values outside the function prior to the
function call. For example,

>>[feet dropped,speed] = drop(32.2,10,5)

3. The inputs and outputs may be arrays. For example,

>>[feet dropped,speed] = drop(32.2,10,[0:1:5])

produces the arrays feet dropped and speed each with six values, corresponding
to the six values of time in the array time.

Some of the MATLAB commands act on functions, so if the function of interest
is not a simple function, you must define the function in an M-file to use one of
these commands. For example, we can use the fzero function to find the zero of
a function of a single variable, which we denote by x. One form of its syntax is
fzero('function', x0), where function is a string containing the name of
the function. The fzero function returns a value of x that is near x0. It identifies only
points where the function crosses the x axis, not points where the function just touches
the axis. If y = x + 2e−x − 3, define the following function file:

function y = f1(x)
y = x + 2*exp(-x) - 3;

To find the zero near x = 3, type x = fzero('f1',3). The returned answer is
x = 2.8887.

The fminbnd function can be used to find the minimum of a function of a single
variable, which we denote by x. One form of its syntax is fminbnd('function',
x1, x2), where function is a string containing the name of the function. The
fminbnd function returns a value of x that minimizes the function in the interval
x1 ≤ x ≤ x2. For example, if y = 1 − xe−x , define the following function file:

function y = f2(x)
y = 1-x.*exp(-x);

To find the value of x that gives a minimum for 0 ≤ x ≤ 5, typex=fmin('f2',0,5).
The returned answer is x = 1. To find the minimum value of y, type y = f2(x). The
result is y = 0.6321.

C.4 LOGICAL OPERATORS AND LOOPS
MATLAB has relational operators, logical operators, and conditional statements that
enable you to write decision-making programs whose operations depend on the results
of calculations made by the program. MATLAB also has two types of loop structures for
performing calculations repeatedly a specified number of times or until some condition
is satisfied.

RELATIONAL OPERATORS

MATLAB has six relational operators to make comparisons between arrays. These
operators are shown in Table C.4.1. Note that the “equal to” operator consists of two
= signs, not a single = sign as you might expect. The single = sign is the assignment
operator in MATLAB. The result of a comparison using the relational operators is either
a 0 (if the comparison is false), or a 1 (if the comparison is true), and the result can be
used as a variable.

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 17

Table C.4.1 Relational operators.

Relational operator Meaning

< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
~= not equal to

Table C.4.2 Logical operators.

Operator Name Definition

~ NOT ~A returns an array the same dimension as A, which has 1’s where A
is 0, and 0’s where A is nonzero.

& AND A & B returns an array the same dimension as A and B, which has 1’s
where both A and B have nonzero elements, and 0’s where either A
or B is zero.

| OR A|B returns an array the same dimension as A and B, which has 1’s
where at least one element in A or B is nonzero, and 0’s where A and
B are both zero.

For example, ifx = 2 andy = 5, typingz = x < y returns the valuez = 1,
because x is less than y. Typing u = x==y returns the value u = 0 because x does
not equal y. To make the statements more readable, we can group the operations using
parentheses. For example, z = (x < y) and u = (x==y). Note, however, that
the variables z and u are logical variables, as opposed to numeric variables. A logical
variable may take on only the logical values, true or false. These values are represented
by 1 and 0, but they should not be used for numerical calculations. For example, typing
b = sin(z) generates an error message. This distinction is discussed in more detail
in the subsection “Logical Arrays.”

When used to compare arrays, the relational operators compare the arrays on an
element-by-element basis. The arrays being compared must have the same size. The
only exception occurs when we compare an array to a scalar. In that case, all the
elements of the array are compared to the scalar. For example, suppose that x =
[6, 3, 9] and y = [14, 2, 9]. Then typing z = (x < y) gives the result
z = [1, 0, 0]. Typing z = (x == y) gives the result z = [0, 0, 1].
Typing z = (x > 8) gives z = [0, 0, 1].

The relational operators can be used for array addressing. For example, with x =
[6, 3, 9, 11] and y = [14, 2, 9, 13], typing z = x(x < y) finds all
the elements in x that are less than the corresponding elements in y. The result is the
array z = [6, 11].

