\qquad ROLL \#: \qquad
\qquad

ESO212 Fluid Mechanics \& Rate Processes

Quiz 3

Paper \mathbf{A}

July-Nov 2011
30 minutes; 10 points

- 2 marks for a correct answer. Negative marking: 0.5 point will be deducted per wrong answer.

1. A line vortex is located at $x=2, y=2$, and the velocity component v_{θ} at $x=0, y=0$ is $\frac{1}{2} m / s$. The values of v_{r} and v_{θ} (in $\left.m / s\right)$ at $x=1, y=1$ are respectively given by:
(a) 0,1
(b) 1,0
(c) 1,1
(d) 0,0
2. For uniform, 2-D, potential flow past a circular cylinder (as shown in figure 1), the velocity components at points A and B are given by:
(a) Point A: $v_{r}=2 U, v_{\theta}=0 \quad$ Point B: $v_{r}=2 U, v_{\theta}=0$.
(b) Point A: $v_{r}=0, v_{\theta}=0 \quad$ Point B: $v_{r}=0, v_{\theta}=2 U$
(c) Point A: $v_{r}=0, v_{\theta}=2 U \quad$ Point B: $v_{r}=-2 U, v_{\theta}=-2 U$
(d) Point A: $v_{r}=0, v_{\theta}=0 \quad$ Point B: $v_{r}=0, v_{\theta}=-2 U$

Figure 1: Problems 2 and 3
3. For uniform, 2-D, potential flow past a circular cylinder (as shown in figure 1), the pressures at various points (as shown in the figure) satisfy:
(a) $p_{A}>p_{B}, p_{C}<p_{B}$
(b) $p_{A}<p_{B}, p_{C}>p_{D}$
(c) $p_{A}>p_{B}, p_{C}>p_{D}$
(d) $p_{A}<p_{C}, p_{B}>p_{D}$
4. Which of the following statements are FALSE for 2-D potential flows:
(P) Stream function and velocity potential satisfy the Laplace equation.
(Q) Streamlines and equipotentials are orthogonal.
(R) Streamlines and equipotentials are parallel.
(S) No-slip condition is always satisfied by the velocity field on solid surfaces.
(a) P and S
(b) S and Q
(c) P and Q
(d) R and S
5. Consider the two configurations shown in figure 2, wherein two identical plates (of infinitesimal thickness, length L and width W) are joined along the width (in arrangement A) and along the length (in arrangement B). There is steady, uniform, boundary-layer flow over the top surface of these two arrangements (hatched surfaces in the figure) with identical uniform velocity outside the boundary layer. The drag forces F_{A} (for arrangement A) and F_{B} (for arrangement B) are related as:
(a) $F_{A}=\sqrt{2} F_{B}$
(b) $F_{A}=F_{B}$
(c) $F_{A}=2 F_{B}$
(d) $\quad F_{A}=F_{B} / \sqrt{2}$
(A)
(B)

Figure 2: Problem 5

