Tutorial Problems for Tuesday, 30 August 2011

1. Which of the following sets of equations represent possible two-dimensional incompressible flows ?
(a) $u=2 x^{2}+y^{2}-x^{2} y ; \quad v=x^{3}+x\left(y^{2}-2 y\right)$
(b) $u=x t+2 y ; \quad v=x t^{2}-y t$
(c) $u=(x+2 y) x t ; \quad v=-(2 x+y) y t$
2. For a flow in the $x-y$ plane, the x component of the velocity is given by $u=A x(y-B)$ where $A=3.3 m^{-1} s^{-1}, B=1.8 m$, and x and y are measured in m. Find a possible y component for steady incompressible flow. Is it also valid for unsteady, incompressible flow? Why? How many y components are possible?
3. Which of the following sets of equations represent possible incompressible flow cases?
(a) $v_{r}=U \cos \theta ; \quad v_{\theta}=-U \sin \theta$
(b) $v_{r}=-\frac{q}{2 \pi r} ; \quad v_{\theta}=\frac{K}{2 \pi r}$
4. Problem 4.23 from Gupta \& Gupta.
5. Problem 4.24 from Gupta \& Gupta.
