
pgh2b_[pgh2b +~(pgh2b)8X] = ~[Vphb8x]- V(phVb)2 2 ax 2 at

(b)

since there is no horizontal momentum flux associated with,th~ fluid entering the top surface.
On simplification Eq. (b) gives '

a(Vh) a(hV2) ah
--+---=-gh-

at ax ax

Eqs. (a) and (c) are two equations for the two unknowns, Vand h. .. 1-,

(c)

o

When q is a constant and the flow is steady, Eq. (a) integrates to (see Example 4.7)
o

Vh =q x/b

and Eqs. (c) and (d) give

or

2 gh2
hV =---+C1

2

At x = 0, V = 0 and h = ho and, therefore, C1 is gh'5/2.Eqs. (d) and (e) lead to

(d)

(e)

which gives the free surface profile. It can be confirmed that initially (till h = ho/J3) the slope

of the free surface is negative, i.e., the level decreases with x!

The calculation of the momentum flux across a tube section in Example 5.2 was simplified by
assuming that the velocity is constant across the section, i.e., the flow is one-dimensional. The
value of the velocity used in the calculations is the average velocity at the given section. The
correct momentum flux is larger than the value so obtained. When more accurate results are
required a correction for this difference is usually done through the use of a momentum correction
factor. Obtained below is an expression for the momentum correction factor for incompressible
flows where the velocity is normal everywhere to the cross-sectional area. This condition holds
when the flow is urn-directional.
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The actual momentum flux across a cross-section in such a flow is given by If V (pV dA) ,
A

while the one based on the average velocity is pV;vA, where Vav = ~ ffV dA. The momentum
A

correction factor 13 is defined as the ratio of the actual momentum flux to the one obtained with
the 1-D approximation. Thus,

ff pV2 dA 2

13 = A 2 = ~ ff(~) dA ...(5.4)pVavA A A Vav

since p is constant.

The use of this expression to compute 13 for fully-developed flow through a circular pipe of
radius R is illustrated below. The velocity profile in this case is (see Fig. 1.28)

V = Vm(1- ~: ) , for laminar flows

and

( )1/7V = Vm 1-; for turbulent flows

where Vm is the maximum velocity (at the centre line).
For laminar flows

1 1 R ( 1'2)
"\tT =-ffVdA=-f V 1-- 21t1'dr=V /2av A R2 m R2 m .A 1t 0

and

For turbulent flows

and

13 = ~ ff(~)2 dA = ~ J 4 (1- 1'22)221t1'd1'= 1.33A A Vav 1tR 0 R

1 1 R ( l' )117
V = -ffv dA =-f V 1-- 21t1'd1'= 49V /60

av A R2 m R mA 1t 0

1 (V)2 1 R ( 60)2 ( l' )2/7
13 = - ff - dA = -2 f - 1- - 21t1'd1'= 1.020

A A Vm 1tR 0 49 R

... (5.5)

... (5.6)

Thus, one-dimensionality assumption is far more acceptable when the flow through a circular
tube is turbulent than when it is laminar. This is because the velocity profiles in turbulent
flows are much flatter (Fig. 1.28) and, thus, are closer to the 1-D approximation.

Example 5.6. In Example 5.2 the pressure drop across a sudden expansion assuming 1-D flow
was calculated. If the flow in the narrower pipe is assumed to be turbulent and fully developed
and that in the wider pipe, laminar and fully developed, obtain the correct expression.



Application of momentum equation to the CVin Fig. 5.8 (b) gives

PI A2 - P2A2 = -~I (m ~,av) +~2 (m V2, av )

where VI,av' and V2,av are the average velocities at sections 1 and 2 respectively, and ~I and ~2

are the corresponding momentum correction factors. Here ~I = 1.33 and ~2 = 1.02 by Eqs. (5.5)
and (5.6). Thus,

o

_ 1.33m VI,av [0.77AIPI - P2 - A A2 2

This is larger in magnitude than that obtained earlier.

, :1.,.

