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Instabilities are everywhere

Water flow from a tap.

Smoke from an incence stick.

Flow between two concentric
cylinders.

A layer of heated liquid.
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Hydrodynamic stability: connection with Mathematics

Pioneers: Applied Mathematicians and Mathematical Physicists in
late 1800s and early 1900s.

E.g. von Helmholtz, Lord Kelvin, Lord Rayleigh, Neils Bohr,
A Sommerfeld, W Heisenberg (PhD thesis, 1923), S Chandrasekhar,
V I Arnold...

One of the 7 Millennium Prize problems of Clay Mathematical
Institute.
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Laminar-turbulent transition

Osborne Reynolds (1883), “An experimental investigation of the
circumstances which determine whether the motion of water shall be
direct or sinuous..”

Discontinuous transition from laminar to a turbulent flow when
Re ≡ ρVD/µ > 2000.

For rectangular channels, transition at Re ∼ 1200.
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Practical perspective

Newtonian fluids: Navier-Stokes equations have all the information
about fluid flow.

Laminar flows: simple solutions to governing equations.

Examples: plane and pipe Poiseuille flows; plane Couette flow.

Flow in a pipe: laminar flow unstable at Re ∼ 2000.

Instability leads to turbulence.

Turbulent flows: high mixing and drag.

Laminar flows: low mixing and drag.

When does a given laminar flow become unstable ?
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Laminar flows

Navier-Stokes equations

∇ · v = 0 Re[∂tv + v · ∇v] = −∇p +∇2v

Laminar flows: flows with relatively simple kinematics and are usually
time-independent.

Laminar flow solutions satisfy Navier-Stokes equations at any Re.

Landau & Lifshitz

“Yet not every solution of the equations of motion, even if it is exact, can
actually occur in Nature. The flows that occur in Nature must not only
obey the equations of fluid dynamics, but also be stable”

Need to probe the stability of laminar flows to external disturbances.
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Why do instabilities occur ?

Real flows subjected to disturbances of
various types.

Disturbances distort the existing force
equilibrium.

Thermal convection & Circular Couette
flows.

After instability

New complex laminar states.

Direct transition to turbulence.
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How to analyze and predict instabilities ?

Experiments, computation and theory.

What is the effect of an initial disturbance on
laminar flow ?

Do perturbations grow or decay ?

At what value of Reynolds number ?

Infinitesimal vs. finite disturbances.

Infinitesimal disturbances: unavoidable.

Linear stability theory.
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Specify governing equations

Navier-Stokes equations (Newtonian fluid)

∇ · v = 0 ,

ρ[∂tv + (v · ∇)v] = −∇p + µ∇2v + ρg .

Boundary conditions at rigid surface: no-slip and no-penetration.

Find the base state: v x(z), and p(x) (steady, unidirectional).

For complex fluids

Specify appropriate constitutive relation.
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Add a small perturbation

v(x, t) = vx(x) + δ v′(x, t) , p(x, t) = p(x) + δ p′(x, t) , |δ| ≪ 1.

V v’V = + 

Key questions

For a given control parameter λ, does v′ grow or decay with
time ?

What is the critical λ for instability ?

What is the spatial structure at the critical value ?
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Linearize about laminar state

Nonlinear term in Navier-Stokes:

v · ∇v = v · ∇v + δ(v · ∇v′ + v′ · ∇v) + δ2v′ · ∇v′

v · ∇v is the trivial laminar-flow contribution.

At O(δ), terms linear in the perturbations ⇒ Include.

At O(δ2), terms non-linear in the perturbations ⇒ Neglected for
small perturbations.

Hence, linear stability.

Can predict only the onset of instability.
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Linearized PDEs: Fourier expansion

Collect terms of O(δ):
∇ · v′ = 0

ρ[∂tv
′ + v · ∇v′ + v′ · ∇v] = −∇p′ + µ∇2v′

BCs: v′ = 0 at rigid boundaries; Initial condition v′(x, t = 0).

x

y

MEAN FLOW :

x (y), 0, 0 )(V

Fourier expand the disturbances

A(x, t) =

∫ +∞

−∞

dkx

∫ +∞

−∞

dkz

∞∑

n=1

An(k , t)Fn(y) exp[i(kxx + kzz)]
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Normal modes: Eigenvalue problem

Linearity ⇒ Study the dynamics of all Fourier modes individually.

