USEFUL INFORMATION
 (All required information is provided with the question paper)

- Density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, viscosity of water $=10^{-3} \mathrm{~Pa} \mathrm{~s}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}, P_{\text {atm }}=$ $1.013 \times 10^{5} \mathrm{~Pa}$.
- Kinetic energy correction factor $\alpha=2$ for laminar flow, $\alpha=1$ for turbulent flow in pipes; Loss coefficient K for: entrance $=0.78$, elbow $\left(90^{\circ}\right)=0.9$, elbow $\left(45^{\circ}\right)=0.4$; gate valve (fully open) $=0.3$.
- Vector Identity: $(\mathbf{v} \cdot \nabla) \mathbf{v}=\nabla\left(\frac{1}{2} \mathbf{v} \cdot \mathbf{v}\right)+(\nabla \times \mathbf{v}) \times \mathbf{v}$

Navier-Stokes x-momentum equation in Cartesian coordinates:

$$
\rho\left[\frac{\partial v_{x}}{\partial t}+v_{x} \frac{\partial v_{x}}{\partial x}+v_{y} \frac{\partial v_{x}}{\partial y}+v_{z} \frac{\partial v_{x}}{\partial z}\right]=-\frac{\partial p}{\partial x}+\mu\left[\frac{\partial^{2} v_{x}}{\partial x^{2}}+\frac{\partial^{2} v_{x}}{\partial y^{2}}+\frac{\partial^{2} v_{x}}{\partial z^{2}}\right]+\rho g_{x}
$$

Steady conduction equation in spherical coordinates:

$$
\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial T}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} T}{\partial \phi^{2}}\right]=0
$$

Steady diffusion equation in spherical coordinates:

$$
\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \rho_{A}}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \rho_{A}}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \rho_{A}}{\partial \phi^{2}}\right]=0
$$

Clearly state all the assumptions you make

1. A large tank containing water (shown in figure 1) has a small smoothly contoured orifice, from which a water jet exits with a velocity of $V_{j e t}$. The height of water in the $\operatorname{tank} h$ as shown in the figure is 45.92 m . The diameter of the jet is 100 mm , and this jet moves horizontally to the right, where it is deflected by a cone that moves to the left at $V_{\text {cone }}=14 \mathrm{~m} / \mathrm{s}$. The thickness t of the liquid film that leaves the cone at the radius $R(=230 \mathrm{~mm})$ is $t=5.434 \mathrm{~mm}$. Neglect effects of gravity for flow around the cone. Determine:
(a) The velocity $V_{j e t}$ of the liquid jet that comes out of the orifice, neglecting losses. [4 points]
(b) The velocity of the liquid that leaves the cone at $R=230 \mathrm{~mm}$.
(c) The horizontal component of the external force on the cone required to maintain its motion.

Figure 1: Problem 1

Figure 2: Problem 2
2. Water is to be pumped from a reservoir using a pipe system shown in figure 2. The flow rate in the pipe must be $0.038 \mathrm{~m}^{3} / \mathrm{s}$ and water must leave the exit of the pipe via a nozzle at a velocity $V_{j}=37 \mathrm{~m} / \mathrm{s}$. The dimensions and and fittings involved in the pipe system are indicated in the figure. The wall roughness factor $\varepsilon=0.0015 \mathrm{~mm}$. Neglect losses at the exit nozzle. Determine the power input (in kW) to the pump required to achieve this flow.
3. A belt of width W moves at a velocity V as shown in figure 3. A very viscous liquid fills the gap b between the belt and a stationary plate. Assume steady, fully-developed laminar flow between the belt and the plate, and do not neglect the effect of gravity. For this system:
(a) State the boundary conditions to solve the problem.
(b) Derive the expression for velocity profile in the liquid
(c) Derive the expression for volumetric flow rate of the liquid [2 points].
(d) If $\mu=0.1 \mathrm{~Pa} \mathrm{~s}, \rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}, b=1 \mathrm{~cm}, \theta=45^{\circ}$, determine the velocity (in m / s) of the belt above which there is a net volumetric flow rate in the direction of the belt motion.

Figure 3: Problem 3
4. (a) Derive the Bernoulli equation for steady incompressible flow from the Euler equation for an inviscid fluid. Between which two points is the derived Bernoulli equation valid?
(b) Prove that for a 2-D incompressible, irrotational flow the streamlines and equipotential lines are always orthogonal.
5. (a) Consider a solid sphere of radius R_{1} maintained at a temperature T_{1} in a fluid at an ambient bulk temperature of T_{0} (see figure 4 A). The convective heat transfer coefficient characterizing the heat loss at the boundary is h. This sphere is now wrapped with an insulating material of thermal conductivity k, such that the total radius becomes R_{2} (figure 4 B).
i. Derive an expression for the thermal resistance of the insulating layer. [3 points]
ii. Is there a critical insulation thickness for this case ? If so, derive an expression for the critical insulation thickness.
[4 points]

(A) NO INSULATION

fluid bulk T_{0}
(B) WITH INSULATION

Figure 4: Problem 5(a)
(b) A rice noodle in the shape of a long wire (1 mm diameter, $k=1 \mathrm{~W} /(\mathrm{m} \mathrm{K}), C=$ $\left.4000 \mathrm{~J} /(\mathrm{kg} \mathrm{K}), \rho=2000 \mathrm{~kg} / \mathrm{m}^{3}\right)$ of initial temperature $30^{\circ} \mathrm{C}$ is dipped in a vessel containing boiling water $\left(100^{\circ} \mathrm{C}\right)$. The heat transfer coefficient for the noodlewater interface is $h=1 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$. Calculate the Biot number for this case.

Based on the Biot number, what conclusion can you reach for the temperature distribution in the noodle? Determine the time it takes for the center of the noodle to reach $80^{\circ} \mathrm{C}$, when it is considered to be cooked. [7 points]
6. (a) Consider the steady laminar boundary layer flow past the top surface of square plate arrangements shown in figure 5. Compared to the friction drag on a single plate (area A, drag force F_{1}), how much larger is the drag on four plates together as in configurations (A) and (B) shown in figure 5 . Will the drag on the two arrangements be the same? Explain.

TOP VIEW

Figure 5: Problem 6(a)
(b) A naphthalene ball of diameter 1 cm is suspended in a large room with still pure air at $27^{\circ} \mathrm{C}$ and 1 atm . The surface temperature of naphthalene can be assumed to be $27^{\circ} \mathrm{C}$ and its vapor pressure at this temperature is 1 mm Hg . Assume naphthalene vapor to be an ideal gas. Determine the steady rate of evaporation of naphthalene (in kg / s). Assume that the radius of the naphthalene ball diameter remains constant in your calculation. Molecular weight of naphthalene is $128 \mathrm{~kg} / \mathrm{kmol} ; R=8314 \mathrm{~m}^{3} \mathrm{~Pa} /(\mathrm{kmol} \mathrm{K}) ; D$ for naphthalene in air is 5×10^{-6} $\mathrm{m}^{2} / \mathrm{s}$.
[7 points]