In many applications such as rotary pumps and turbines, we are interested in torques rather
than forces. In these cases it is convenient, at times to use the concept of moment of momentum
(or angular momentum). One starts with the application of Newton's law to a single particle of
fluid in a flow field to write

of = ~t(om V)

where of is the external force acting on it, V is the velocity in an inertial frame of reference
and DlDt is the material derivative. The torque about a fixed point 0 (Fig. 5.13) is, then,

D
oT = r x of = r x -(om V)Dt ... (5.7)

where r is the position vector of the particle with origin at O. Application of the chain rule*
glVes

D D Dr
- (r x om V) = r x - (om V) + - x (om V)Dt Dt Dt

Since Dr/Dt is the velocity V, the second term on the right hand side is zero. Therefore,
Eq. (5.7)becomes

D
oT =-(rxom V)Dt ... (5.8)

* It can be shown easily that the chain rule of differentiation is applicable to material derivatives as
well.



where r x V 8m is the moment of momentum 8M of the fluid particle.
On integrating Eq. (5.8) over the fluid body one obtains

T=DM
Dt

,cations"!,
, .;-;

...(5.9)

...(5.10)

where M is the moment of momentum of the whole body. The specificvalue 11 of the moment of
momentum is r x V.

For the control-volume formulation, Reynolds transport theorem (with 11 = r x V) is used
to obtain DM/Dt in terms of the rate of accumulation and the net efflux. This gives

T = ~ fff(rxV)pd¥+ #(rxV)(pVdA)
at cv cs

Thus, the net external torque acting on a CV is equal to the rate of change of the moment of
momentum contained within it (i.e., the rate of accumulation) plus the net efflux of angular
momentum across the CS. . -I-,

Given below is an application of this equation. Another application appears in Sec. 8.3.

Example 5.7. The lawn spinkler (Fig. 5.14) has two jets of water (diameter 5 mm) issuing at
3 m/s at 60° to the tangent. The arms of the sprinkler rotate because of the jet reaction. Find
the steady state angular velocity w of rotation if the pivot is assumed frictionless. Assume water
enters the spinkler axially through a central pipe.

Fig. 5.14. CVfor Example 5.7.

If the CV is so chosen that it coincides with the rotating arms, the frame of reference fixed
with the CV will be non-inertial and we will not be able to apply the momentum Eq. (5.2) to
obtain the forces. The problem is considerably simplified, however, if we take a stationary CV
enclosing the entire region swept by the arms (Fig. 5.14). As the arms rotate, the water issues
in different directions at different times and so the (linear) momentum flux changes with time.
But the flux ofthe moment-of-momentum has a constant direction (along the axis of rotation)
and magnitude. Thus, it is more convenient to work with the z-component of the moment-of
momentum Eq. (5.10), rather than with the momentum Eq. (5.2).

Although the flow within the CV is unsteady, the total moment of momentum within the
CV is constant with time. This is because r x V for any segment of the sprinkler arms is
independent of the angular position of the arms. Thus, the rate of accumulation of the moment
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of momentum is zero and, since the external torque in the z-direction is also zero (due to the
pivot being frictionless), we have

Tz = 0 = #(r xvt (pV.dA)
cs

Note that the velocity here is measured in the frame of reference fixed with the stationary Cv.
Water crosses the CS at the two jet orifIcesA and B and at the centre C. At C, there is no

contribution to the moment of momentum flux since V is normal to r. Thus, the efflux of the
moment of momentum at the two jet orifices is zero.

The jet velocity of 3 mls is with respect to the jet orifice and, since the jet orifice itself is
moving, the two velocities should be added vectorially to obtain the velocity with respect to the
stationary CS. This is done using the velocity triangle (Fig. 5.15). The tangential component
Vtan of the absolute velocity, Vabs is ' .1-,

Vtan= Vj cos 60° - ooR
= (3 cos 60° - 0.5 00) mls

and the radial component Vr is
Vr = Vj sin 60° = 3 sin 60° mls

Only the tangential component of Vabs contributes to the moment of momentum in the
z-direction. Thus

2x[~(m)X(3coS600-0.5 oo)(m/s)XPVjAj] = 0

where Aj is the area of the jet. (The reader can verify that Vabs • A is indeed equal to VjA). This
gives the steady state angular velocity 00 as 3 radls.

The torque Tz on the sprinkler arm is zerobecause the arm has acquired a rotational velocity
such that the water coming out of the jets does not have any tangential velocity as seen by a
stationary observer. Such an observer, therefore, sees water issuing radially from the sprinkler.

Fig. 5.15. Velocity triangle to obtain the velocity of water with respect to the stationary CV

5.1 Water flows through constant area pipes of the forms shown. Mark the directions of the
resultant forces, if any, on the pipes if friction is neglected.