Time dependence An(k , t) = An(k) exp[snt]

Complex growth rate s = sr + isi

sr > 0 Instability; sr < 0 Stability; sr = 0 Neutral stability.

If any Fourier mode grows with time ⇒ unstable, exponential growth
as t → ∞.

If all Fourier modes decay ⇒ stable as t → ∞.

Need to solve coupled ODEs (for F (y)) with an eigenvalue s for
various values of control parameter λ.
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sr > 0 Instability; sr < 0 Stability; sr = 0 Neutral stability.

If any Fourier mode grows with time ⇒ unstable, exponential growth
as t → ∞.

If all Fourier modes decay ⇒ stable as t → ∞.

Need to solve coupled ODEs (for F (y)) with an eigenvalue s for
various values of control parameter λ.
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A simple toy example

Governing equation: ∂t f = f − f 2 + 1
λ∂

2
y f

Boundary conditions: f (y = 0) = f (y = 1) = 0.

Base state: f̄ = 0

Add perturbation: f (y , t) = f̄ + δf ′(y , t)

Linearize:
∂t(f̄ + δf ′) = f̄ − f̄ 2 + 1

λ∂
2
y f̄ + δ

[
f ′ − 2f̄ f ′ + 1

λ∂
2
y f

′
]
+ O(δ2) · · ·

At O(δ): ∂t f
′ = f ′ − 2f̄ f ′ + 1

λ∂
2
y f

′

∂t f
′ = f ′ + 1

λ∂
2
y f

′ , f ′(y = 0) = f ′(y = 1) = 0

Normal modes: f ′(y , t) = F (y) exp[st]

sF = F + 1
λd

2
y F , F (y = 0) = F (y = 1) = 0
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Solution of toy problem

F (y) = c sin[nπy ] n integer.

sn = 1− n2π2

λ

Stable s < 0 for λ < n2π2

Neutral s = 0 for λ = n2π2

Unstable s > 0 for λ > n2π2

Most unstable mode:

f ′(y , t) =

c sin[πy ] exp
[(

1− π2

λ

)

t
]
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Kelvin-Helmholtz instability - I

Two incompressible, inviscid fluids in horizontal parallel infinte
streams of different densities and velocities, one stream above the
other.

U(z) = U2i, ρ(z) = ρ2, P(z) = p0 − gρ2z for z > 0.

U(z) = U1i, ρ(z) = ρ1, P(z) = p0 − gρ1z for z < 0.

Irrotational perturbations: restrictive, but enough for a proof of
instability.

Does not prove stability as the analysis gives no information about
rotational disturbances.

Perturbed interface z = ζ(x , y , t).

u = ∇φ where φ = φ1 for z > ζ, and φ = φ2 for z < ζ.
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Kelvin-Helmholtz instability - II

∇ · u = 0, ∇× u = 0 ⇒ u = ∇φ.

∇2φ1 = 0 for z > ζ and ∇2φ2 = 0 for z < ζ.

BC: ∇φ = U as z = ±∞.

Kinematic condition at moving interface z = ζ, k = 1, 2:
Dζ
Dt

= ukz =
∂ζ
∂t

+
∂φk

∂x
∂ζ
∂x

+
∂φk

∂y
∂ζ
∂y

Normal stress continuity (Bernoulli theorem) at z = ζ:

ρ1

[

C1 −
1
2(∇φ1)

2 −
∂φ1
∂t

− gz
]

= ρ2

[

C2 −
1
2(∇φ2)

2 −
∂φ2
∂t

− gz
]

The base flow also satisfies this condition (at z = 0):
ρ1

(
C1 −

1
2U

2
1

)
= ρ2

(
C2 −

1
2U

2
2

)
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Kelvin-Helmholtz instability - Linearization

φ2 = U2x + φ′

2 for z > ζ, φ1 = U1x + φ′

1 for z < ζ. Neglect products
of small perturbations φ′

1, φ
′

2 and ζ.

How small ?
∂ζ
∂x

,
∂ζ
∂y

≪ 1 and gζ ≪ U2
1 ,U

2
2 .

Taylor-expand z = ζ about z = 0:

φ′

k |z=ζ = φ′

k |z=0 + ζ
∂φ′

k
∂z

|z=0 + · · ·

∇2φ2 = 0, ∇2φ1 = 0
BC: ∇φ′

k → 0 for z → ∓∞ for k = 1, 2
∂φ′

k
∂z

=
∂ζ
∂t

+ Uk
∂ζ
∂x

at z = 0 for k = 1, 2.