LOGICAL OPERATORS

MATLAB has three logical operators, which are sometimes called Boolean operators
(see Table C.4.2). These operators perform element-by-element operations. With the
exception of the NOT operator (~), they have a lower precedence than the arithmetic
and relational operators (see Table C.4.3). The NOT symbol is called the tilde.

The NOT operation ~A returns an array of the same dimension as A, having 1’s
where A is 0, and 0’s where A is nonzero. For example, if x = [6, 3, 9] and y =
[14, 2, 9], then the statement z = ~x returns the array z = [0, 0, 0], and

palm-38591 pal29273˙appC February 3, 2009 11:1

18 APPENDIX C Introduction to MATLAB

Table C.4.3 Order of precedence for operator types.

Precedence Operator type

First Parentheses, evaluated starting with the innermost pair.
Second Arithmetic operators and NOT (~), evaluated from left to right.
Third Relational operators, evaluated from left to right.
Fourth Logical AND.
Fifth Logical OR.

the statement z = ~x > y returns the result z = [0, 0, 0]. The later statement
is equivalent to z = (~x) > y, whereas z = ~(x > y) gives the result z =
[1, 0, 1]. This is equivalent to z = (x <= y).

The & and | operators compare two arrays of the same dimension. The only
exception, as with the relational operators, is that an array can be compared to a scalar.
The AND operator & returns 1’s where both A and B have nonzero elements, and
0’s where any element of A or B is zero. The expression z = 0&3 returns z = 0,
z = 2&3 returns z = 1, z = 0&0 returns z = 0, and z = [5, -3, 0, 0]&
[2, 4, 0, 5] returnsz = [1, 1, 0, 0]. Because of operator precedence,z =
1&2 + 3 is equivalent to z = 1&(2 + 3), which returns z = 1. Similarly, z =
5 < 6&1 is equivalent to z = (5 < 6)&1, which returns z = 1.

Let x = [6, 3, 9] and y = [14, 2, 9], and let a = [4, 3, 12].
The expression

(x > y) & a

gives z = [0, 1, 0], and the expression

z = (x > y) & (x > a)

returns the result z = [0, 0, 0].
Be careful when using the logical operators with inequalities. For example, note

that ~(x > y) is equivalent to y >= x. It is not equivalent to y > x. As another
example, the relation 5 < x < 10 must be written as

(5 < x) & (x < 10)

in MATLAB.
The OR operator | returns 1’s where at least one of A and B has nonzero ele-

ments, and 0’s where both A and B are zero. The expression z = 0|3 returns z =
1, the expression z = 0|0 returns z = 0, and the expression

z = [5, -3, 0, 0]|[2, 4, 0, 5]

returns z = [1, 1, 0, 1]. Because of operator precedence, the expression z =
3 < 5|4 == 7 is equivalent to z = (3 < 5)|(4 == 7), which returns
z = 1. Similarly, the expression z = 1|0 & 1 is equivalent to z = (1|0)&1,
which returns z = 1, while the expression z = 1|0 & 0 returns z = 0, and the
expression z = 0 & 0|1 returns z = 1.

Because of the precedence of the NOT operator the statement z = ~3 == 7|4
== 6 returns the result z = 0, which is equivalent to z = ((~3)==7)|(4==6).

Table C.4.4 is a so-called truth table that defines the operations of the logical
operators, where “true” is equivalent to 1, and “false” is equivalent to 0. Let x and y

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 19

Table C.4.4 Truth table for logical operators.

x y ~x x|y x&y

true true false true true
true false false true false
false true true true false
false false true false false

represent the first two columns of the truth table in terms of 1’s and 0’s. The following
MATLAB session generates the truth table in terms of 1’s and 0’s.

>> x = [1, 1, 0, 0]′; y = [1, 0, 1, 0]′;
>> Truth Table = [x,y,~x,x|y,x&y]
Truth Table =

1 1 0 1 1
1 0 0 1 0
0 1 1 1 0
0 0 1 0 0

THE find FUNCTION

The find function is very useful for creating decision-making programs, especially
when combined with the relational and logical operators. The function find(x) com-
putes an array containing the indices of the nonzero elements of the arrayx. For example,
consider the session

>>x = [-2, 0, 4]; y = find(x)
y =

1 3

The resulting array y = [1, 3] indicates that the first and third elements of x are
nonzero. Note that the find function returns the indices, and not the values. In the
following session, note the difference between the result obtained by x(x<y) and the
result obtained by find(x < y).

