ESO212: Clarification on Source Strength in Potential Flows

Notation in my lecture

In my lecture, we considered a line source of length b from which fluid is constantly coming out with volumetric flow rate Q. If we align the source with the z axis of a cylindrical coordinate system, then the volumetric flow rate Q at a distance r from the z axis is given by

$$
Q=2 \pi r b v_{r}
$$

where v_{r} is the velocity in the r direction. There is no velocity in the z direction as well as θ direction due to symmetry. We can re-write the above equation as

$$
v_{r}=\frac{Q}{2 \pi r b}
$$

If we define $m \equiv Q /(2 \pi b)$ (or $Q=2 \pi m b)$ then

$$
v_{r}=\frac{m}{r}
$$

where we defined m as the source strength in the lecture.

Gupta \& Gupta notation

In the textbook of Gupta \& Gupta (page 335, second edition), they considered a line source of length $b=1$ (unit length). But to be consistent with the above discussion, let us consider the source length to be b, which we can finally set to 1 . The volumetric flow rate at a distance r from the z axis is again $q=2 \pi r v_{r} b$. Gupta \& Gupta use q for volumetric flow rate. They define $A=q /(2 \pi)$ and write $v_{r}=\frac{q}{2 \pi r b}$ with b set to 1 as:

$$
v_{r}=\frac{q}{2 \pi r}
$$

If they had chosen to write this using the definition of A they would also have

$$
v_{r}=\frac{A}{r}
$$

So, the A defined in Gupta \& Gupta is equivalent to the m defined in the lecture. However, they do not use A, but simply write it as $v_{r}=q /(2 \pi r)$. Thus, the discussions in the lecture and Gupta \& Gupta are consistent.