If the pressure across a straight free jet of water is atmospheric everywhere, why does a
person feel a force when he places his hand against such a jet.

5.3 It is argued that a person on a fireboat feels a higher reaction when he directs the water
jet against a solid surface on the coast than when he discharges it in the air. Is this
correct?I

5.4 Obtain the horizontal force acting at the flange AA of the nozzle assembly shown if the

J, pressure at point 1 is 105 Pa gauge and the water issues as a free jet into the atmosphere.

I\vlf Take Q = 2 m3/s.

5.6 A newly graduated engineer dreams up of an ingeneous way of propelling fresh water
tankers in the Thar desert. A jet of water issuing from a specially designed tanker as
shown is deflected back into it by a vane. The thrust by the jet propels the railroad with
no loss of precious water. Is his idea feasible?
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J< \/ A person holds a hose through which a liquid of density p flows. If the fluid issues as a1(../' free jet into the atmosphere, obtain the vertical component of the force experienced by
the person. Does this act upwards or downwards?

5.8 Water flows through the reducing elbow shown at the rate of 1 m3/s. The gauge pressure
at 1 is 0.1 MPa and that at 2 is 0.09 MPa. What is the resultant force on t1}.~elbow?
Neglect the weight of water. .

5.9 A jet of water issues out of a fireman's nozzle at 6 m/s. If the gauge pressure at section
1 is 1.8 X 104 Pa, estimate the force in each of the eight bolts connecting the nozzle to
the pipe. Note that each bolt is in tension, i.e., the nozzle has a tendency to pull on the
hose. Does this mean that the fireman holding the hose is tugged forward? Explain.

5.10 ¥suming that V1 = V2 = V3 and that the forceexerted by the water on the stationary plate
shown acts normally, obtain the volume flow rates Q2 and Q3 in terms of the incoming
flow rate Q1. Alsoobtain the normal force Fn'



5.11 The sluice gate on a dam is raised to allow the flow of water as shown. Estimate the
force acting on the gate per unit width. Assume 1-D flow downstream of the gate and
the pressure distributions to be hydrostatic far upstream and downstream.

5.12 Borda's mouthpiece: A tank has a circular re-entrant outlet near its bottom as shown.
Such an outlet is called Borda's mouthpiece. Water issues from this as a jet having a
uniform velocity Vof 3.13 m/s. The water jet does not fill the tube completely and is
surrounded by air. Find the area of the jet as a fraction of the mouthpiece area. Use the
fact that with such a mouthpiece, the velocity along all the walls is negligible. > •

5.13 Consider a tank with a simple sharp-edged orifice. In this case, the velocity at the wall
near the orifice is no longer negligible. Show that the 'contraction' of the jet from this
orifice is smaller than of that from the Borda's mouthpiece (Prob. 5.12).

5.14 Hydraulic damper: A hydraulic damper consists of a piston (area Ap) moving in a slightly
larger cylinder (area AJ. Find the force F resisted by the piston when it moves at
a constant velocity Vp' Take the gauge pressure at the bottom of the cylinder to be
FlAp - P ~/2 (Prob. 7.52). Neglect viscous effects. Note that the flow is unsteady.

- -::.--~ -

5. (a) Obtain the forcesF1 and Fz required to prevent motion of the tank and the vane shown.

<;f The water velocity in the jet is constant at 4.5 m/s. (b) Find F1 and Fz if the vane is held



stationary but the tank moves to the left at a constant speed of 2 m/s. The velocity of
water with respect to the tank is 4.5 m/s.

5.16 Consider the tank of Prob. 5.15. The jet of water issues at a constant relative velocity
Vj. Show by applying the momentum theorem that the tank will move to the left at a
constant velocity only if a finite horizontal force is applied to it (otherwise it accelerates).
Contrast this behaviour with that of a rotating sprinkler (Example 5.7).

5.17 An incompressible fluid is supplied to a large tank from where it flows out through a
long pipe of length 12 m and diameter 5 em. At time t = 0, a valve is closed slowly so
that for a short interval of time thereafter, the velocity is given by (10 - [r.>/It) mis, where
t is in seconds. Find the horizontal force Fx (as a function of time) required to hold the
tank in place.

5.18 A partitioned tank on frictionless wheels as shown contains a gas at high pressure in
one chamber and a gas at much lower pressure in the other. The plug separating the
two is removed at t = 0 when the tank is at rest. The tank accelerates to the left for a
short time and thereafter moves at a constant velocity for some time. If we assume that
the opening between the two chambers is so small that the pressures in them are
essentially constant for a short duration, show that the above behaviour is consistent
with the momentum equation.