>>x = [6, 3, 9, 11];y = [14, 2, 9, 13];
>>values = x(x < y)
values =

6 11
>>indices = find(x < y)
indices =

1 4

Thus, there are two values in the array x that are less than the corresponding values in
the array y. They are the first and fourth values, which are 6 and 11.

The logical operators can be used with the find function. For example, consider
the session

>>x = [5, -3, 0, 0, 8]; y = [2, 4, 0, 5, 7];
>>z = find(x & y)
z =

1 2 5
>>values = y(x & y)
values =

2 4 7

palm-38591 pal29273˙appC February 3, 2009 11:1

20 APPENDIX C Introduction to MATLAB

The array obtained with the find function, z = [1, 2, 5], indicates that the
first, second, and fifth elements of x and y are both nonzero. The array values =
[2, 4, 7], which is obtained from y(x & y), shows that there are three nonzero
values in y that correspond to nonzero values in x. These are 2, 4, and 7, the first,
second, and fifth values.

LOGICAL ARRAYS

Logical variables can have only the values 1 (true) and 0 (false), and a logical array
contains logical values. However, just because an array contains only 0’s and 1’s, it is
not necessarily a logical array. For example, in the following session k and w appear
the same, but k is a logical array and w is a numeric array, and thus an error message
is issued.

>> x = [-2:2]
x =

-2 -1 0 1 2
>> k = (abs(x)>1)
k =

1 0 0 0 1
>> z = x(k)
z =

-2 2
>> w = [1,0,0,0,1];
>> v = x(w)
??? Subscript indices must either be real positive...

integers or logicals.

Logical arrays can be created with the relational and logical operators and with
the logical function. The logical function returns an array that can be used for
logical indexing and logical tests. Typing B = logical(A), where A is a numeric
array, returns the logical array B. So to correct the error in the previous session, you
can type instead w = logical([1,0,0,0,1]).

You can use thedouble function to convert a logical array to an array of numerical
0’s and 1’s of class double. For example, x = (5>3); y = double(x);. In
addition, most arithmetic operations convert a logical array to a double array.

ACCESSING ARRAYS

Typing A(B), where B is a logical array of the same size as A, returns the values of A
at the indices where B is nonzero. Given A = [5,6,7;8,9,10;11,12,13] and
B = logical(eye(3)), we can extract the diagonal elements of A by typing C =
A(B) to obtain C = [5;9;13]. Specifying array subscripts with logical arrays
extracts the elements that correspond to the true (1) elements in the logical array.

Note, however, that using the numeric arrayeye(3), asC = A(eye(3)) results
in an error message because the elements of eye(3) do not correspond to locations
in A. If the numeric array values correspond to valid locations, you may use a numeric
array to extract the elements. For example, to extract the diagonal elements of A with
a numeric array, type C = A([1,5,9]).

CONDITIONAL STATEMENTS

The MATLAB conditional statements enable us to write programs that make decisions.
Conditional statements contain one or more of the if, else, and elseif statements.

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 21

The end statement is used to denote the end of a conditional statement. These condi-
tional statements read somewhat like their English language equivalents. For example,
suppose that x is a scalar, and that we want to compute y = √

x only if x ≥ 0. In
English, we could specify this as: “If x is greater than or equal to zero, compute y from
y = √

x , otherwise, do nothing.” The if statement in the next script file accomplishes
this in MATLAB, assuming that the variable x already has a scalar value.

if x >= 0
y = sqrt(x)

end

If x is negative, the program takes no action.
When more than one action must occur as a result of a decision, we can use

the else and elseif statements. The statements after the else are executed if
all the preceding if and elseif expressions are false. The general form of the if
statement is

if logical expression
statement group 1

elseif logical expression
statement group 2

else
statement group 3

end

There can be more than oneelseif statement. Theelse andelseif statements can
be omitted if not required. However, if both are used, the else statement must come
after the elseif statements to take care of all conditions that might be unaccounted
for.