ρ1

(

U1
∂φ′

1
∂x

+
∂φ′

1
∂t

+ gζ

)

= ρ2

(

U2
∂φ′

2
∂x

+
∂φ′

2
∂t

+ gζ

)

at z = 0.

V. Shankar (ChE, IITK) Hydrodynamic Stability SADEAFFP-2014 24 / 63



Introduction Linear stability theory A toy example Kelvin-Helmholtz instability Capillary Instability Parallel shear flows

Kelvin-Helmholtz instability - Normal Modes

(ζ, φ′

1, φ
′

2) = (ζ̃ , φ̃1, φ̃2) exp[i(kx + ly) + st]

∇2φ′

k ⇒
[
d
2φ̃k

dz2
− (k2 + l2)φ̃k

]

= 0

φ̃2 = A2 exp[−k̃z ] + B2 exp[k̃z ], k̃
2 = (k2 + l2).

BC at y → ∞, u2z = 0 ⇒ B2 = 0.

So: φ̃2 = A2 exp[−k̃]z and φ̃1 = A1 exp[k̃z ].

Using the kinematic condition at interface:
A2 = −(s + ikU2)ζ̃/k̃ , A1 = (s + ikU1)ζ̃/k̃ .

Using the normal stress condition at interface:
ρ1[k̃g + (s + ikU1)

2] = ρ2[k̃g − (s + ikU2)
2]
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Kelvin-Helmholtz instability - Growth Rate

s = −ik ρ1U1+ρ2U2

ρ1+ρ2
±
[
k2ρ1ρ2(U1−U2)

2

(ρ1+ρ2)2
− k̃g(ρ1−ρ2)

ρ1+ρ2

]1/2

Both roots are neutrally stable if
k̃g(ρ21 − ρ22) ≥ k2ρ1ρ2(U1 − U2)

2. When the equality holds, marginal
stability.

One root is unstable (with Re[s] > 0) if
k̃g(ρ21 − ρ22) < k2ρ1ρ2(U1 − U2)

2.
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Surface Gravity Waves

ρ2 = 0 and U1 = 0,U2 = 0. Surface gravity waves on deep water.

Stable with phase velocity:
c = is/k̃ = ±(g/k̃)1/2

Oscillatory, stable normal modes.

Waves – a special case of hydrodynamic stability.
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Internal Gravity Waves

No basic flow: U1 = 0,U2 = 0.

s = ±[k̃g(ρ2 − ρ1)/(ρ1 + ρ2)
2]1/2

Instability if ρ1 < ρ2 (heavey fluid rests above light fluid).

If ρ1 > ρ2, there is stability, and there are waves with phase velocity:
c = ±[g(ρ1 − ρ2)/k̃(ρ1 + ρ2)]

1/2.

The eigenfunctions decay exponentially away from the interface.
Motion confined to the vicinity of the interface.

Observed between layers of fresh and salt water that occur in
estuaries.

Rayleigh-Taylor instability when the whole system has an upward
acceleration f . Same result with g ′ = f + g . If ρ2 > ρ1, then
instability occurs only of g ′ < 0.
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Instability Due to Shear

No effect of buoyancy: ρ1 = ρ2, but U1 6= U2.

s = −1
2 ik(U1 + U2)±

1
2k(U1 − U2)

Flow always unstable if U1 6= U2. Waves of all wavelengths are
unstable.
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Capillary Instability of a Jet

A cylindrical jet of liquid moving with uniform velocity in air (e.g.
water jet from a slightly-open tap).

Surface tension at the liquid-air interface.

Assume density of outside fluid is zero, and inviscid dynamics for the
liquid.

ρ
(
∂u
∂t

+ u·∇u
)

= −∇p ∇ · u = 0

Pressure inside the jet: P = P∞ + γ∇ · n at r = ζ(x , θ, t)

Perturbed unit normal to the jet:

n =
(−

∂ζ
∂x

,1,−
∂ζ
∂rθ

)
[

(

∂ζ
∂x

)2

+1+

(

∂ζ
∂rθ

)2
]1/2
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Capillary Instability of a Jet

Kinematic condition: ur =
Dζ
Dt

at r = ζ.

