1. A second-order system is given by the transfer function

$$
G(s) = \frac{K_p}{\tau^2 s^2 + 2\zeta \tau s + 1}
$$

- (a) Determine the response of this system to a unit step input for $\zeta = 1$. [7 points]
- (b) Determine the response of this system to a unit step input for the case $0 < \zeta < 1$. [7 points]
- (c) Derive an expression for the overshoot for this process when ζ < 1. *Hint:* Overshoot is defined as the ratio of the maximum amount by which the transient response exceeds the ultimate value to the ultimate value. [6 points]

2. A first order process with $G_p(s) = 1/(s+3)$ and $G_d(s) = 1/(s+3)$ is controlled with a PI controller:

- (a) Find the values of controller gain K_c and integral time τ_I such that the closed-loop gain to a unit step change in disturbance is 2. [5 points]
- (b) Find the values of controller gain *K^c* such that the decay ratio of the closed-loop response is $1/4$, when $\tau_I = 0.01$. [5 points]

Hint: Use the result you derived for question 1(c), and the relation decay ratio $=$ $(overshoot)^2$.

3 (a). Is the direct substitution method for finding the limits of stability equivalent to the Bode stability criterion ? Justify your result by a short mathematical proof. [4 points] 3 (b). Derive expressions for frequency response, i.e. amplitude ratio and phase angle, for a pure capacitive process. [4 points]

Figure 1: **Problem 3c**

Figure 2: **Problem 3d**

3 (c). Determine the process that corresponds to the Bode plot sketched in figure 1. Give reasons for your answer. [4 points]

3 (d). Determine the process that corresponds to the Nyquist plot sketched in figure 2. Give reasons for your answer. [4 points]

3 (e). A process described by the transfer function 2/(*s*−4) is to be controlled by a proportional controller with gain K_c . Assuming $G_v = G_m = 1$, sketch the root locus of the closed-loop system. Find the range of *K^c* for which the closed-loop response is stable. For *K^c* such that the closed-loop pole is zero, determine the response of the closed-loop process to a unit step change. Is the response stable or unstable ? [9 points]

Figure 3: **Problem 4**

4. The bottoms temperature of a distillation column (*y* in deviation variables) is controlled by manipulating the steam flow rate to the reboiler (u_1) in deviation variables). This purely feedback control strategy is shown in figure 3. An approximate transfer function model for this process is given as:

$$
y(s) = \frac{0.25s}{10s + 1}u_1(s)
$$

However, the steam flowrate itself depends on the percent valve opening (u_2) in deviation variables), and the steam supply pressure $(d_1$ in deviation variables) which is known to fluctuate in an unpredictable (but measurable) fashion. These process variables are related according to the approximate model:

$$
u_1(s) = \frac{2.2}{2s+1}u_2(s) + \frac{1.5}{0.5s+1}d_1(s)
$$

- (a) Implement a cascade control strategy to control problems created by steam pressure fluctuations. Draw a block diagram for this process under the cascade control strategy. Include all the given transfer functions (and controllers), and label all the signals in the block diagram. [3 points]
- (b) Calculate the ultimate (i.e. $t \rightarrow \infty$) closed-loop response to a unit step change in the disturbance variable d_1 with and without the cascade control assuming proportional controllers for the master and slave loops. [7 points]
- (c) Determine the ratio of the ultimate steady state response with and without the cascade control. [2 points]
- (d) If the steam supply pressure is measured, propose a design for feedback-feedforward control *instead* of the cascade control. Draw a block diagram for this new configuration, and obtain an expression for the feedforward controller to be implemented. [8 points]

5. Consider a two-input, two-output process with manipulated variables *mⁱ* and controlled variables y_i ($i = 1, 2$). The open-loop dynamics is described by the relations:

$$
y_1(s) = G_{11}(s)m_1(s) + G_{12}(s)m_2(s)
$$

\n
$$
y_2(s) = G_{21}(s)m_1(s) + G_{22}(s)m_2(s)
$$

- (a) If loop 1 pairs y_1 with m_1 (with controller G_c) and loop 2 pairs y_2 with m_2 (with controller G_{c2}) under feedback control, draw the block diagram for the feedback control of this process. Assume the set points to be *y*1*SP* and *y*2*SP* respectively for *y*¹ and *y*2. Assume no disturbance variables, and the transfer functions of measuring devices and valves to be unity. **Example 20** and valves to be unity.
- (b) Derive the relation between $y_1(s)$ and $y_1sp(s)$ if loop 1 is closed, but loop 2 is kept open. What is the characteristic equation of this closed loop process ? [4 points]
- (c) If both loops (1 and 2) are closed, derive the following relation under closed-loop, and thereby explicitly derive the expressions for $P_{ij}(s)$ ($i, j = 1, 2$): [5 points]

$$
y_1(s) = P_{11}(s)m_1(s) + P_{12}(s)m_2(s)
$$

\n
$$
y_2(s) = P_{21}(s)m_1(s) + P_{22}(s)m_2(s)
$$

(d) What is the characteristic equation of the closed-loop transfer functions ? If we tune *Gc*¹ by keeping loop 1 closed and loop 2 open, and *Gc*² by keeping loop 2 closed and loop 1 open, would it guarantee the stability of the process with both loops closed ? Explain why with the help of your derivations. [5 points]

- (e) If $G_{11} = 1/(0.1s + 1)$, $G_{12} = 5/(s + 1)$, $G_{21} = 1/(0.5s + 1)$, and $G_{22} = 2/(0.4s + 1)$ 1), and assuming simple proportional controllers for G_{c1} and G_{c2} , find the ultimate values of the controller gains if each loop is tuned independently (i.e. loop 1 is closed and loop 2 is open for tuning G_{c1} , and the reverse for G_{c2}). [3 points]
- (f) For the transfer functions given in the previous part, we would like to tune the controllers with both loops closed. If we are given $K_{c2} = 4$, is there any restriction on the values of K_{c1} that you would choose ? *Hint: Use Routh array test*. [5 points]