Suppose that we want to compute y from y = √
x for x ≥ 0, and y = −√−x for

x < 0. The next script file will calculate y, assuming that the variable x already has a
scalar value.

if x >= 0
y = sqrt(x)

else
y = -sqrt(-x)

end

As another example, suppose that we want to compute y such that y = 0 if x < 0,
y = 10x if 0 ≤ x < 25, and y = 50

√
x if x ≥ 25. The next script file will compute y,

assuming that the variable x already has a scalar value.

if x >= 25
y = 50*sqrt(x)

elseif x >= 0
y = 10*x

else
y = 0

end

Note that the elseif statement does not require a separate end statement.
When the test, if logical expression, is performed, where the logical expression

may be an array, the test returns a value of true only if all the elements of the logical

palm-38591 pal29273˙appC February 3, 2009 11:1

22 APPENDIX C Introduction to MATLAB

expression are true! For example, if we fail to grasp this, the following statements do
not perform the way we might expect.

x = [4, -9, 25];
if x < 0

disp('Some of the elements of x are negative.')
else

y = sqrt(x)
end

When this program is run it gives the resulty = 2, 0 + 3.000i, 5. The program
does not compute the square root of each element in x in sequence. Instead it tests
the truth of the relation x < 0. The test if x < 0 returns a false value because
it generates the vector [0, 1, 0]. Compare the last program with the following
statements:

x=[4, -9, 25];
if x >= 0

y = sqrt(x)
else

disp('Some of the elements of x are negative.')
end

When executed, it produces the result: Some of the elements of x are
negative.The difference is due to the different conditional statements used. Here the
test, if x < 0, is true, whereas the test, if x >= 0, returns a false value because
x >= 0 returns the vector [1, 0, 1].

Conditional structures can be nested; that is, one structure can contain another
structure.

THE for LOOP

A loop is a structure for repeating a calculation a number of times. Each repetition of the
loop is a pass. There are two types of explicit loops in MATLAB: the for loop, which
is used when the number of passes is known or can be computed ahead of time, and the
while loop, which is used when the looping process must terminate when a specified
condition is satisfied, and thus the number of passes is not known or computable in
advance.

A simple example of a for loop is

m = 0;
x(1) = 10;
for k = 2:3:11

m = m+1;
x(m+1) = x(m) + k^2;

end

The loop variable k is initially assigned the value 2. During each successive pass
through the loop k is incremented by 3, and x is calculated until k exceeds 11. Thus, k
takes on the values 2, 5, 8, and 11. The variable m indicates the index of the array x. The
program then continues to execute any statements following the end statement. When
the loop is finished the array xwill have the values x(1)=14, x(2)=39, x(3)=103,
x(4)=224. The name of the loop variable need not be k.

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 23

Note the following rules when using for loops with the loop variable expression
k = m:s:n:

1. The step value s can be negative. For example, k = 10:-2:4 produces k = 10,
8, 6, 4.

2. If s is omitted, the step value defaults to 1.
3. If s is positive, the loop will not be executed if m is greater than n.
4. If s is negative, the loop will not be executed if m is less than n.
5. If m equals n, the loop will be executed only once.
6. If the step value s is not an integer, roundoff errors can cause the loop to execute

a different number of passes than intended.

You should not alter the value of the loop variable k within the statements. Doing so
can cause unpredictable results.

THE while LOOP

Thewhile loop is used in cases where the looping process must terminate when a spec-
ified condition is satisfied, and thus the number of passes is not known or computable
in advance. The basic structure of a while loop is the following.

while logical expression
statement group

end

MATLAB first tests the truth of the logical expression, which must contain a loop
variable. If the logical expression is true, the statements in the statement group will be
executed. For the while loop to function properly, the following two conditions are
required:

1. The loop variable must have a value before the while statement is executed.
2. The loop variable must be changed somehow by the statements in the statement

group.

The statements in the statement group are executed once during each pass, using the
current value of the loop variable. The looping continues until the logical expression is
false.

A simple example of a while loop is

x = 5; k = 0;
while x < 25

k = k + 1;
y(k) = 3*x;
x = 2*x - 1;

end

The loop variable x is initially assigned the value 5, and it has this value until the
statement x = 2*x - 1 is encountered the first time. Its value then changes to 9.
Before each pass through the loop, x is checked to see if its value is less than 25. If so,
the pass is made. If not, the loop is skipped and the program continues to execute any
statements following the end statement. The variable x takes on the values 9, 17, and
33 within the loop. The resulting array y contains the values y(1) = 15, y(2) =
27, and y(3) = 51.

palm-38591 pal29273˙appC February 3, 2009 11:1

24 APPENDIX C Introduction to MATLAB

Every for and while statement must be matched by an accompanying end
statement. As with conditional statements, loops can be nested.

