ROLL \#: \qquad Sec\#: \qquad

ESO212 Fluid Mechanics \& Rate Processes

July-Nov 2011

Quiz 2

Paper A
30 minutes; 10 points

- 2.5 marks for a correct answer. Negative marking: One point will be deducted per wrong answer.

1. Consider the motion of a very tiny spherical particle (radius R, velocity V) in a fluid (viscosity μ). Owing to the small dimensions, the viscous forces in the flow are very large compared to inertial forces, and hence the density (ρ) of the fluid is not a relevant physical parameter. Which one of the following non-dimensional groups is a correct representation of the drag force F experienced by the sphere:
(a) $F /(\mu V / R)$
(b) $F /\left(\mu V^{2} / R\right)$
(c) $F /(\mu V R)$
(d) $F /\left(\mu V R^{2}\right)$
2. Consider the flow in the annular region formed between two concentric cylinders (see figure 1) of inner diameter D_{i} and outer diameter D_{o}. If $D_{o}=2 D_{i}$, the hydraulic diameter for flow in the annular region is:
(a) $2 D_{i}$
(b) $D_{i} / 2$
(c) D_{i}
(d) $4 D_{i}$

Figure 1: Problem 2
3. Consider the fully-turbulent flow of water in a very rough pipe, where the friction factor is independent of the Reynolds number. The pressure difference across the ends of the pipe $\triangle P$ and the length L of the pipe are kept constant. If the diameter of the pipe is increased by two times, i.e., $D_{2}=2 D_{1}$, the volumetric flow rate Q_{2} (for pipe with diameter D_{2}) is related to the flow rate Q_{1} (for pipe with diameter D_{1}) as:
(a) $Q_{2}=Q_{1} \sqrt{32}$
(b) $Q_{2}=Q_{1} / \sqrt{32}$
(c) $Q_{2}=Q_{1} / 2$
(d) $Q_{2}=2 Q_{1}$
4. A large pump is to deliver $1.5 \mathrm{~m}^{3} / \mathrm{s}$ of water from a 40 cm dia impeller with a pressure rise of 400 kPa . To design this, a lab-scale model with an 8 cm dia impeller is to be used with water as the fluid with identical properties as in the prototype. The
pressure rise $\triangle P$ in the pump is related to the volumetric flow rate Q, density of fluid ρ, viscosity μ, diameter of the impeller D. Using dimensional analysis, the flow rate Q_{m} (in m^{3} / s) and pressure rise $\triangle P$ (in kPa) to be expected in the model are respectively given by:
(a) $Q_{m}=7.5, \triangle P=8$
(b) $Q_{m}=0.3, \triangle P=8$
(c) $Q_{m}=7.5, \triangle P=10^{4}$
(d) $Q_{m}=0.3, \triangle P=10^{4}$.