Base flow: U = 0, P = p∞ + γ/a for 0 ≤ r ≤ a, as ∇ · n = 1/r when
n = er .

Disturbances: u = U+ u′, p = P + p′, and ζ = a+ ζ ′

ρ∂u
′

∂t
= −∇p′ and ∇ · u′ = 0.

∇ · n = 1
r
−

∂2ζ ′

∂x2
− 1

r2
∂2ζ ′

∂θ2

Normal stress BC at r = a: p′ = −γ

(

ζ′

a2
+

∂2ζ ′

∂x2
+ 1

a2
ζ′

θ2

)

∇2p′ = 0, where ∇2 = ∂2

∂x2
+ ∂2

∂r2
+ 1

r
∂
∂r

+ 1
r2

∂2

∂θ2
.

Normal modes: (u′, p′, ζ ′) = (ũ(r), p̃(r), ζ̃) exp[st + i(kx + nθ)]
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Capillary Instability of a Jet

d
2p̃

dr2
+ 1

r
dp̃
dr

−
(

k2 + n2

r2

)

p̃ = 0

Linearly independent solutions: modified Bessel functions In(kr),
Kn(kr); take n ≥ 0 without loss of generality.

Physically allowed solution: p̃(r) = AIn(kr).

ũ = −A(ρs)−1(ikIn(kr), kI
′

n(kr), inr
−1In(kr))

Linearized BCs: AIn(α) = −γ(1− α2 − n2)ζ̃/a2,
−A(aρs)−1αI ′n(α) = s ζ̃ where α = ak .

Eigenvalue relation:

s2 = γ
a3ρ

αI ′n(α)
In(α)

(1− α2 − n2)

αI ′n(α)/In(α) > 0 for all α 6= 0. So s2 < 0 if n 6= 0.

s2 > 0 for −1 < α < 1 if n = 0.

V. Shankar (ChE, IITK) Hydrodynamic Stability SADEAFFP-2014 33 / 63



Introduction Linear stability theory A toy example Kelvin-Helmholtz instability Capillary Instability Parallel shear flows

Dispersion relation: theory and experiments

Jet stable to all nonaxisymmetric disturbances (n 6= 0).

Jet unstable to axisymmetric modes with wavelengths
λ = 2π/k > 2πa.

If km is the wavenumber at which s is maximum, km = 0.7/a.

Jets of all radii are unstable. No critical parameter that marks the

domain of stability.

In experiments the liquid jet will break up with wavelength about
2π/km ≈ 9a
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Physical interpretation

Displacement of the jet radius: Rnew = R + ǫ cos(kz), k = 2π/λ.

Surface area of the perturbed jet:

A =

∫ λ

0
2πRnew ds

V =

∫ λ

0
πR2

newdz

ds =

[(
dRnew

dz

)2

+ 1

]1/2

dz

For small ǫ, ds =
[

1 + 1
2

(
dRnew

dz

)2
]

dz

A = 2πRλ+
1

2
Rǫ2k2λ
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Physical interpretation

V =

∫ λ

0
dz π[R + ǫ cos(kz)]2

V

λ
= πR2 +

1

2
πǫ2

Require V /λ = πR2
0 , so R = R0

[

1− 1
2

ǫ2

R2
0

]1/2

To O(ǫ2), R = R0 −
1
4

ǫ2

R2
0

Then, change in surface area of the jet (per unit wavelength) due to the
displacement Rnew = R + ǫ cos(kz) is then

1

2
π
ǫ2

R2
0

[(2πR0)
2 − λ2)]
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Physical interpretation

In terms of λ, the change in surface area is

1

2
π

ǫ2

R2
0λ

2
[(2πR0)

2 − λ2]

For λ > 2πR0, the surface area decreases.
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Linear stability analysis: success stories

Rayleigh-Benard thermal convection

Critical Rayleigh number Rac = 1708. Experiments: 1705± 10.
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Linear stability analysis: success stories

Taylor-Couette Centrifugal Instability
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Outline

1 Introduction

2 Linear stability theory

3 A toy example

4 Kelvin-Helmholtz instability

5 Capillary Instability

6 Parallel shear flows
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Stability of Parallel Shear Flows

Parallel Base Flow: U = (U(y), 0, 0)