Boundary layer: Fluid flowing at a uniform velocity Vo at constant pressure encounters
a flat plate as shown and a boundary layer results (see Sec. 1.7). The x-component of
the fluid velocity at any section BC is given by Vx = Vof, where f is a function ofylo and
is less than one between points C and B. At point B and above, f:::: 1. Since 0 is small,
the pressure inside the boundary layer may be assumed to be constant everywhere. (This
will be shown in Sec. 13.2). Using the control volume DBC show that the drag force on
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the plate per unit width is -f p(Vx - Vo)Vxdy. Note that mass crosses the CS across
o

BD (see Prob. 4.9).
Assume f to be a linear function ofy/o and obtain the drag force in terms of an appropriate
dimensionless drag coefficient.
Repeat the above steps taking the control volume ABCD.

5.20 Wake-survey method: An experimental method of measuring the force exerted on a solid
body consists of placing it in a uniform stream of fluid and studying the velocity pattern
downstream. Using the CV shown, obtain the following dimensionless equati($for the
drag force on a cylinder of diameter D:

CD = x-force on cylinder - 45 v; (1- V: )d/
!pV% (WD) 02

where W= width of the cylinder, V:= VJVo andy* = ylD. (Hint: The fluid bleeds through
the sides of the CVand the pressures far upstream and downstream can be taken as
equal.

5.21 A series of identical turning-vanes are used in the wind-tunnel bends to keep the flow
smooth and I-D. If the velocities at points just upstream and downstream are as shown,
and if the corresponding pressures are PI and P2, obtain the force required to keep a
vane stationary. Assume an infinite array of 2-D vanes.

5.22 Ajet of fluid at velocity VI is directed towards the vane shown (which is moving at velocity
Yo) such that the vane sees the fluid entering tangentially to it. The fluid leaves with



the same relative velocity at the exit of the vane, again tangentially (as observed by the
moving vane). Obtain

(a) VI in terms of Vo, ~l and <Xl'

(b) the magnitude and direction of the exit velocity (you may not be able to write this
explicitly), and

(c) the x-force exerted by the fluid on the vane.

5.23 A child playing with a water pistol directs the jet of water on the circular base of an
inverted glass vase floating with its open end down in a bucket as shown. The vase weighs
200 gm and has a cross-sectional area of 50 cm2. Assume that the velocity V2 equals VI.
Obtain the vertical force on the vase due to the jet of water. Neglect the weight of water
in the Cv.

Obtain VI required to just submerge the vase as shown. Assume the vase walls to be
thin. What is the height to which water rises inside the vase?

5.24 Water discharges over a weir into a channel having the same width. It is observed that
a region of still water backs up to height a at the back of the weir as shown. Assuming
that the water discharges horizontally over the weir and that the pressure variation at
AB and CD are hydrostatic, obtain a in terms of V, hand ho. Neglect frictional stresses.
Also take the pressure across PQ as atmospheric (see Sec. 7.6).



5.25 Poiseuille flow: Consider a cylindrical CV in a circular pipe carrying a fully-developed
laminar flow as shown. A uniform pressure PI acts on face AB and similarly a pressure
P2 acts on face CD. A shear stress 't acts on the curved surface. Apply the momentum

. b' PI - P2 r
equatlOn to 0 tam - 2 L = 't

Using the relationship 't = lldVjdr between the shear stress and the velocity gradient,
and assuming that (PI - P2)/L = constant, obtain the velocity profile. (Hint: Convective
term is zero. Why?)

5.26 If the cylindrical CV in Prob. 5.25 is replaced by a cylindrical shell as shown, obt~in the
relationship between P and't.

5.27 Hydraulic jump: A high speed channel flow at 1 may 'jump' to a low speed condition at
2. The pressure variations at 1 and 2 may be approximated as hydrostatic. Obtain h2 in
terms of hI> VI and g. Neglect wall friction. Discuss the significance of the three
mathematical solutions.

5.28 Jet contraction: Consider the liquid jet coming out of a circular pipe of radius R. The
velocity distribution at section 1-1 is assumed to be parabolic

v = 2V (1-~)z R2

Mter the liquid emerges from the pipe, its velocity profile changes and the jet diameter
decreases as shown, till at section 2-2 the velocity is uniform across the jet. Assuming



that the pressure is approximately atmospheric over the CV shown, use the continuity

and momentum equations to show that Rj = J3 R/2 .

