ROLL \#: \qquad Sec \#: \qquad

ESO212 Fluid Mechanics \& Rate Processes

July-Nov 2011

Quiz 2

Paper B

- 2.5 marks for a correct answer. Negative marking: One point will be deducted per wrong answer.

1. Consider the steady, fully-developed flow of a very viscous Newtonian fluid (viscosity μ, average velocity V) in a tube (radius R, length L) such that viscous forces dominate the flow, and the density ρ is not a relevant parameter in the problem. The non-dimensional group that correctly represents the pressure difference $\triangle P$ across the length L of the pipe is:
(a) $\triangle P /\left(\mu V L / R^{2}\right)$
(b) $\triangle P /(\mu V / R)$
(c) $\triangle P /(\mu V / L)$
(d) $\triangle P /\left(\mu V R^{2} / L\right)$
2. Consider the flow in the annular region formed between two concentric cylinders (see figure 1) of inner diameter D_{i} and outer diameter D_{o}. If $D_{i}=3 / 4 D_{o}$, the hydraulic diameter for flow in the annular region is:
(a) $D_{o} / 2$
(b) $2 D_{o}$
(c) $4 D_{o}$
(d) $D_{o} / 4$

Figure 1: Problem 2
3. Consider the fully-turbulent flow of water in a very rough pipe, where the friction factor is independent of the Reynolds number. The pressure difference across the ends of the pipe $\triangle P$ and the length L of the pipe are kept constant. If the diameter of the pipe is decreased by two times, i.e., $D_{2}=D_{1} / 2$, the volumetric flow rate Q_{2} (for pipe with diameter D_{2}) is related to the flow rate Q_{1} (for pipe with diameter D_{1}) as:
(a) $Q_{2}=Q_{1} \sqrt{32}$
(b) $Q_{2}=Q_{1} / \sqrt{32}$
(c) $Q_{2}=Q_{1} / 2$
(d) $Q_{2}=2 Q_{1}$
4. A large pump is to deliver $1.5 \mathrm{~m}^{3} / \mathrm{s}$ of water from a 40 cm dia impeller with a pressure rise of 400 kPa . To design this, a lab-scale model with an 4 cm dia impeller is to be used with water as the fluid with identical properties as in the prototype. The
pressure rise $\triangle P$ in the pump is related to the volumetric flow rate Q, density of fluid ρ, viscosity μ, diameter of the impeller D. Using dimensional analysis, the flow rate Q_{m} (in $\left.m^{3} / s\right)$ and pressure rise $\triangle P$ (in kPa) to be expected in the model are respectively given by:
(a) $Q_{m}=10.5, \triangle P=4$
(b) $Q_{m}=0.15, \triangle P=4$
(c) $Q_{m}=10.5, \triangle P=4 \times 10^{4}$
(d) $Q_{m}=0.15, \triangle P=4 \times 10^{4}$