Perturbations: u, v ,w

∂u

∂t
+ U

∂u

∂x
+ vU ′ = −

∂p

∂x
+

1

Re
∇2u

∂v

∂t
+ U

∂v

∂x
= −

∂p

∂y
+

1

Re
∇2v

∂w

∂t
+ U

∂w

∂x
= −

∂p

∂z
+

1

Re
∇2w

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0
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Stability of Parallel Shear Flows

∇2p = −2U ′
v

x
[(

∂
∂t

+ U ∂
∂x

)

∇2 − U ′′ ∂
∂x

− 1
Re

∇4
]

v = 0
[
∂
∂t

+ U ∂
∂x

− 1
Re

∇2
]

η = −U ′′∂v
∂z

Normal vorticity: η = ∂u
∂z

− ∂w
∂x

.

Boundary conditions: v = v ′ = η = 0 at solid walls and in the far
field.
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Orr-Sommerfeld and Squire equations

v(x , y , z , t) = ṽ(y) exp[i(αx + βz − ωt)]

η(x , y , z , t) = η̃(y) exp[i(αx + βz − ωt)]

k2 = (α2 + β2)

[

(−iω + iαU)(D − k2)− iαU ′′ −
1

Re
(D2 − k2)2

]

ṽ = 0

[

(−iω + iαU)−
1

Re
(D2 − k2)

]

η = −iβU ′ṽ

BCs: ṽ = Dṽ = η̃ = 0 at solid walls and in free stream.
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Orr-Sommerfeld and Squire equations

Temporal problem: α, β real, ω complex.

Spatial problem: ω real, α, β complex.

We will consider the temporal problem: c = ω/α is the complex
wavespeed (eigenvalue) of the OS equation, and the associated ṽ are
the eigenfunctions.

OS equation is homogeneous, while the Squire equation is forced by
the solutions of the OS equation.

Two classes of eigenmodes: OS modes and Squire modes.

OS modes: Find ṽn and ωn by solving OS equation and then find η̃pn
by solving the inhomogeneous Squire equation.

Squire modes: ṽ = 0, η̃m ωm
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Squire’s transformation and Squire’s theorem

(U − c)(D − k2)ṽ − U ′′ṽ − 1
iαRe (D

2 − k2)2ṽ = 0

OS equation with β = 0 (no variation in the z direction):
(U − c)(D − α2

2D)ṽ − U ′′ṽ − 1
iα2DRe2D

(D2 − α2
2D)

2ṽ = 0

Comparing: the two equations will have identical solutions if the
following relations hold: α2D = k =

√

α2 + β2

α2DRe2D = αRe
⇒ Re2D = Re α

k
< Re

To each 3D OS mode, there is a corresponding 2D OS mode at a
lower Reynolds number.
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Squire’s transformation and Squire’s theorem

Damped Squire modes: The solutions to the Squire equation are
always damped with ci < 0 for all α, β, and Re.

To prove, multiply Squire equation by η̃∗ and integrate from y = −1
to y = 1 (the fluid domain), and take imaginary part.

ci

∫ 1

−1
dy |η̃|2 = −

1

αRe

∫ 1

−1
dy |Dη̃|2 + k2|η̃|2 < 0

Squire’s theorem

Given ReL as the critical Reynolds number for the onset of linear instability
for a given α, β, the Reynolds number Rec below which no exponential
instabilities exisit for any wavenumber satisfies
Rec ≡ minα,β ReL(α, β) = minα ReL(α, 0)
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Inviscid Analysis

Rayleigh Equation: Neglect viscous terms in OS equation

(U − c)(D2 − k2)ṽ − U ′′ṽ = 0

with k2 = α2 + β2, and BCs: ṽ = 0 at y = ±1 at solid boundaries.

We have to forgo the no-slip BC due to the reduced order of the ODE.

Since the coefficients of the Rayleigh equation are real, any complex
eigenvalue will appear in conjugate pairs. If c is an eigenvalue, so is
c∗.

Regular singular point in the complex y plane when U(y) = c . The
corresponding real part of this location yc is the “critical layer” where
U(y) = cr .
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Inviscid Analysis

Singularity is logarithmic, and Frobenius series can be used to find the
solution about yc .

ṽ1(y) = (y − yc)P1(y)

ṽ2(y) = P2(y) +
U ′′

c

U ′

c

ln(y − yc)

Here, P1 and P2 are analytic.