5.29 Ejector pump: A high-speed water jet issuing from a pipe of area Aj drags along the
surrounding water such that the device shown can be used as a pump. If the velocity
profiles are assumed as 1-D at sections 1 and 2, relate V2 to "J and VI' If shear stresses
at the pipe wall are neglected, and the pressure is assumed uniform across the entire
section 1, use the momentum equation to show that

P2-PI =P(~~)(l-~~}~ _Vj)2

Note that PI is lower than P2 confirming that the device is indeed a p~~p.

5.30 In Example 5.3, we have drawn the pressure profile at time t along the vertical and
horizontal legs as linear. Show that this must be so.

5.31 Consider the flowofwater belowthe sluice gate as discussed in Prob. 4.26.Again assuming
1-D flow, obtain another relationship between 0 (x, t) and Vx(t). Assume hydrostatic
pressure variation downstream of the gate and neglect frictional losses.
For steady flow,show that 0 cannot vary continuously with x. The depth of water 0 admits
only two values, one 00 and the other related to 00 by the hydraulic jump relation of Prob.
5.27.

Coanda effect: When a jet of water just touches a curved surface it attaches itself to the



surface and is bent through an angle e as shown. This is called the Coanda effect. Obtain
the magnitude and direction of the force acting on the cylinder assuming that the jet
velocity is unchanged. Neglect gravity effects.
A similar bending of a liquid stream is observed when it is poured out of a vessel.

5.33 The velocity profile at the entrance of a pipe is flat, as shown. At section 2, it is parabolic
and is given by

v=v (1-~)m R2

Obtain the drag force F acting on the fluid in terms of the pressures PI and P2 and p, Vo
and R using the momentum correction factor. Verify the results by direct integration.

5.34 Manifolds: Water flows through a pipe with a hole at the side. One third of the water
coming in, issues vertically as a spray at section 3. Find the difference in the pressures
at sections 1 and 2 for steady flow conditions. Neglect frictional forces and any axial
momentum lost at section 3; Does the pressure increase or decrease downstream?

5.35 Compute the torque required to prevent the sprinkler of Example 5.7 from rotating.

5.36 Show that the contribution to #PVabs' dA of any jet in Example 5.7 is pVjAj.
cs

5.37 A pump takes in water axially near the centre and delivers it at a higher pressure from an
exit port at 2.5 mfs.Twobolts on each side, as shown,fasten it securely to the base. Compute
the tensile and compressive loadings in the bolts.due to the unbalanced torque alone.



5.38 A cooling system for a central air-conditioning plant uses a 5 cm dia. pipe. Water enters
at A and issues vertically at the six 2 cm dia. nozzles as shown. Assuming that the water
velocity at each of the nozzles is approximately 6 mis, compute the bending moment at
the flange at A due to the flow of water alone.

5.39 A toy cracker, "chakri", consists of a thin tube containing a combustible powder. The
tube is wound spirally about 0 as shown. If the combustible material burns at the rate
of ,;;, and if the density ofthe combustion products is p find the torque required to prevent
rotation when the cracker is ignited at A. Also estimate the initial rate of r()}ljttionof
the wheel. Assume';;' small so that unsteady, non-inertial effects are negligible.

5.40 Find the point of action of the normal force Fn due to the water jet in Prob. 5.10. This is
the point at which an external force (equal to Fn) must be applied to prevent rotation of
the plate.



EQUATION OF MOTION

The differential form of the momentum equation is obtained in this chapter by applying the
momentum theorem (Eq. 5.2) to an infinitesimal control volume as was done for the continuity
equation. The equation of motion so obtained is applicable to every point in the fluid enabling
us to obtain the entire velocityfield. This is not possible with the integral approach. The equation
of motion requires a knowledge of the forces on the surface of a small element within a fluid.
Therefore, the nature of these forces and their relation to the velocity field must be studied first.
Only 2-D flows will be considered in the following sections. The results obtained thus can easily
be extended to 3-D flows.

In Sec. 5.1 it was seen that the surface force at a point in a fluid is expressed in terms of a stress
defined as the force per unit area. In a stationary fluid the pressure (which is a compressive

Fig. 6.1. Stress acting on a surface of an element of fluid and its two components, in a 2-D flow field.


