
## PID Controller implementation in Simulink



## Where:

 $\tau_D$  = Derivative constant

 $\tau_I$  = Integral constant

 $K_c$  = Proportional Gain

N = Filter Coff.

## **Explanation:**

On taking the filter coefficient "N value" to be higher, the term  $\frac{Ns}{s+N}$ , will become s, which is an ideal derivative term. The drawback of derivative action is ideal derivative has very high gain for high frequency signals. It means the high frequency measurement noise will generate large variations of the control signal. To prevent this situation, the value of filter coefficient 'N' is taken to be low (2 < N < 20).