\qquad
\qquad
\qquad

ESO212 Fluid Mechanics \& Rate Processes

Quiz 1

Paper B

- Fill your name, roll no., and section no. above.
- Circle the correct answer among the four choices given.
- 2.5 marks for a correct answer. Negative marking: One point will be deducted per wrong answer.
- Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

1. Which of the following statements are TRUE:
P. A streamline is parallel to the local velocity vector in the fluid.
Q. Path lines and streak lines could be different in an unsteady flow.
R. Streak lines are produced by instantaneously injecting a dye at a point, and observing its consequent evolution.
S. Stream lines and streak lines could be different in a steady flow.
(a) P and Q
(b) P and S
(c) Q and S
(d) Q and R
2. Given the Eulerian velocity field

$$
\mathbf{v}=2 x z \mathbf{i}+5 t \mathbf{j}+t y \mathbf{k}
$$

the acceleration of the material particle that is present at $x=1, y=1, z=-1$ at $t=2$ is :
(a) $8 \mathbf{i}-5 \mathbf{j}-21 \mathbf{k}$
(b) $8 \mathbf{i}+5 \mathbf{j}+21 \mathbf{k}$
(c) $8 \mathbf{i}-5 \mathbf{j}+21 \mathbf{k}$
(d) $8 \mathbf{i}+5 \mathbf{j}+41 \mathbf{k}$.
3. For the system shown in figure 1, both the tank and the tube are open to the atmosphere (here, s.g. denotes specific gravity of the liquid). If $\theta=30^{\circ}$, and the length of the liquid in the inclined tube $L=2 \mathrm{~m}$, then the height H of the water in the tank is:

Figure 1: Problem 3
(a) 2.4 m
(b) 1.2 m
(c) 1.8 m
(d) 0.6 m
4. For the system shown in figure 2, the Gate B is 50 cm high, 60 cm wide (into the paper), and is hinged at the top. There is a rigid stopper that prevents the gate to move into the water. The gage pressure $p_{\text {gage }}$ in the air chamber below which the gate will open to the air chamber is:
(a) 8.98 kPa
(b) 35.94 kPa
(c) 17.97 kPa
(d) 10 kPa

Figure 2: Problem 4

