ESO212 Fluid Mechanics & Rate Processes

July-Nov 2010

Paper **B** Quiz 3

30 minutes; 10 points

- Fill your name, roll no., and section no. above.
- Circle the correct answer among the choices given.
- 2 marks for a correct answer. Negative marking: One point will be deducted per wrong answer.
 - 1. At steady state, the temperature profile in a two-layer solid composite system is shown in figure 1. Both layers have same thickness. Which of the following statements is true about the thermal conductivities k_A and k_B of the two layers:
 - (a) $k_A > k_B$ (b) $k_A < k_B$ k_A and k_B with given information.
 - (c) $k_A = k_B$
- (d) Cannot infer relation between

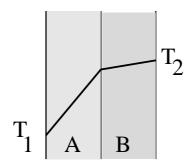


Figure 1: Problem 1

- 2. A long cylindrical wire of radius R_1 is wrapped around by a another layer as shown in figure 2. There is steady conduction of heat in the radial direction of the annular region $R_1 < r < R_2$. The temperature at $r = R_1 = 1$ cm is maintained at $T_1 = 400$ K, and the temperature at $r = R_2 = 8$ cm is at $T_2 = 300$ K. If R_2 is decreased to 2 cm, with $T_2 = 300$ K at 2 cm, the heat transferred per unit time Q ("heat current") in the new ($R_2 = 2$ cm) and old ($R_2 = 8$ cm) configurations are related as:

 - (a) $\frac{Q_{new}}{Q_{old}} = 4$ (b) $\frac{Q_{new}}{Q_{old}} = 1/4$ (c) $\frac{Q_{new}}{Q_{old}} = 3$ (d) $\frac{Q_{new}}{Q_{old}} = 1/3$ (e) $Q_{new} = Q_{old}$

- 3. Which of the following statements is a correct description of the Biot number:
 - (a) (conductive resistance in the solid) / (convective resistance in the fluid)
 - (b) (convective resistance in the fluid) / (conductive resistance in the fluid)
 - (c) (convective heat flux in the fluid) / (conduction heat flux in the fluid)
 - (d) (convective resistance in the fluid) / (conductive resistance in the solid)

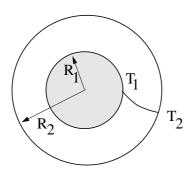


Figure 2: Problem 2

- 4. Within a boundary layer (for laminar flow past a flat plate), as the Reynolds number decreases, the velocity gradient at the surface of the plate
 - (a) decreases
- (b) increases (c) remains the same
- (d) is zero
- 5. Consider uniform laminar flow past a flat plate with velocity U. Let the drag force on the plate of length L is F_{old} . If the length of the plate is changed to L/4, the drag force F_{new} for this case is related to F_{old} as
 - (a) $F_{new} = 4F_{old}$ (b) $F_{new} = F_{old}/2$ (c) $F_{new} = 2F_{old}$ $F_{new} = F_{old}/4$ (e) $F_{new} = 4F_{old}/4$ F_{old}