The second solution is multivalued due to the logarithmic term.
When ci = 0, the critical layer is on the real axis,
ln(y − yc) = ln |y − yc | ± iπ for y < yc .

The correct sign of the imaginary part cannot be determined within
the inviscid analysis.

Must do a matched asymptotic expansion of the Rayleigh invisicd
solution with the full OS solution about y = yc .
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Classical theorems in inviscid stability

Multiply Rayleigh equation by ṽ∗ and integrate from y = −1 to
y = 1. Then integrate by parts:

∫ 1

−1
dy |Dṽ |2 + k2|ṽ |2 +

∫ 1

−1
dy

U ′′

U − c
|ṽ |2 = 0

Take imaginary part:

ci

∫ 1

−1
dy U ′′

|ṽ |2

|U − c |2
= 0

Both |ṽ |2 and |U − c |2 are nonnegative. If ci is positive, then U ′′ has
to change sign in order for the integral to be zero.

Rayliegh’s inflexion point theorem only a necessary condition.
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Classical theorems in inviscid stability

Rayleigh’s inflexion point theorem

If there exist perturbations with ci > 0, then U ′′(y) must vanish for some
y ∈ [−1, 1] for instability.

∫ 1

−1
dy |Dṽ |2 + k2|ṽ |2 +

∫ 1

−1
dy

U ′′

U − c
|ṽ |2 = 0

Take real part:

∫ 1

−1
dy

U ′′(U − cr )

|U − c |2
= −

∫ 1

−1
dy |Dṽ |2 + k2|ṽ |2

Then add the following expression to the left side of above equation:

(cr − Us)

∫ 1

−1
dy U ′′

|ṽ |2

|U − c |2
= 0

The above expression is zero due to inflexion point theorem.
V. Shankar (ChE, IITK) Hydrodynamic Stability SADEAFFP-2014 50 / 63



Introduction Linear stability theory A toy example Kelvin-Helmholtz instability Capillary Instability Parallel shear flows

Classical theorems in inviscid stability

∫ 1

−1
dy

U ′′(U − Us)

|U − c |2
|ṽ |2 = −

∫ 1

−1
dy |Dṽ |2 + k2|ṽ |2

For the integral to be negative, U ′′(U − Us) < 0 in the flow field.

Fjortoft’s Criterion

Given a monotonic mean velocity profile U(y), a necessary condition for
instability is that U ′′(U − Us) < 0, with Us = U(ys) as the mean velocity
at the inflexion point, i.e., U ′′(ys) = 0.
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Classical theorems in inviscid stability

Howard’s semicircle theorem

The unstable eigenvalues of the Rayleigh equation satisfy

[

cr −
1

2
(Umax + Umin)

]2

+ c2i ≤

[
1

2
(Umax − Umin)

]2

For ci → 0+, Umin < cr < Umax for marginally stable modes.

For plane-Poiseuille flow and many internal channel flows, U ′′ does
not vanish in the domain of the flow, and so these flows are stable in
the inviscid limit to 2D infinitesimal perturbations.

Unbounded jets and free shear layers are unstable in the inviscid limit.
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Viscous instability
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Numerical Eigenspectrum
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Numerical Eigenspectrum
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Comparison with experiments

Plane-Poiseuille flow (numerical solution): Rec = 5722.2

Experiments: Rec could be as low as 1000.

Pipe-Poiseuille flow (asymptotic/numerical solution): Rec = ∞

Experiments: Rec ∼ 2000.

Plane Couette flow (numerical solution): Rec = ∞.

Experiments: Rec ∼ 360.

Can a unavoidable disturbance in an experiment be treated as
“infinitesimal” ?

Very careful experiments in pipe flow: Re for transition could be 105.

Still need to explain the usual value of Re ∼ 2000.
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Nonlinear stability

A sufficiently “large” disturbance could destabilize or stabilize.

A toy nonlinear ODE: dx
dt

= ax − bx3

Base-state: x = xB1 = 0 , x = xB2 = +
√

a/b , xB3 = −
√

a/b for
a/b > 0.

Stability: x = xB1 + x ′ , dx ′

dt
= ax ′ , x ′(t) = A exp[at] , Unstable for

a > 0 and Stable for a < 0.

