\qquad
\qquad
\qquad

ESO212 Fluid Mechanics \& Rate Processes

July-Nov 2010

Quiz 1

Paper A

- Fill your name, roll no., and section no. above.
- Circle the correct answer among the four choices given.
- 2.5 marks for a correct answer. Negative marking: One point will be deducted per wrong answer.
- Use $g=9.8 m / s^{2}$.

1. For the manometer shown in figure 1 , if the absolute pressure at point A is $1.013 \times$ $10^{5} \mathrm{~Pa}$, the absolute pressure at point B is $\left(\rho_{\text {water }}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}, \rho_{H g}=13.56 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right.$, $\rho_{\text {oil }}=800 \mathrm{~kg} / \mathrm{m}^{3}$):
(a) 107.34 kPa
(b) 5570 Pa
(c) 106.87 kPa
(d) 106.87 MPa .

Figure 1: Problem 1
2. A solid sphere (of diameter 1 m) floats at the interface between water and air such that 40% of the sphere is submerged in water. The density of the sphere is:
(a) $400 \mathrm{~kg} / \mathrm{m}^{3}$
(b) $2500 \mathrm{~kg} / \mathrm{m}^{3}$
(c) $250 \mathrm{~kg} / \mathrm{m}^{3}$
(d) $600 \mathrm{~kg} / \mathrm{m}^{3}$.
3. Consider the geometry of a dam shown in figure 2 (see next page; each step is 0.3 m high, 0.3 m deep and 3 m wide [into the paper]). The vertical force exerted by the fluid on the steps of the dam is
(a) 26.46 kN
(b) 264.6 kN
(c) 3.9114 kN
(d) 391.14 kN
4. A 2-D velocity field is given (in arbitrary units) by

$$
\mathbf{v}=x \mathbf{i}-y \mathbf{j}
$$

The acceleration at $(x=1, y=1)$ is
(a) $\mathbf{i}+\mathbf{j}$
(b) 0
(c) $\mathbf{i}-\mathbf{j}$
(d) $-\mathbf{i}+\mathbf{j}$

Figure 2: Problem 4

