ROLL #: _____

ChE381 Process Dynamics & Control

Jan-Apr 2013

Quiz 1Paper A45 minutes; 20 points

• Fill your name and roll no. above.

• Circle the correct answer among the four choices given.

• 2 marks for a correct answer. *Negative marking*: One point will be deducted per wrong answer.

1. In the case of feed-forward control, which of the following is **NOT TRUE**:

- 1. It is insensitive to modelling errors.
- 2. Cannot cope with unmeasured disturbances.
- 3. It waits until the effect of disturbance has been felt by the system before control action is taken.
- 4. Requires good knowledge of the process model.
- 5. Requires identification of all possible disturbances and their measurement.
- (a) 1 and 4 (b) 1 and 3 (c) 2 and 5 (d) 3 and 4 (e) 3 and 5
- 2. The inverse Laplace transform of the function $f(s) = \frac{1}{s(1+s)}$ is: (a) $1 + \exp[t]$ (b) $1 - \exp[t]$ (c) $1 + \exp[-t]$ (d) $1 - \exp[-t]$ (e) $-1 + \exp[-t]$
- 3. The following ODE can be classified as:

$$\frac{d^2y}{dx^2} + \sin(x)\frac{dy}{dx} + y\exp[x] = \sinh(x)$$

- (a) first order and linear
- (b) first order and nonlinear
- (c) second order and linear
- (d) second order and nonlinear

4. The unit-step response of a first-order system with steady-state gain *K* and time constant τ is:

(a)
$$K(1 - \exp[-t/\tau])$$
 (b) $K(1 + \exp[-t/\tau])$ (c) $K(1 - \exp[-2t/\tau])$ (d) $K \exp[-t/\tau]$

5. The unit impulse response of a first-order process is $2\exp[-0.5t]$. The gain and time constant of the process are, respectively:

(a) 4 and 2 (b) 2 and 2 (c) 2 and 0.5 (d) 1 and 0.5

6. A unit-step input is given to a process that is described by the transfer function (s + 2)/(s+5). The initial value (at t = 0⁺) of the response of the process to the step-input is:
(a) 0 (b) 2/5 (c) 1 (d) ∞

7. The inverse Laplace transform of the following function of s is:

$$\frac{1}{2s^2 + 3s + 1}$$
(a) $\exp[-t/2] - \exp[-t]$ (b) $2\exp[-t/2] - \exp[-t]$
(c) $\exp[-t] - 2\exp[-t/2]$ (d) $\exp[-t] - \exp[-t/2]$

8. The inverse Laplace transform of the following function is:

$$\frac{s}{(s-2)(s^2+4)}$$
(a) $\frac{1}{4}(\exp[-2t] + \cos[2t] - \sin[2t])$
(b) $\frac{1}{2}(\exp[2t] - \cos[2t] + \sin[2t])$
(c) $\frac{1}{2}(\exp[-2t] + \cos[2t] - \sin[2t])$
(d) $\frac{1}{4}(\exp[2t] - \cos[2t] + \sin[2t])$

9. The steady-state gain of a process described by the transfer function (given below) is:

(a)
$$3/2$$
 (b) 0 (c) $1/2$ (d) 2

10. The inverse Laplace transform of $\exp[-4s]/(s+8)$ is given by (with $\Theta(t)$ being the unit step function):

(a) $\exp[-4(t-4)]\Theta(t-4)$ (b) $\exp[-8(t-4)]\Theta(t-4)$ (c) $\exp[-8(t-4)]\Theta(t+4)$ (d) $\exp[-4(t-4)]\Theta(t+4)$