Stability of xB2 and xB3:
dx ′

dt
= ax ′ − 3bx2Bx

′ , x ′(t) = A exp[st] ,
s = −2a.

xB2 and xB3 stable if a > 0 and are unstable if a < 0.
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Supercritical and Subcritical Bifurcation

Supercritical bifurcation for b > 0: Solutions xB2 and xB3 exist only
for a > 0; for a < 0, x = 0 is the only solution.

For a > 0 x = 0 becomes unstable and gives rise to two new stable
solutions xB2 or xB3. (Rayleigh–Benard convection).

Subcritical bifurcation for b < 0: For b < 0, xB2 and xB3 exist only
for a < 0.

For a < 0, xB2 and xB3 are unstable.

The x = 0 solution could become unstable even for a < 0 to a
sufficiently large disturbance (Shear flow instabilities).
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sufficiently large disturbance (Shear flow instabilities).

V. Shankar (ChE, IITK) Hydrodynamic Stability SADEAFFP-2014 57 / 63



Introduction Linear stability theory A toy example Kelvin-Helmholtz instability Capillary Instability Parallel shear flows

Weakly nonlinear effects: Landau equation

Linear theory: 1
A

dA
dt

= s0A ⇒ A(t) = A(0) exp[s0t]

When s0 > 0 ⇒ Flow unstable: Only onset predicted.

Exponential growth: Cannot neglect nonlinearities anymore.

Nonlinearities can saturate exponential growth, or further accelerate
exponential growth.

Weakly nonlinear theory:

Landau Equation: 1
A

dA
dt

= s0+ s1A
2 ;

s1: Landau constant → effect of nonlinearities.
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Supercritical Equilibrium

A

Γc

Landau Constant negative

Γ

New non-laminar 
steady states

Γ Γc<Γ cΓ >

1
A

dA
dt

= s0
︸︷︷︸

+ve

− |s1|A
2 ⇒ A2

s = s0/|s1|.

A linearly unstable mode saturates to a new steady state.

Rayleigh – Bernard convection cells, Taylor vortices . . .
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Subcritical Instability

Γc

A

Γ

Landau constant positive

No nearby equilibrium states finite disturbances
Unstable toStable to

Small disturbances

1
A

dA
dt

= − |s0|
︸︷︷︸

−ve

+ s1A
2 ⇒ Instability for Γ < Γc if A2

intial > |s0|/s1.

A linearly stable mode becomes unstable to finite amplitude
disturbances.

Plane Poiseuille flow in a rigid channel: 65% reduction in critical Re
for v ′x/V = 0.025; Strongly subcritical.
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Subcritical Instability

A

Γ Unstable

weakly
subcritical

subcritical
strongly

1
A
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Transient or algebraic growth: A simple example

Coupled ODEs: dv
dt

= − 1
Re

v , dη
dt

= v − 2
Re

η

Solution: Exponential decay of v(t) and η(t)

v(t) = v0 exp[−t/Re]

η(t) = v0Re(exp[−t/Re]− exp[−2t/Re]) + η0 exp[−2t/Re]

For small times, series expand:

Rev0(exp[−t/Re]− exp[−2t/Re]) = v0t −
3v0
Re

t2 + · · ·

Growth ∝ t for small times t < O(Re), and exponential decay for
long times.

During this “transient growth” nonlinearities could become important
and lead to instabilities.

“Bypass transition”.
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Non-modal (transient) growth

In rigid tubes, pipe flow always (asymptotically) stable at any Re as
per normal mode analysis.

Plane-Poiseuille flow unstable at Rec = 5772, but experiments show
instability at Re ≈ 1200.

Underlying differential operators are non-normal, and eigenfunctions
are non-orthogonal.

Possibility of algebraic or transient growth at early times, which
eventually decay as t → ∞.

Schmid and Henningson, 2001
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Plane-Poiseuille flow unstable at Rec = 5772, but experiments show
instability at Re ≈ 1200.
Underlying differential operators are non-normal, and eigenfunctions
are non-orthogonal.
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disturbance

time

asymptotic
decay

transient
growth

energy

Schmid and Henningson, 2001
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Spatio-temporal analysis

Response to impulse forcing at x = 0, t = 0.

x

t t

x00

Convective Absolute

G (x , t) =
∫

L
dω
2π I (x , ω) exp(−iωt)

I (x , ω) =
∫

F
dα
2π D(k , ω)−1 exp(iαx)

Absolute instability: Contour deformation in the L-domain until there
is a pinching of branches in the F -domain.
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