C.5 THE MATLAB HELP SYSTEM
Two principal ways to obtain more information about MATLAB commands and features
are to use the help commands in the Command window and to access the Help Browser.
The help commands can be used to display syntax information for a specified topic in
the Command window. The Help Browser is a graphical user interface for searching
and viewing documentation. For additional help, you can run demos, contact technical
support, search documentation for other MathWorks products, view a list of other books,
and participate in a newsgroup.

HELP COMMANDS

Four MATLAB commands are useful for obtaining online information about MATLAB
topics.

■ Typing help topic displays in the Command window a description of the
specified topic.

■ Typing helpwin topic displays the help text for the specified topic inside
the Help Browser window.

■ Typing lookfor topic displays in the Command window a brief description
for all items whose description includes the specified keyword topic.

■ Typing doc topic opens the Help Browser to the reference page for the
specified topic, providing a description, additional remarks, and examples.

The help command is the basic way to determine the syntax of a particular
command, function, or statement. For example, typing help log10 produces the
following display:

LOG10 Common (base 10) logarithm.
LOG10(X) is the base 10 logarithm of the elements of X.
Complex results are produced if X is not positive.

See also LOG, LOG2, EXP, LOGM.

Note that the display describes what the function does, warns about any unexpected
results if nonstandard argument values are used, and directs the user to other related
functions.

All the MATLAB functions are organized into groups, and the MATLAB directory
structure is based on this grouping. For instance, all elementary mathematical functions
such as log10 reside in the elfun directory, and the polynomial functions reside in
the polyfun directory. To list the names of all the functions in that directory, with a
brief description of each, type help polyfun. If you are unsure of what directory to
search, type help to obtain a list all the directories, with a description of the function
category each represents.

Typing helpwin topic displays the help text for the specified topic inside
the Help Browser window. Links are created to functions referenced in the “See also”
line of the help text. You can also access the Help Window by selecting the Help option
under the Help menu, or by clicking the question mark button on the toolbar.

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 25

The lookfor command enables you to search for topics based on a keyword. It
searches through the first line of help text, which is known as the H1 line, for each
MATLAB function, and returns all the H1 lines containing a specified keyword. For
example, MATLAB does not have a function named sine. So the response from help
sine is sine.m not found. However, typing lookfor sine produces over a
dozen matches, depending on which toolboxes you have installed. For example, some
of the matches you will see are

ACOS Inverse cosine.
ACOSH Inverse hyperbolic cosine.
ASIN Inverse sine.
ASINH Inverse hyperbolic sine.
COS Cosine.
COSH Hyperbolic cosine.
SIN Sine.
SINH Hyperbolic sine.

From this list you can find the correct name for the sine function. Note that all words
containing sine are returned, such as cosine. Adding -all to the lookfor command
searches the entire help entry, not just the H1 line.

Typing doc topic displays the documentation for the topic in the Help Browser.
For example, typingdoc step displays information about the functionstep. Typing
doc toolbox displays the documentation road map page for the specified toolbox.
For example, typing doc control displays information about the Control Systems
toolbox.

THE HELP BROWSER

To open the Help Browser, select Matlab Help from the Help menu on the Desktop, or
click the question mark button in the toolbar. The Help Browser contains two window
“panes”: the Help Navigator pane and the Display pane. The Help Navigator contains
four tabs:

■ Contents: a contents listing tab,
■ Index: a global index tab,
■ Search: a search tab having a find function and full text search features, and
■ Demos: a tab for running built-in demonstrations of various MATLAB features.

Use the tabs in the Help Navigator to find documentation, which can then be viewed in
the Display pane.

While viewing a page of documentation, you can scroll to see contents not currently
visible in the window and navigate page by page forward or backward by clicking on
the appropriate arrows.

Click the Contents tab in the Help Navigator to list the titles and table of contents for
all product documentation. Click on an item to select it. The first page of that document
appears in the display pane. The Contents pane is synchronized with the Display pane
so that the item selected in the Contents pane always matches the documentation
appearing in the Display pane.

Click the Index tab in the Help Navigator pane to find specific index entries (key-
words) from all of your MathWorks documentation. Type a word or words in the “Search
index for” box. As you type, the index displays matching entries. Click on an entry to
display the corresponding documentation page.

palm-38591 pal29273˙appC February 3, 2009 11:1

26 APPENDIX C Introduction to MATLAB

Click the Search tab in the Help Navigator pane to find all MATLAB documents
containing a specified phrase. Type the phrase in the “Search for” box. Then click the
Go button. The list of documents and the heading under which the phrase is found in
that document then appear in the Help Navigator pane. Select an entry from the list of
results to view that document in the Display pane.

MATHWORKS WEBSITE

The MathWorks maintains a very useful website that you can use to ask questions, make
suggestions, and report possible bugs. You can also search for solutions by querying
an up-to-date database of technical support information. You can access the website by
clicking on Web Resources under the Help menu in the Desktop.

REFERENCES
[Palm, 2005] W. J. Palm III Introduction to MATLAB 7 for Engineers, McGraw-Hill,

New York, 2005.
[Palm, 2008] W. J. Palm III A Concise Introduction to MATLAB, McGraw-Hill, New York,

2008.

PROBLEMS
C.1 Assuming that the variables a, b, c, d, and f are scalars, write MATLAB

statements to compute and display the following expressions. Test your
statements for the values a = 1.12, b = 2.34, c = 0.72, d = 0.81, and
f = 19.83.

x = 1 + a

b
+ c

f 2
s = b − a

d − c

r = 1

1/a + 1/b + 1/c + 1/d
y = ab

1

c

f 2

2

C.2 Suppose that x = −7 − 5 j and y = 4 + 3 j . Use MATLAB to compute
a. x + y b. xy c. x/y d. 3

2 j e. 3
2 j

C.3 Suppose x takes on the values x = 1, 1.2, 1.4, . . . , 5. Use MATLAB to
compute the array y that results from the function y = 7 sin(4x). Use
MATLAB to determine how many elements are in the array y, and the value
of the third element in the array y.

C.4 The following table shows the hourly wages, hours worked, and output
(number of widgets produced) in 1 week for five widget makers.

Worker

1 2 3 4 5

Hourly wage ($) 5 5.50 6.50 6 6.25
Hours worked 40 43 37 50 45
Output (widgets) 1000 1100 1000 1200 1100

Use MATLAB to answer these questions:
a. How much did each worker earn in the week?
b. What is the total salary amount paid out?
c. How many widgets were made?

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 27

d. What is the average cost to produce one widget?
e. How many hours does it take to produce one widget, on average?
f. Assuming that the output of each worker has the same quality, which

worker is the most efficient? Which is the least efficient?
C.5 Write a MATLAB assignment statement for each of the following functions,

assuming that w , x , y, and z are vector quantities of equal length, and that c
and d are scalars.

f = 1√
(2πc)/x

E = x + w/(y + z)

x + w/(y − z)

A = e−c/(2x)

(ln y)
√

dz
S = x(2.15 + 0.35y)1.8

z(1 − x)y

C.6 The following tables show the costs associated with a certain product, and the
production volume for the four quarters of the business year. Use MATLAB to
find (a) the quarterly costs for materials, labor, and transportation; (b) the total
material, labor, and transportation costs for the year; and (c) the total quarterly
costs.

Unit product costs
(

$ × 103
)

Product Materials Labor Transportation

1 7 3 2
2 3 1 3
3 9 4 5
4 2 5 4
5 6 2 1

Quarterly production volume

Product First quarter Second quarter Third quarter Fourth quarter

1 16 14 10 12
2 12 15 11 13
3 8 9 7 11
4 14 13 15 17
5 13 16 12 18

C.7 Use MATLAB to find the roots of 13s3 + 182s2 − 184s + 2503 = 0, and use
poly to confirm your answer.

C.8 Use MATLAB to find the roots of the polynomial 36s3 + 12s2 − 5s + 10. Use
the polyval function to verify the solution.

C.9 Use MATLAB to find the polynomial whose roots are 3 ± 6 j , 8, 8, and 20.
Use MATLAB to confirm your answer.

C.10 Use MATLAB to find the following product:(
10s3 − 9s2 − 6s + 12

)(
5s3 − 4s2 − 12s + 8

)
C.11 Use MATLAB to find the quotient and remainder of

14s3 − 6s2 + 3s + 9

5s2 + 7s − 4

palm-38591 pal29273˙appC February 3, 2009 11:1

28 APPENDIX C Introduction to MATLAB

C.12 Use MATLAB to plot the functions u = 2 log10 (60x + 1) and v = 3 cos(6x)

over the interval 0 ≤ x ≤ 2. Properly label the plot and each curve. The
variables u and v represent speed in miles per hour; the variable x represents
distance in miles.

C.13 Use MATLAB to plot the polynomials y = 3x4 − 6x3 + 8x2 + 4x + 90 and
z = 3x3 + 5x2 − 8x + 70 over the interval −3 ≤ x ≤ 3. Properly label the
plot and each curve. The variables y and z represent current in milliamps; the
variable x represents voltage in volts.

C.14 Write a script file using conditional statements to evaluate the following
function, assuming that the scalar variable x has a value. The function is
y = ex+1 for x < −1, y = 2 + cos(πx) for −1 ≤ x < 5, and
y = 10(x − 5) + 1 for x ≥ 5. Use your file to evaluate y for x = −5, x = 3,
and x = 15, and check the results by hand.

C.15 Suppose that x = [-15,-8,9,8,5] and y = [-20,12,-4,8,9].
What is the result of the following operations? Determine the answers by
hand, and then use MATLAB to check your answers.
a. z = (x < y)

b. z = (x > y)

c. z = (x ~= y)

d. z = (x == y)

e. z = (y > -4)

C.16 The given arrays price A, price B and price C contain the price in
dollars of three stocks over ten days.
a. Use MATLAB to determine how many days the price of stock A was

above both the price of stock B and the price of stock C.
b. Use MATLAB to determine how many days the price of stock A was

above either the price of stock B or the price of stock C.
c. Use MATLAB to determine how many days the price of stock A was

above either the price of stock B or the price of stock C, but not both.

price A = [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]
price B = [22, 17, 20, 19, 24, 18, 16, 25, 28, 27]
price C = [17, 13, 22, 23, 19, 17, 20, 21, 24, 28]

C.17 The price, in dollars, of a certain stock over a ten day period is given in the
following array.

price = [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]

Suppose you owned 1000 shares at the start of the ten day period, and you
bought 100 shares every day the price was below $20, and sold 100 shares
every day the price was above $25. Use MATLAB to compute (a) the amount
you spent in buying shares, (b) the amount you received from the sale of
shares, (c) the total number of shares you own after the tenth day, and (d) the
net increase in the worth of your portfolio of stock.

C.18 Use a for loop to determine the sum of the first 10 terms in the series 5k3,
k = 1, 2, 3, . . . , 10.

C.19 Use a while loop to determine how many terms in the series 2k ,
k = 1, 2, 3, . . . , are required for the sum of the terms to exceed 2000. What is
the sum for this number of terms?

palm-38591 pal29273˙appC February 3, 2009 11:1

APPENDIX C Introduction to MATLAB 29

C.20 One bank pays 5.5% annual interest, while a second bank pays 4.5% annual
interest. Determine how much longer it will take to accumulate at least
$50,000 in the second bank account if you deposit $1000 initially, and $1000
at the end of each year.

C.21 Given a number x and the quadrant q (q = 1, 2, 3, 4), write a program to
compute sin−1(x) in degrees, taking into account the quadrant. The program
should display an error message if |x | > 1.

C.22 The function y = 1 + e−0.2x sin(x + 2) has two minimum points in the
interval 0 < x < 10. Create a user-defined function and use the fminbnd
function to find the values of x and y at each minimum.

C.23 An object thrown vertically with a speed v0 will reach a height h at time t ,
where

h = v0t − 1

2
gt2

Write and test a function that computes the time t required to reach a specified
height h, for a given value of v0. The function’s inputs should be h, v0, and g.
Test your function for the case where h = 100 m, v0 = 50 m/s, and g =
9.81 m/s2. Interpret both answers.

